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Outline of the talk
* What is a theory?

 Phenomenological descriptions

* Structure
» Continuous Random Network
« Random close packing

* Dynamics
» Adam Gibbs theory
* Landscapes
* Free volume theory

» Microscopic descriptions
* Rigidity percolation
* Mode Coupling Theory (MCT)
» Random first order theory (RFOT)



What is a theory?

» Distinguish fitting function and theory!
» Fitting functions:
» Kohlrausch-Williams-Watts function
» Coupling model (K. Ngai)

» Theory: Should allow to make a microscopic calculation
for a given Hamiltonian; calculations might be difficult
and might be approximate; results might be bad

N.B.’s:

1)There are complicated models, e.g. kinetically facilitated
Ising models (see talk by Jack), that allow to reproduce a few
dynamic aspects of real glass-forming liquids; these models
are useful to understand certain mechanisms, but they are
models and not theories

2) In glass physics the sophistication of approaches/theories
spans orders of magnitudes!



Phenomenological description of the structure:

Continuous Random Network

« Covalently bond atoms have a very well defined coordination number
= well defined local chemical order; Si: z=4, C: z=4: As: z=3,...
« But angles can still vary = local geometrical disorder = random network

» Simple rule to build a random network
For example d=2 random network

- all atoms have z=3

» all nearest neighbor distances are fixed
* no loose ends (=dangling bonds)

(D)




Phenomenological description of the structure:
Continuous Random Network: 2

» Comparing structure from CRN with experiments

Amorphous SiO,

Amorphous Ge
(Steinhardt et al. 1974) (Bell and Dean 1972)
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Phenomenological description of the structure:
Random Close Packing

« Approximate atoms as hard spheres; this is ok for many metals (see talks
by Kelton and Poole)

« Dimension d=2: Tight packing of hard disks is simple = hexagonal lattice

* Dimension d=3: Local best packing is a tetrahedron; BUT tetrahedra do
not allow to fill space uniformly = make local compromise and use
icosahedron; BUT icosahedra do not allow to fill space uniformly
= random structure (=glass); (see talk by Wales)

NB: The structure of random close packing is not unique (location of the
particles and average density) but depends on the procedure how the
structure was created!

* Typical value of the density of RCP: p,,., = 0.64; compare with tight
crystalline packing with : p.., = 0.74 (HCP or FCC structure)
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Phenomenological description of the structure:
Random Close Packing: 2

» Comparing structure from RCP with experiments:

amorphous Ni-;P,, (Cargill _1 975)
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The theory of Adam and Gibbs

Basic idea: (Adam and Gibbs 1965)

At low T the relaxation dynamics is a sequence of
individual events in which a subregion of the liquid relaxes
to a new local configuration. These rearrangements are
not single particle jumps (like in a crystal) but cooperative
= Cooperatively rearranging regions (CRR)

Assumptions:
-The CRRs are independent of each other

-The CRRs contain sufficiently many particles to allow to
apply the formalism of statistical mechanics



The theory of Adam and Gibbs: 2

Consider one CRR that has z particles; the isothermal-isobaric
partition function for this subsystem is then

A(Z,:D, T) - Z“E,V W(Z,E, V) exp(-BH)

where w(z,E, V) is the number of states of the CRR with energy E
and volume V, and H is the enthalpy

Not all allowed states can undergo a rearrangement!

— introduce a partition function A’(z,P,T) that considers only the
states that can undergo rearrangements

= the fraction of systems that can undergo a relaxation event is

fiz,T) = A/A = exp(- B (G-G’)) = exp( - B z 3p)
with the Gibbs free energies G = -kzTIn Aand G’ =-kzTIn A’ , and

ou the difference in the chemical potential per particle.

W(z, T), the probability that the system makes a cooperative
rearrangement, is proportional to f(z, T) and thus

W(z, T) =Aexp(-p zdp)



The theory of Adam and Gibbs: 3

Assume that the total system is composed of a collection of n(k, T)
CRRs with k particles (k=1,2,...). The average probability that a
particle makes a rearrangement is then

WH*(T)=N""! Z\: zn(z, TYW(z,T)

z=z*

where z" corresponds to the smallest cluster that is able to

rearrange (with z>1) and N is the number of particles in the system.

Z*n(z*,T) exp|—Bz*d ] Z\: zn(z,T)
N o= 20 (2%, T)

WH(T) = Aexp[—B(z — 27")op]
or, for fou>>1,
W'(T) = A exp(-p z ou)

= The CRRs relevant for the relaxation dynamics have size z" since
the larger ones are slower by a factor of O(exp( - B du)) << 1.

10



The theory of Adam and Gibbs: 4

What is the value of Z? Atlow T we can decompose the dynamics of
the particles in vibrations around local minima and transitions between
these minima (idea of Goldstein).

