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Outline of the talk

• What is a theory?

• Phenomenological descriptions

• Structure

• Continuous Random Network

• Random close packing

• Dynamics

• Adam Gibbs theory

• Landscapes
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• Landscapes

• Free volume theory 

• Microscopic descriptions

• Rigidity percolation

• Mode Coupling Theory (MCT)

• Random first order theory (RFOT)



What is a theory? 

• Distinguish fitting function and theory!

• Fitting functions:

• Kohlrausch-Williams-Watts function

• Coupling model (K. Ngai)

• ....

• Theory: Should allow to make a microscopic calculation 

for a given Hamiltonian; calculations might be difficult 

and might be approximate; results might be bad
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and might be approximate; results might be bad

N.B.’s: 

1)There are complicated models, e.g. kinetically facilitated 

Ising models (see talk by Jack), that allow to reproduce a few 

dynamic aspects of real glass-forming liquids; these models 

are useful to understand certain mechanisms, but they are 

models and not theories

2) In glass physics the sophistication of approaches/theories 

spans orders of magnitudes!



Phenomenological description of the structure: 

Continuous Random Network
• Covalently bond atoms have a very well defined coordination number    

⇒ well defined local chemical order; Si: z=4, C: z=4; As: z=3,...

• But angles can still vary ⇒ local geometrical disorder ⇒ random network

• Simple rule to build a random network

For example d=2 random network

• all atoms have z=3

• all nearest neighbor distances are fixed

4

• all nearest neighbor distances are fixed

• no loose ends (=dangling bonds)



Phenomenological description of the structure: 

Continuous Random Network: 2
• Comparing structure from CRN with experiments

Amorphous Ge 

(Steinhardt et al. 1974)

Amorphous SiO2

(Bell and Dean 1972)
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Phenomenological description of the structure: 

Random Close Packing

• Approximate atoms as hard spheres; this is ok for many metals (see talks 

by Kelton and Poole)

• Dimension d=2: Tight packing of hard disks is simple ⇒ hexagonal lattice

• Dimension d=3: Local best packing is a tetrahedron; BUT tetrahedra do 

not allow to fill space uniformly ⇒ make local compromise and use 

icosahedron; BUT icosahedra do not allow to fill space uniformly             

⇒ random structure (=glass); (see talk by Wales)
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NB: The structure of random close packing is not unique (location of the 

particles and average density) but depends on the procedure how the 

structure was created!

•Typical value of the density of RCP: ρmax ≈ 0.64; compare with tight 

crystalline packing with : ρmax ≈ 0.74 (HCP or FCC structure)



Phenomenological description of the structure: 

Random Close Packing: 2
• Comparing structure from RCP with experiments:

amorphous Ni76P24 (Cargill 1975)
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• Reasonably good 

reproduction of the structure

• Splitting of the second 

nearest neighbor peak



Basic idea: (Adam and Gibbs 1965)

At low T the relaxation dynamics is a sequence of 

individual events in which a subregion of the liquid relaxes 

to a new local configuration. These rearrangements are 

not single particle jumps (like in a crystal) but cooperative 

⇒ Cooperatively rearranging regions (CRR)

The theory of Adam and Gibbs
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Assumptions:

-The CRRs are independent of each other

-The CRRs contain sufficiently many particles to allow to    

apply the formalism of statistical mechanics



Consider one CRR that has z particles; the isothermal-isobaric 

partition function for this subsystem is then

∆(z,P,T) =  ΣE,V w(z,E,V) exp(-βH)

where w(z,E,V) is the number of states of the CRR with energy E

and volume V, and H is the enthalpy

The theory of Adam and Gibbs: 2

Not all allowed states can undergo a rearrangement!

⇒ introduce a partition function ∆’(z,P,T) that considers only the 
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⇒ introduce a partition function ∆’(z,P,T) that considers only the 

states that can undergo rearrangements

⇒ the fraction of systems that can undergo a relaxation event is 

f(z,T) = ∆’/∆ = exp( - β (G-G’ )) = exp( - β z δµ)

with the Gibbs free energies G = -kBT ln ∆ and G’ = -kBT ln ∆’ , and 

δµ the difference in the chemical potential per particle. 

W(z,T), the probability that the system makes a cooperative 

rearrangement, is proportional to f(z,T) and thus 

W(z,T) = A exp( - β z δµ)



Assume that the total system is composed of a collection of n(k,T) 

CRRs with k particles (k=1,2,...). The average probability that a 

particle makes a rearrangement is then 

where z* corresponds to the smallest cluster that is able to 

rearrange (with z*>1) and N is the number of particles in the system.

The theory of Adam and Gibbs: 3
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or, for  βδµ >> 1,

W*(T) = A’ exp( - β z* δµ)

⇒ The CRRs relevant for the relaxation dynamics have size z* since 

the larger ones are slower by a factor of O(exp( - β δµ)) << 1.

