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Lecture 1.
Disordered metals: quantum

corrections and scaling theory
Plan of the Lecture

1) Dimensionless conductance and its scaling

2) Interference corrections to conductivity and
magnetoresistance

3) Spin-orbit scattering and “anti-localization”
4) Aronov-Altshuler corrections due to e-e interaction

5) Fractal nature of critical wave-functions: is simple
scaling valid ?

Classical Reviews:

Lee and Ramakrishnan: Disordered electronic systems Reviews of Modern Physics, Vol. 57, No. 2, April 1985

Altshuler; B. L.; and A. G. Aronov, 1984, in Electron-Elcctron
Interactions in Disordered Systems, edited by M. Pollak and A.

AM. Finkel’stein, Sov. Sci. Rev. A Phys. 14 (1990) 1.



A non-interacting electron moving in random potential

o ® . .
Quantum interference of scattering waves
. /
® ° ———> Anderson localization of electrons
o
¢ () extended

localized localized

\ E

localized

extended




(d) (c)

Figure 4.7 (a) Diffuson contribution to the probability. (b) Reversing one of the two trajectories, the
points r and r’ are exchanged, leading to an impossibility unlike 7 and r’ coincide. In such a case

(c), the phases cancel in this new contribution. (d) If r # r’, there is a mismatch between the two
trajectories, leading to a phase shift.
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Figure 4.8 (a, b, b/, b”) Several equivalent representations of a process of five collisions which
contribute to X.. Representation (b) is common in the literature, and is called a Cooperon or maximally
crossed diagram. Reversing one of the two trajectories (b — b’ — b’"), we see that the Cooperon
has a ladder structure very similar to that of the Diffuson. (c,d) Representations of X.. These two
figures should be compared with Figures 4.4(c,d) and demonstrate why the Cooperon is a short range



Abrahams, E., P. W. Anderson, D. C. Licciardello, and T. V L
Ramakrishnan, 1979, Phys. Rev. Lett. 42, 673. :

Scaling theory (“gang of four”, 1979)

Conductance {changes when system size [, changed.

area
Metal: g — 142
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Insulator: g X e_L/§

ding
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B(g) = =d-2-0(g 1)

g>1

d>2

All wave functions are localized below two dimensions! /

A metal-insulator transition at g=g., is continuous (d>2).



g(L) = const [.4-2 Classical (Drude) conductivity
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B(g) = (d-2) —1/g at g>>1
=Ilng at g<<1

This is for scattering on purely potential disorder

For strong Spin-Orbit scattering (-1/g) — (+1/20)



“Anti-localization” due to S-O
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FIG. 17. The magnetoconductance curve of a Mg film with dif-
ferent coverages of Au. [AL(H) is the magnetoconductance,
and L _=e?/2%w*.] The coverages shown are in percent of an
atomic layer. Increasing Au coverage converts the positive
magnetoconductance to negative. Full curves through the data
points are fits using the theory of Hikami, Larkin, and Nagaoka
(1980)). Figure is taken from Bergmann (1982b).



e-e Interaction corrections
(Altshuler & Aronov)
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FIG. 14. Diagrams for the correction to conductivity.
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FIG. 10. Diagram for the polarization function Il(g,®).



g(T): Full RG with AA corrections

B(g)= —1/g—1/g for potential scattering (g>> 1)

B(g) = +1/2g —1/g for Spin-Orbital scattering (g >> 1)
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Metal-Insulator Transition in Disordered  piys. rev Zor. 88. 016802 (2002).

Two-Dimensional Electron Systems. .
Science (2005)
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Fizure 1: The disorder-mitevaction, $-9, flow diagram of the 2D electron gas obtained by zolving
Egz. (4) and (5) wath the Cooper chamel included (o = 1), Amvows indicate the direction of
the flow as the temperature 15 lowered. The corele denotes the QP of the MIT, and the dashed
lines show the separatices.



