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51 Introduction

In classical mechanics the potential energy function, V', determines the struc-

ture, dynamics and thermodynamics of any system.

Stable configurations occur at minima in V/, defining the structure; the gra-
dient of V' gives (minus) the forces on the particles, which appear in the
equations of motion; and the configuration integral, which determines the

thermodynamics, is also a function of V.

Analogous statements can be made in quantum mechanics within the Born—
Oppenheimer approximation, where the potential energy surface (PES) is the

solution of the Schrodinger equation for frozen nuclear positions.

Observable properties are determined by the topology and topography of
the ‘potential energy landscape’, or just the ‘energy landscape’.! The latter
expression is also used to refer to free energy, though this should be clear

from the context.



As the size of the system increases, so does the dimensionality of the config-

uration space required to describe it.

In the late 1960’'s the first attempts were being made to predict the three-

dimensional structure of globular proteins from their amino acid sequence.

Anfinsen had shown that some denatured proteins regained their native struc-

ture reliably on a laboratory time scale.

By coarse-graining configuration space, Levinthal realised that the number of
possible conformations for a typical protein is astronomically large. If they
were searched at random on the fastest vibration time scale the time required

to find the native state would exceed the lifetime of the universe.

This discrepancy is known as Levinthal’'s paradox, and similar ‘paradoxes’ can
be constructed for self-assembly, crystallisation, and the appearance of magic
numbers for clusters in a molecular beam. The study of energy landscapes

enables us to unify and explain these apparently diverse phenomena.



52 Disconnectivity Graphs

Disconnectivity graphs provide a powerful way to visualise the PES from a

database of stationary points (Becker and Karplus).z'3

At a given total energy, I/, the minima can be grouped into disjoint sets,
whose members are mutually accessible at that energy: each pair of minima in
a set is connected directly or indirectly by a path with energy < £. Connected
graphs that contain no cycles are known as ‘trees’.

‘palm tree’ ‘weeping willow’ ‘banyan tree’

Xi

Catastrophe theory explains why short-range potentials result in surfaces that
are globally flatter but locally rougher, while long-range potentials produce

potential energy funnels and efficient local relaxation.*



§2.1 Landscapes with Funnelling Properties

The palm tree structure appears for a diverse range of systems, including
the LJy3 cluster, icosahedral shells composed of pentagonal and hexagonal

pyramids, crystalline (Stillinger-Weber) silicon, and the polyalanine alay.

We associate this pattern with ‘funnelling’ properties, minimal frustration,
large Ty /T, or hierarchical constraints. Such landscapes may guide the non-
random searches that result in magic number clusters, crystallisation, self-

assembly, and protein folding.!:>°
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32.2 A Double-Funnel System: LJss
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| Jss exhibits a double funnel due to competition between icosahedral and

truncated octahedral morphologies. The interconversion rate for Arsg is cal-

culated as 555! at 14 K where a solid-solid transition occurs.
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§2.3 Annealing of Cg

=

1 eV{ ‘/

For Cgy the long branches correspond to high barriers ~ 4eV (left). Relax-

ation from high energy to the icosahedral global minimum occurs on a time

scale of milliseconds if the temperature is high enough (right).



52.4 A Model Protein

\

The global minimum of the off-lattice bead model BgN3(LB)4N3BgN3(LB)5L
is a four-stranded (-barrel, where B=hydrophobic, L=hydrophilic, and
N=neutral. The original system exhibits frustration, which is eliminated in

the corresponding Go model (and reduced by salt bridges).”®



§2.5 (H20)2: A Molecular Cluster
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A disconnectivity graph for TIP4P (H50)y exhibits hierarchical structure

sets of minima are disconnected together.3> The interconversion rate between

the pentagonal prism and box-kite morphologies at 40 K is around 103" s~ .



83 Geometry Optimisation

Finding local minima is usually straightforward. There are several efficient

standard techniques available that require only gradient information.

Second derivatives can be useful for transition state searches, where we must
locate a stationary point that is a local maximum in one principal direction

but a local minimum in the others.

Consider the Taylor expansion of the potential energy around a general point

in nuclear configuration space, X, truncated at second order:

V(X +x) = V(X) + G(X)Tx + %XTH(X) X, (1)

where G(X) and H(X) are the gradient and Hessian, and x is a vector of

small nuclear displacements.



Applying dV (X + x)/dx = 0 leads to the Newton-Raphson step:

XNR — —H_lG. (2)

However, the inverse Hessian is usually undefined due to zero eigenvalues.
Since each eigenvector, e, corresponding to overall translation or rotation is
known, the corresponding eigenvalues can be shifted arbitrarily by adding a
multiple of é,¢€5 to Hp.

In normal mode coordinates xyr and the energy change AVngr are
3N

INR,a = —ga/&ti and AVNR = — Zgi/Q(ii.

a=1
Hence contributions from terms with Hessian eigenvalues €2 > 0 and 2 < 0

lower and raise the energy, respectively.

Newton-Raphson searches can converge to stationary points of any Hessian

index (defined as the number of negative eigenvalues of H).



§3.1 Locating Transition States: Eigenvector-Following

With only a little extra effort it is possible to obtain an algorithm that will

systematically converge to a stationary point of any required index.