⇒



What is the value of z*?  At low T we can decompose the dynamics of 

the particles in vibrations around local minima and transitions between 

these minima (idea of Goldstein). 

⇒The partition function can be factorized into two factors (contribution 

from vibrations ×××× number of minima with a given energy) 

⇒The total entropy of the system can be written as a sum of the 

vibrational entropy, Svib, + configurational entropy Sconf

The theory of Adam and Gibbs: 4

The number of CRRs in a system with N particles is n(z*,T) = N/z* . 

11

The number of CRRs in a system with N particles is n(z*,T) = N/z* . 

Each CRR has thus a configurational entropy sconf = Sconf / n(z*,T) 

⇒ z* = N/ n(z*,T) = Nsconf /Sconf

With W*(T) = A’ exp( - β z* δµ) one thus obtains

and assuming that the relaxation time τ(T) is proportional to W *(T)-1:

Relation of Adam-Gibbs



One can show that Sconf can be determined from 

the specific heat  (Kauzmann)                                              

⇒ The AG-relation can be tested experimentally

The theory of Adam and Gibbs: Validity
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Richert and Angell (1998) ⇒ AG works well over a 

large T-and τ-range (NB: No fit parameter!)



In several glass-forming liquids the excess specific heat ∆Cp(T)             

( = spec. heat of liquid – spec. heat of crystal) can be fitted well by 

∆Cp(T) = K/T

where K is a constant. 

⇒ ∆S(T) = K ( 1/TK –1/T )

If we identify ∆S(T) with Sconf(T) we obtain from the AG-relation: 

The theory of Adam and Gibbs: Consequences
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⇒ The AG-relation is able to make a connection between dynamics 

and thermodynamics and to rationalize the Vogel-Fulcher law

Drawbacks of the AG-theory:

- What are the CRRs microscopically???

- Are the CRRs really independent?

- Is it reasonable to assume only one kind of CRRs?

- No predictions for other observables

- ...



Cohen and Turnbull 1959-1970: Idea: A particle 

can only change its neighborhood if there is space 

to do so ⇒ need “free volume”

v= volume per particle; v0 = volume (per particle) 

accessible only to one particle at a time (= volume 

of sphere) 

Free Volume Theory

vf = v-v0

Within mean field (= neglect correlations between 

adjacent free volumes) one can show easily that 
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p(v’) = γ/ vf exp(- γ v’/ vf )    [ γ = geometric factor]

For a diffusing particle that makes steps of size a with prob. Π(a) one 

can show that the diffusion constant is prop. to D ∝∝∝∝ ∫ a Π(a) da

⇒ With Π(a)=p(a) one obtains 

D ∝ exp(- C/ vf ) 

Thus D → 0 if vf → 0 

Thermal systems:  vf = α(T −T0)  ⇒ Vogel-Fulcher law!

adjacent free volumes) one can show easily that 

the probability to find a given free volume v’ is 

given by



Goldstein 1969: The dynamics of the liquid 

becomes sluggish because the system has to 

overcome local barriers in configuration space. 

With decreasing T these barriers increase ⇒
slowing down is faster than Arrhenius 

⇒ At low T the system is moving in a very 

rough landscape. This can be shown to be 

exact in mean field spin glasses (see talks by 

Dasgupta and Mezard). NB: These barriers are 

Landscapes (see talks Sastry and Wales) 
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in free energy! 

What are the properties of this landscape? How many minima at what 

height? Distribution of barrier height. Is there a hierarchy in the 

landscape? .... 

One can make models of landscapes (e.g. random energy model by 

Derrida 1980, trap model by Bouchaud et al. 1996) and impose a 

dynamics ⇒ complex relaxation that shows glassy features



• Phillips, Thorpe, Boolchand (1974--): Idea: A  structure of (many) joints and 

stiff bars becomes rigid if the number of constraints, nc,  equals the number 

of degrees of freedom, nd: 

nc = nd

Consider a glass of N particles with nr particles having coordination   

number r (r = 1,...); example GexS1-x-yIy ; r = 4, 2, and 1

Rigidity Percolation (see talk Elliott)

A counting argument shows that the 

number of floppy modes (per particle) is 
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number of floppy modes (per particle) is 

F/N = 6 – 5/2 〈〈〈〈r〉〉〉〉 - n1/N              

with   〈〈〈〈r〉〉〉〉 = ∑ r≥1 r nr /N    (mean 

coordination number)

⇒ structure is rigid if F=0  

⇒ 〈〈〈〈r〉〉〉〉 = 2.4 – 0.4 n1/N

⇒ on this line glasses form easily



• Consider a system which has degrees of freedom that are fast and slow 

(good separation of time scales); the Zwanzig-Mori projection operator 

formalism (1960, 1965) is a method to derive exact equations of motions for 

the slow dof (by eliminating the fast dof’s) 

