The P vs. NP problem

fficient computation, Internet security, nd the limits of human knowledge

Avi Wigderson
Institute for Advanced
Study

Clay Math Institute Millennium Problems - \$1M each

- Birch and Swinnerton-Dyer Conjecture
- Hodge Conjecture
- Navier-Stokes Equations
- P vs. NP
 - Poincaré Conjecture
 - Riemann Hypothesis
- Yang-Mills Theory

Scientific / Mathematical/ Intellectual / Computational problems

NP: Problems we want to so ve/understand Problems we can solve/understan

P=NP? - limits on human

PLAN

- Computation is everywhere
- Algorithms: language of computation
- Efficient algorithms: P
- Efficient verification: NP
- NP-completeness
- Implications

Computation

Mathematics

$$X^n + Y^n = Z^n$$

Computer

Computation

Piology

Dhycics

everywhere

Computation: every process which is a sequence of simple, local steps, that we want to perform, or understand

Variety of natural phenomena and intellectual challenges, each with an occupation communication.

Nature computes!
Can we simulate/predict?

4/11/03

4/30/03

SARS infection (in the world)

SARS infection (in the cell)

Will the epidemic spread, or die out?

Theorem: no solution!
Proof does not fit on
this slide (200 pages)

Computations in Mathematics

Nearly 10,000 reported killed by China quake Rain hampering rescue efforts in worst-hit area Nearly 900 children buried when a school building collapses, 50 bodies found

7.9 magnitude quake is felt throughout much of China

Face recognition

"Mona Lisa"

Emotional reactions

Sadnes

The subconscious brain computes

Beauty from computation

Seashells compute

How to describe computation?

The language of Algorithms

Father of Computing Alan Turing 1912-1954

1936: "On computable numbers, an application to the entscheindungsproblem"

- Formal definition of algorithm (Turing machine)
- Seed of the computer revolution
- Church-Turing Thesis: everything that nature computes, can be emulated on a Turing machine

ALGORITHM (informal)
Step-by-step, local,
simple, mechanical
procedure.
Halts in finite time
or every input.

Example: Addition algorithm (informal)

- 1. Scan column. If empty, stop.
- 2. Add digits. Write answer, remember carry.
- 3. Move one column left, write carry.
- |4.Go to 1 | Inite description vs. Infinite #-inputs

Limits of Knowledge I Unsolvable

Turing (& Godel): Given a computer program, does it always halt?

Mattiasevich: Given an

equation, does it have an integer solution?

Conway: Given

Solvable

Computationa Complexity
Theory

Efficiency of an algorithm asymptotic analysis:
Number of basic steps,
for larger and larger
inputs.

input

Rubik's cube How many steps to solve...

Sudoku How long does it take you to solve...

		8	6					
							6	
			4	8			2	3
		5		9				8
	4	9				2 7	1	
2				4		7		
3	6			2	9			
	1							
					5	1		

1			2	3	4			12		6				7	
		8				7			3			9	10	6	11
	12			10			1		13		11			14	
3			15	2			14				9			12	
13				8			10		12	2		1	15		
	11	7	6				16				15			5	13
			10		5	15			4		8			11	
16			5	9	12			1						8	
	2						13			12	5	8			3
	13			15		3			14	8		16			
5	8			1				2				13	9	15	
		12	4		6	16		13			7				5
	3			12				6			4	11			16
	7			16		5		14			1			2	
11	1	15	9			13			2				14		
	14				11		2			13	3	5			12

3 4

Sudoku

	у				b		а	С	Х	n			h			t		f				d	е	
	t		s		:	h					d	_			_		k	_	b					
	_			u	J	-11	V		1.		u	q	С			0				n		a	W	р
W	h	е	m	а	n		Ш	u	k	р		r	У		S	Х	d	q	С	0	j		i	b
b		j		р	S			t				i	m		٧	n	g	h	а	q		r	Х	У
Х	0		d		i	р			r	е			f		u	j	W	У	m		h		S	С
	W	q	u	j			i		е		Х	b	0	m	а			n	h	k	С	S		
n	С				W	х	u	S	f		q		1			е	m	k	V				j	а
а	i		Х	f	С	1			m		٧	k	W		q			j		d	g		b	h
s			٧		h	k	р	0	b	u	f	j	n				t		d	i	m		r	q
	b	d		m	r	٧			j		h	р			0	g	у	w			t		u	
у	р		е	1	а	m		٧	h	0	b		х	i	t	s	q	u	w	g	r	С	d	k
	q	g	j		е		s	r		h	С				f	k	Ė		х	_	у	T	а	0
		u	t	k		n	0				r	m	q	у		b	а	v	j		i	р	h	
	x	r	_	w	р		у	k	<u> </u>		1	е	j	_	_	_	_	m	,	t	q	V		u
		-		b	-		y		_	k	a		t						r		4	i	m	<u> </u>
	S	_	n		q	С	l-	g	W			u		p	У		0	-1	<u> </u>	Х		1	m	
J	n	S	q	V	X	У	h		u	t	р	0	g		m		f	d			W	ļ i	k	r
u		W	b	t		е	r	р	0	m		С	d	f	k	V					S	q		
d			h		m	S	С	f		q	j		k	n	g	W		b		_	٧	u		е
			0	е	d	<u> </u>	k	n	q		W		u		j	а				h		b	р	m
	k				٧	j	t	W		а	S	h					u	r	q	С	d	f		n
			g	d	у	r	W			C		1	i		n	р	٧	а	f	е			q	
	٧	х	р	0		t	b			d	n	f			W			g		s	а	h	у	i
i		k	w	С	g	q	х	h					а	u	-1	d	е		s			m	f	V
		а	у	r		d	f	е	n	х	k		s	h			b		u		р			
q	1		f	s			m	i	v			w			h		х	t	у				С	d