= The partition function can be factorized into two factors (contribution
from vibrations x number of minima with a given energy)

= The total entropy of the system can be written as a sum of the

vibrational entropy, S ,,, + configurational entropy S,

The number of CRRs in a system with N particles is n(z’,T) = N/z".
Each CRR has thus a configurational entropy s.,,.,= S...s/ N(z,T)

= Z =N/n(z’,T) = Ns_,;/S
With W'(T) = A’ exp( - B z" du) one thus obtains
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The theory of Adam and Gibbs: Validity

One can show that S__ can be determined from
the specific heat (Kauzmann) 7(T) o< n(T) o exp l
— The AG-relation can be tested experimentally
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Richert and Angell (1998) = AG works well over a
large T-and t-range (NB: No fit parameter!) 12



The theory of Adam and Gibbs: Consequences

In several glass-forming liquids the excess specific heat ACp(D
( = spec. heat of liquid — spec. heat of crystal) can be fitted well by

AC,(T)=KIT
where K is a constant.
= AS(T) =K (1/T,-1/T)
If we identify AS(T) with S_,.«(T) we obtain from the AG-relation:

CTx/K
T — Tk
= The AG-relation is able to make a connection between dynamics
and thermodynamics and to rationalize the Vogel-Fulcher law

Drawbacks of the AG-theory:

- What are the CRRs microscopically???

- Are the CRRs really independent?

- Is it reasonable to assume only one kind of CRRs?

- No predictions for other observables

(T) o exp [
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Free Volume Theory

Cohen and Turnbull 1959-1970: Idea: A particle
can only change its neighborhood if there is space
to do so = need “free volume”

V; = V-V,

v= volume per particle; v, = volume (per particle)
accessible only to one particle at a time (= volume
of sphere)

Within mean field (= neglect correlations between
adjacent free volumes) one can show easily that
the probability to find a given free volume Vv’ is
given by
p(v') =vy/ viexp(-yVv'/v:) [y =geometric factor]

For a diffusing particle that makes steps of size a with prob. I1(a) one
can show that the diffusion constant is prop. to D « | a T1(a) da

= With IT(a)=p(a) one obtains
D o exp(- C/ v;)
ThusD - 0ifv,—> 0
Thermal systems: v.=a(T -T,) = Vogel-Fulcher law!



Landscapes (see talks Sastry and Wales)

Goldstein 1969: The dynamics of the liquid A
becomes sluggish because the system has to
overcome local barriers in configuration space.
With decreasing T these barriers increase =
slowing down is faster than Arrhenius

= At low T the system is moving in a very
rough landscape. This can be shown to be
exact in mean field spin glasses (see talks by

free energy

V

Dasgupta and Mezard). NB: These barriers are

_ configuration space
in free energy!

What are the properties of this landscape”? How many minima at what

height? Distribution of barrier height. Is there a hierarchy in the
landscape? ....

One can make models of landscapes (e.g. random energy model by
Derrida 1980, trap model by Bouchaud et al. 1996) and impose a
dynamics = complex relaxation that shows glassy features

15



Rigidity Percolation (see talk Elliott)

* Phillips, Thorpe, Boolchand (1974--): Idea: A structure of (many) joints and
stiff bars becomes rigid if the number of constraints, n., equals the number
of degrees of freedom, n:

nc = nd
Consider a glass of N particles with n, particles having coordination
numberr (r=1,...); example GeXS1_x_ny 'r=4,2, and 1

A counting argument shows that the
number of floppy modes (per particle) is

FIN=6-5/2(r)-n,/N

with (r) = > =1 rn. /N (mean
coordination number)

= structure is rigid if F=0
= (Nn=24-04n,/N

= on this line glasses form easily S 20 40 Ges 60 80 Ge

at.%Ge=>

16



The mode-coupling theory of the glass transition (MCT)
see talks of Bagchi, Miyazaki, and Bhattacharyya

» Consider a system which has degrees of freedom that are fast and slow
(good separation of time scales); the Zwanzig-Mori projection operator
formalism (1960, 1965) is a method to derive exact equations of motions for
the slow dof (by eliminating the fast dof’s)

*Glasses: Vibrations (inside the cages) are fast; a-relaxation is slow
= MZ formalism + approximations gives MCT equations

Typical structure of MZ equation: ¢(q,t) = intermediate scattering function
for wave-vector q

q’kpT
mS(q)

a'5(q,t)+ﬂ2(Q)<b(q,t)+92(q)/0 M(q,t—s)¢(g,s)ds =0 with Q*(q) =

This equation is exact but M(q,t) is horribly complicated = make
MCT approximations

MMO(q, 1) = f &gV (g, ) )b (g, t)

17



The mode-coupling theory: 2

¢’kpT
mS(q)

é5(q,t)+ﬂ2(Q)<b(q,t)+Q2(q)/O M(q,t—s)¢(g,s)ds =0 with Q*(q) =

with MM (q,t) = /dgq'V(q,Q')qﬁ(q’,t)qb(q,t)

N.B.:

1: By the Z-M construction, the vertices V(q,q’) depend only on static
quantities, such as the density, structure factor, three point correlation
functions, ...