•Glasses: Vibrations (inside the cages) are fast; α-relaxation is slow    

⇒ MZ formalism + approximations gives MCT equations

The mode-coupling theory of the glass transition (MCT) 
see talks of Bagchi, Miyazaki, and Bhattacharyya

Typical structure of MZ equation: φ(q,t) = intermediate scattering function 
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This equation is exact but M(q,t) is horribly complicated ⇒ make 

MCT approximations

Typical structure of MZ equation: φ(q,t) = intermediate scattering function 

for wave-vector q 



The mode-coupling theory: 2

with 

N.B.: 

1: By the Z-M construction, the vertices V(q,q’) depend only on static 

quantities, such as the density, structure factor, three point correlation 
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quantities, such as the density, structure factor, three point correlation 

functions, …

⇒⇒⇒⇒ THE STATICS GIVES THE DYNAMICS!

2: If S(q) becomes more peaked, V(q,q’) increases, i.e. the memory function 

increases with increasing density or decreasing temperature. 

⇒ With increasing coupling the dynamics is slowed down and ultimately the 

system can arrest completely ⇒⇒⇒⇒ glass transition



Mode-coupling theory: 3
• Consider the MCT solution for a very simple system: hard spheres

• qualitatively the curves 

resemble the ones found in 

experiments
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•There exists a critical temperature Tc (or packing fraction) at which the 

relaxation times increase very quickly

• Close to Tc the relaxation times show a power-law dependence:

ττττ ∝∝∝∝ (T-Tc)
-γγγγ



Mode-coupling theory: 4 
• The MCT equations are not exact for structural glasses

• In 1986 Kirkpatrick, Thirumalai, and Wolynes studied certain mean-field

spin glass models  (see talks by Dasgupta, Mezard, and Biroli)

They  were able to derive exact equations of motion for C(t), the 

spin-autocorrelation function:   C(t) =  〈〈〈〈σi(t) σi(0)〉〉〉〉

These equations have the same mathematical structure as the MCT 

20

Remark: Cugliandolo and Kurchan generalized 1993 these schematic 

models to the out-of-equilibrium case (fluct. dissipation theorem is no 

longer valid!) ⇒ Theory for the dynamics of systems in the glass phase 

(see talks by Kurchan and Franz)

These equations have the same mathematical structure as the MCT 

equations!

Conclusions:

1.There exist models for which the MCT equations are exact

2.There might be a close connection between spin glasses and

structural glasses



Random First Order Theory 
(see talks by Dasgupta, Mezard, Biroli, Bhattacharyya)

Kirkpatrick, Thirumalai, and Wolynes 1980’s: Studied the mean field p-spin 

model:

⇒Landscape has at low T (but above TK) many different valleys (see also 

results from replica formalism) ⇒ configuration space can be decomposed 

into metastable states that have infinite lifetime

⇒partition function can be written as sum over states:
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⇒partition function can be written as sum over states:

⇒ Saddle point approximation ⇒ extremum f* with S’c(f*)=1/T   

Minimum of free energy is F = f*-TSc(f*)  



Random First Order Theory: 2
Finite dimensional systems (= finite range of interactions): The metastable 

states from MF still survive (but have now a finite lifetime) 

⇒ different parts of the system will be in different states 

⇒ decomposition of the system into patches/tiles that correspond to a local 

minimum of the free energy

⇒ There is an interface between 

these patches which costs energy 

⇒ surface tension Y(T)
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⇒ A patch of size R will have free energy gain ∆Fgain and an interface 

cost ∆Fcost with



Random First Order Theory: 3 

The size of the patches ξ will be given by the condition

⇒ length scale that grows with decreasing T!

Connection to dynamics:

Height of free energy barrier ∆∆∆∆ to flip a state/patch:
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Assume that process is activated ⇒ relaxation time ττττ is given by

If we chose for the exponent θθθθ
we get the expression by Adam and Gibbs



Summary

•There are many approaches that attempt to describe the structure and the 

glassy dynamics: Some of them are highly sophisticated, some of them are 

simple minded

•All of the non-trivial approaches have flaws: 

•Fuzzy concepts: What are the cooperatively rearranging regions of 

Adam-Gibbs? Does it make sense to talk about an interface tension in 

!!! CAUTION  !!!   DON’T GET FOOLED   !!!
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Adam-Gibbs? Does it make sense to talk about an interface tension in 

the RFOT if the domains are small?, ...

•Uncontrolled approximations: MCT takes hopping processes into 

account in a rudimentary way. What is the relevance of mean field 

results for finite dimensional systems

•Theories have helped us to make significant progress in our understanding 

of glass-forming systems, but still there is a lot to do