Efficiency of the addition algorithm

5 DIGITS30 STEPS

1. Add digits. Write answer, retain carry.

12345

2. Move one column left, write carry.

+6789

3. Scan column. If empty, stop.

123456789

60 d 4_{PS}Go to 1

+987654321

6 basic steps per column

20 DIGITS

72635273545786043726

120 STEPS

+53827484732625435473

50 DIGITS

300 STEPS

47563739203487456438992305757328576452364568456465744576

Is there a faster algorithm?

No!

2

NOTITY Solving is as fast as reading the input

KN STEDS

ficiency of the multiplication algorithm

5 DIGITS25 STEPS

Grade-school multiply algorithm

12345 x6789

10 D

100

123456789

X

987654321

400 STEPS

72635273545786043726 ×53827484732625435473

50 DIGITS
2500 STEPS

47563739203487456438992305757328576452364568456465744576

<u>9865609284346754623486843198754321097983286587413465</u>3472

there a faster algorithm?

Yes!

But not as fast as addition

in a

Efficiency of a factoring algorithm

? = 147,573,952,588,676,412,927

Find nontrivial factors of a number A

N DIGITS
10^{N2} STEPS

Brute force factoring algorithm Input: A

- For B = $2,3,...\sqrt{A}$ do:
- If B divides A, return B, A/B

Very slow! 1000 digits → sun will die before finishing

Is there a faster algorithm?

Yes, but still extremely slow!

Which problems are hard to solve?

Addition & Multiplication: Easy

Is Factoring hard?

Finding efficient algorithms, or proving that no such algorithms exist:

Bread and butter of our field

All problems having an efficient (polynomial time, e.g. n, n²) algorithm like Addition and Multiplication

Many practical interesting problems

Efficient algorithms -

Drivers of invention & industry

Who were

Edison? Marconi? Guttenberg? Stevenson?

Light bulb Radio Printing press Steam engine

Shortest path

Google 1959

Network flows
Internet routing
Dynamic
Programing


```
define Dijkstra(Graph G, Node s)
S := \{\}
Q := Nodes(G)
while not empty(Q)
u := extractMin(Q)
S := S \cup u
for each node v in neighbors(u)
if d(u) + w(u,v) < d(v) then
d(v) := d(u) + w(u,v)
pi(v) := u
```

Distance (Delhi, Bangalore)
Path (Delhi, Bangalore)

Pattern matching

Knuth-Morris-Pratt Boyer-Moore 1977

Spell checking
Text processing
CELERA
an Applera Corporation Business
Genome
Molecular Biology

Google TAHOO!

Text CAUCGCGCUUCGC Pattern CGC

algorithm kmp_search:

input: T (text), P (pattern sought)

define variables:

 $m \leftarrow 0, i \leftarrow 0, M$ (the table)

while m + i is less than length of T, do:

if P[i] = T[m + i], let $i \leftarrow i + 1$

if i = length of P then return m

otherwise, let $m \leftarrow m + i - M[i]$,

if i > 0 let $i \leftarrow M[i]$

Fast Fourier Transform (FF

Cooley-Tukey 1965
Gauss 1805

Audio processing Image processing
Tomography, MRI
Fast multiplicatio
Quantum algorithms

```
T(0), T(1), T(2), ....T(N)
```

```
RECURSIVE-FFT(a)
    n \leftarrow length[a]
       if n = 1
           then return a
      \omega_n \leftarrow e^{2\pi i/n}
       \omega \leftarrow 1
      a^{[0]} \leftarrow (a_0, a_2, \dots, a_{n-2})
 7 a^{[1]} \leftarrow (a_1, a_3, \dots, a_{n-1})
 8 y^{[0]} \leftarrow \text{RECURSIVE-FFT}(a^{[0]})
    y^{[1]} \leftarrow \text{RECURSIVE-FFT}(a^{[1]})
      for k \leftarrow 0 to n/2 - 1
              do y_k \leftarrow y_k^{[0]} + \omega y_k^{[1]}
                 y_{k+(n/2)} \leftarrow y_k^{[0]} - \omega y_k^{[1]}
                   \omega \leftarrow \omega \omega_n
    return y
```

$$T_N(x) = \sum_{n=0}^{N} a_n \cos(nx) + i \sum_{n=0}^{N} a_n \sin(nx)$$

Error correction Reed-Solomon decoding

Petersen 60 **Berlekamp-Massey**

CDs DVDs

Satellite communica Cell phone communication

INPUT: a binary sequence $S = S_0, S_1, S_2, ..., S_n$.