Interaction-induced criticality in Z; topological insulators
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FI. 1: Schematic scaling functions for the conductivity of 2D disordered systems of symplectic symmetry class. The plotted
beta functions Fig) = dg/dIn L determine the flow of the dimensionless conductivity g with increasing system size L (as
indicated by the arrows). The upper two panels show the beta functions for ordinary spin-orbit systems which are not
topologically protected (left: no interaction; right: Coulomb interaction included). The lower two panels demonstrate the
scaling for topologically protected Dirac fermions (left: no interaction; right: Coulomb interaction included).



Fractality of critical wavefunctions in 3D

Anderson Transitions F. Evers, A.D. Mirlin  E. Cuevas and V. E. Kravtsov
Rev. Mod. Phys. 80, 1355 (2008) Phys. Rev. B 76, 235119 (2007)
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FIG. 2: 2D cartoon of a) conventional localized state; b) lo- o o \
calized state in a multifractal insulator; c) extended state in a RLT« ) = Z i 'i;ﬂ[aj?i - E_i' - "‘"11
multifractal metal. The darker regions correspond to higher

elgenfunction amplitude. The localization /correlation radius

£ is shown in each case.


http://arxiv.org/find/cond-mat/1/au:+Evers_F/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Mirlin_A/0/1/0/all/0/1

Critical eigenstates: 3D mobility edge
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FIG. 1: Critical enhancement of eigenfunction correlation.
FIG. 5 Two-eigenfunction correlation function for the 3D Results of exart diagonalization of the ecritical PLERM at
Anderson model (orthogonal symmetry class) with a triangu- b—=0.1. the b led random matrices with B=5, and Wigner-
lar distribution of random on-site energies (solid symbols) and D}_'Eﬂlll IHI'.'I are shown in red. blue and gre;n: respactively

and are represented by squares (N=200), circles {N=1000)
and stars (IN=2000).

d2/d = 0.48



Wavefunction’s correlations in insulating band
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FIG. 8: Eigenfunction correlation in the 110 Anderson insu-
lator with rectangular distribution of on-site energies and pe-
riodic boundary conditions. The disorder strength is W =&
(circles), W = 10 (stars). The inverse participation ratio is
equal to 0,23 and 0,46, respectively,
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FIG. 9 Eigenfunction correlation in the 3D Anderson insula-
tor with rectangular distribution of on-site energies and peri-
odic boundary conditions. The disorder strength is W = &0
igreen), W =60 (blue), W = 40 (red), W = 30 (purple). The
svetem size is L = 20 for filled svmbols and L = & for open
svmbols. The inverse participation ratio for the four insulat-
ing svstems is Py = 0.72, 0.63, 0.44, 0.28 which corresponds
to £ = 1.0, 1.1, 1.2, 1.4 according to & = (94713, The
change of the slope occurs at [E — EY| = d.. The slope for
larger energy separations |E —E'| = d¢ progressively increases
with increasing W remaining smaller than 1. The insert shows
the result for W = 60, L = 20 for the periodic (upper blue
curve) and the hard wall (lower red curve) boundary condi-
tions.



2D vs 3D: qualitative difference

« 2D weak localization:
fractality is weak, 1-d,/d ~1/g << 1

3D critical point: t P(V)
strong fractal effects, 1-d,/d = 0.57
vl |-
Hopping amplitude t W=V, /t

3D Anderson model (“box” distribution): W_=16.5
but simple diffusive metal is realized at W < 2-3 only



FIG. 71 A cartoon of stratification of the coordinate space:
different non-intersecting snpports shown by different colours.
Each support corresponds to a shell of states ocoupving this
support and thus strongly overlapping; states belonging to
different shells do not overlap. The stratification of space
explains both strong correlations of states at energy separa-
tion w smaller that the single-shell bandwidth Fo and mnmtual
avoiding of eigenstates for w = .



Anderson localization  Anderson (1957)

A non-interacting electron in a random potential may be localized.

Gang of four (1979): scaling theory

Weak localization PA. Lee, H. Fukuyama, A. Larkin, S. Hikami, ....

well-understood area in condensed-matter physics

Unsolved problems:

Theoretical description of critical points

Scaling theory for critical phenomena in disordered systems