— THE STATICS GIVES THE DYNAMICS!

2: If S(q) becomes more peaked, V(q,q’) increases, i.e. the memory function
Increases with increasing density or decreasing temperature.

= With increasing coupling the dynamics is slowed down and ultimately the
system can arrest completely = glass transition

18
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Mode-coupling theory: 3

» Consider the MCT solution for a very simple system: hard spheres

packing fraction: — 0.5165
vibration — 0.5159
¥ 0.5155
B relax. — 0.5108
- simple glass
liquid o relax.
- — 0.46
o | | | | |
10 10° 10° 10° 10°
Time (ps)

 qualitatively the curves
resemble the ones found in
experiments

* There exists a critical temperature T, (or packing fraction) at which the
relaxation times increase very quickly
* Close to T, the relaxation times show a power-law dependence:

T oc (T-T.)”
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Mode-coupling theory: 4
 The MCT equations are not exact for structural glasses
* In 1986 Kirkpatrick, Thirumalai, and Wolynes studied certain mean-field
spin glass models (see talks by Dasgupta, Mezard, and Biroli)

1 N
H = —Eé:J@-j(pd%gj — 1) with o; € {1,...p}
17
They were able to derive exact equations of motion for C(t), the
spin-autocorrelation function: C(t) = (ci(t) 5,(0))

These equations have the same mathematical structure as the MCT
equations!

Conclusions:

1.There exist models for which the MCT equations are exact

2. There might be a close connection between spin glasses and
structural glasses

Remark: Cugliandolo and Kurchan generalized 1993 these schematic
models to the out-of-equilibrium case (fluct. dissipation theorem is no
longer valid!) = Theory for the dynamics of systems in the glass phase
(see talks by Kurchan and Franz) 2



Random First Order Theory
(see talks by Dasgupta, Mezard, Biroli, Bhattacharyya)

Kirkpatrick, Thirumalai, and Wolynes 1980’s: Studied the mean field p-spin

model: )
N
— Z JijkO};O'jO'k_
i,J,k

—Landscape has at low T (but above T) many different valleys (see also
results from replica formalism) = configuration space can be decomposed
into metastable states that have infinite lifetime

—partition function can be written as sum over states:

L

7 = Z exp(—BH (o Z Z exp(—BH (o Z exp(—Ffa)

a=1o0cc« a=1

/dfexp(—3N[f—TSc(f)]) with S, 11()02(‘)@” fa)

— Saddle point approximation = extremum f* with S’ (f*)=1/T
Minimum of free energy is F = f*-TS(f*) 21



Random First Order Theory: 2

Finite dimensional systems (= finite range of interactions): The metastable
states from MF still survive (but have now a finite lifetime)

= different parts of the system will be in different states

= decomposition of the system into patchesl/tiles that correspond to a local

minimum of the free energy

= There is an interface between
these patches which costs energy
= surface tension Y(T)

= A patch of size R will have free energy gain AF,;, and an interface
cost AF_ . with

AF i = —TS.(R)R* AF.oss = Y(T)RY with 0<d—1

22



Random First Order Theory: 3

The size of the patches ¢ will be given by the condition

Y(T) \ =
TSC(T))

AFlc_;a.in — AFCOSt — S — (

= length scale that grows with decreasing T!

Connection to dynamics:

Height of free energy barrier A to flip a state/patch:

Y(T)7

max AF = max Y(T)R? - TS.R* —= A= 5
[TSc(T)] =2

Assume that process is activated = relaxation time t is given by

Y(T)7
T|1S(T)] 7

T = T10exp(A/T) = Toexp (

‘ N C
If we chose for the exponente 7 /2 =7 Toexp (TS’C(T)>

we get the expression by Adam and Gibbs %



Summary
"1 CAUTION !l DON’T GET FOOLED !!!

*There are many approaches that attempt to describe the structure and the
glassy dynamics: Some of them are highly sophisticated, some of them are
simple minded

* All of the non-trivial approaches have flaws:

*Fuzzy concepts: What are the cooperatively rearranging regions of
Adam-Gibbs? Does it make sense to talk about an interface tension in
the RFOT if the domains are small?, ...

*Uncontrolled approximations: MCT takes hopping processes into
account in a rudimentary way. What is the relevance of mean field
results for finite dimensional systems

* Theories have helped us to make significant progress in our understanding
of glass-forming systems, but still there is a lot to do

24