OUTPUT: the complexity L (S) of S, 0 < L(S) < N.

- 1. Initialization: C(D):=l, L:=O m:=-l, B{D}:=l, N:=O.
- 2. While (N < n) do the following:
 - 2.1 Compute the next discrepancy d.

$$d:=(S_N + \sum c_i S_{N_i}) \bmod 2.$$

2.2 If d = 1 then do the following:

$$T(D) := C(D), C(D) := C(D) + B(D) \cdot D^{Nm}$$
.

If
$$L < N/2$$
 then $L:=N+l-L$, $m:=N$, $B(B):=T(D)$.

- 2.3 N := N + 1.
- 3. Return(L).

Unsolvab le Solvabl

Shortest
Path

Pattern
Matching

Error
FFT Correction

Multiplication

Addition

Cobham, Edmonds Rabin ~1965 10 C 355

All problems having an efficient (polynomial time) algorithm

Many interesting problems in P

Are all interesting problems in P? What are "interesting" problems?

Search problems

Short Path: FIND short path from Princeton to LA

Pattern Matching: FIND CGC in

Easy What is common to all these problems?

Harr In all, solutions are easy to check & verify!

Factoring: FIND factors of 147,573,952,588,676,412,927= $193,707,721 \times$

761,838,257,287

Theorem Proving:

Lemma...Proof...Lemma..Proof..

-			8	6						Ľ
H								6		,,
				4	8			2	3	
			5		9				8	
		4	9				2	1		
	2				4		7			
	3	6			2	9				
		1								
						5	1			

Sudoku: FIND solution of

The class NP- problems like FIND: needle in a haystack

May be hard to find

Always easy to verify

ook & Levin 1971 ödel 1956 The Class

All problems having efficient verification algorithms of given solutions

For every such problem, finding a solution (of length n) takes ≤ 2ⁿ steps: try all possible solutions & verify each.

Can we do better than "brute

P versus NP

- P: Problems for which solutions can be efficiently *found*
- NP: Problems for which solutions can be efficiently *verified*

Conjecture: P ≠ NP [finding is much harder than verification]

"P=NP?" is a central question of math, science & technology

What is in NP?

Mathematician: Given a statement, *find* a proof

Scientist: Given data on some phenomena,

find a theory explaining it.

Engineer: Given constraints
(size,weight,energy)

find a design (bridge, medicine,
phone)

In many intellectual challenges, *verifying* that we found a good solution is an easy task!

niversality: NP-completeness

- **Are SuDoku, Theorem Proving, Factoring hard?**
- These problems are intimately related!!

- Theorem: If SuDoku is easy then
 - Theorem proving is easy
 - Factoring is easy

Proof: Suboku is NP-complete P=NP iff Suboku has an efficient suboku solver can solve any NP algorithm

niversality: NP-completeness

NP-complete problems:
If one is easy, then all are!
If one is hard, then all are!

SuDoku: NP-complete
Thm proving: NP-complete
Integer factoring: we don't know

niversality: NP-completeness

NP-complete problems:
If one is easy, then all are!
If one is hard, then all are!

SuDoku: NP-complete
Thm proving: NP-complete
Integer factoring: we don't know

Thousands of NP-complete problems known in Math, Biology, Physics, Economics,....

Protein Engineering vol. 7 no. 9 pp. 1059-1068, 1994

The protein threading problem with sequence amino acid interaction preferences is NP-complete

Richard H. Lathrop

Economic Theory vol. 23, no. 2, pp. 445-454, 2004

Finding a Nash equilibrium in spatial games is NP-complete

R. Baron, J. Durieu, H. Haller and P. Solal

[math.GR] arXiv:0802.3839v1

Quadratic equations over free groups are NP-complete

O. Kharlampovich, I.G. Lysenok, A G Myasnikov,

N. Touikan

NP-completeness: sign of structural "nastiness".

Potential guide to better models and

P ≠ NP as a law of nature

The following problems are NP-complete Biology: Minimum energy Physics: Minimum

Economics: Nash Equilibrium in strategic games

What is efficient computation?

Church-Turing Thesis: efficiently?

Every reasonable process, can be simulated by the Tubing machine Theorem [Blum-Micali, Yao, Nisan-Wigderson, Impagliazzo-Wigderson]

If "P≠NP", randomness add no power!

- Adding quantum bits

The end we IChewl

Positive consequences of P≠NP

P≠NP Some of the problems we want to solve are hard. Are hard problems useful?

Cryptography: If Factoring is hard then:

- Encryption Electronic commerce
- Digital signatures On-line shopping

Things we didn't cover

- How to prove NP-completeness
- Attempts to prove P+NP and restricted lower bounds
- Other resources (space, parallelism communication) and complexity classes
- Other modes of computation (average-case, approximate,...)