Introducing an additional Lagrange multiplier gives increased flexibility, which

can be exploited to find transition states systematically:

3N

1, , 1

2

L=—-v(W)— Z [ga(W) To + =2 X2 — i,ua(:z:i —c

a=1

The step that is optimal in all directions is now

Lo = ga(W)/(Moa - 5(2))7

and the energy change corresponding to this step is
3N

AV = Z(Noz — 52/2)904(“7)2/(,&@ — 5&)2'

a=1

o)



Now we must make a choice for u,. We require o, — 0 as go(W) — 0, so

that the Newton-Raphson step is recovered.

We also need p, — €2/2 < 0 for minimisation and p, — £2/2 > 0 for max-
imisation. Effective choices for i, have been found through a combination

of theory and experiment. For example

1
o = 22 & 5123 (14 VT + 4ga(WP/ed )

plus for maximisation, minus for minimisation, gives steps that obey the re-

quired conditions and are an even function of 2.

A graphical comparison is possible for a simple triatomic cluster.”® Every
pixel in each of the plots corresponds to a particular geometry in a cut through
the three-dimensional configuration space of a three-atom cluster. The colour
depends upon which stationary point the algorithm in question converges to

and the resolution is 700 x 700.



The Newton-Raphson algorithm can converge to both minima and transition

states, depending upon where we start from:

Newton-Raphson optimization
Impossible geometry

linear
minimum

transition
State

transition
State

um

Impossible geometry

Geometry optimisation may not yield the ‘nearest’ stationary point in terms

of a distance metric.



The eigenvector-following method converges only to stationary points of the

specified index, i.e. minima (left) and transition states (right):

Eigenvector-following search for minima Eigenvector-following search for transition states
A\

impossible geometry

global minimum

A
transition
State

mpossible geometry impossible geometry




3.2 Hybrid Eigenvector-Following

In hybrid eigenvector-following an uphill eigenvector-following step is taken in

one eigendirection and minimisation is performed in the tangent space.'!

Second derivatives are not required if the eigenvector and eigenvalue are
calculated using a variational approach,!! defining A\(x) = x! Hx/x.

Second derivatives are avoided by formulating \(x) as!!™?

V(X +&x) + V(X - &x) - 2V(X)
Ax) ~ ex)? ,

with OA(x) _ VV(X+&x) - VV(X —&x) 2)\(X)X.
0x £x? X2

Once the smallest eigenvalue and the corresponding eigenvector are known

transition states can be found using eigenvector-following for the uphill step

and minimisation in the tangent space. Example: Si defect migration.*



Eigenvector-following techniques can easily be adapted to locate stationary

points of any given Hessian index systematically.!®

This approach is much more efficient than minimising |[VV|*, which can
converge to a stationary point of any index, and to non-stationary points
(NSPs)!>"17 where the gradient is an eigenvector of the Hessian with zero

eigenvalue and |[VV]? > 0.

Convergence to NSPs is slow because the additional zero eigenvalue leads to

a singular condition number.

The basins of attraction for NSPs dominate the |VV|* surface for the sim-
ple two-dimensional Muller-Brown surface, and this effect is even more pro-

nounced for larger systems.?>%7

Fortunately, only local minima and saddle points of index one are required in

the energy landscapes formulation of global thermodynamics (§5) and kinetics

(86).
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Contour plots of V' (left) and |[VV|? (right) for the Miiller-Brown surface.!®
Blue and red lines define the basins of attraction for minima of VV and |[VV/|2.1°

The points correspond to minima of |[VV|? (left) and to the maxima and
minima of |[VV|? (right).



Nudged and Doubly-Nudged Elastic Bands

Double-ended chain-of-states methods!®™?! have evolved into nudged?? 23 and

doubly-nudged®* elastic band approaches.

Pathways are characterised by considering images of the system at intermedi-
ate geometries, X;, and supplementing the true gradient, g, with an attractive

spring gradient, g, between adjacent images.

Corner-cutting is significant when a path experiences high curvature. The
images cannot follow the path accurately because the spring force has a large

component perpendicular to the tangent, g.

Sliding-down occurs due to gll, which perturbs the distribution of images
along the path, creating high-resolution regions around the local minima and

low-resolution regions near the transition states.

Nudging projects out gll and g*, and optimising the images produces transi-

tion state candidates for accurate refinement by hybrid eigenvector-following.



3.3 Finding an Initial Discrete Path for Distant Minima?®
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Distant local minima can be connected by successive transition state searches
using Dijkstra’s algorithm to choose the next pair of minima, avoiding a

combinatorial problem.?

This Cgy path from a random network to buckminsterfullerene contains 82
transition states, and required 383 cycles of the Dijkstra missing connection

algorithm, including 1620 DNEB searches, for a tight-binding potential.



54 Basin-Hopping Global Optimisation2®

In treating any non-trivial global optimisation problem, the principal difficulty

arises from the exponentially large number of minima on the PES.

There is a simple transformation of the energy landscape that does not change

the global minimum, or the relative energies of any local minima:

~

E(X) = min{E(X)}. 3)

where ‘min’ signifies that an energy minimisation is carried out starting from

X. The transformed energy, F/(X), at any point, X, becomes the energy of

the structure obtained by minimisation.

Each local minimum is, therefore, surrounded by a catchment basin of con-
stant energy consisting of all the neighbouring geometries from which that

particular minimum is obtained.



The catchment basin transformation removes all the transition state regions
from the surface and accelerates the dynamics because the system can pass
between basins all along their boundary. Atoms can even pass through each

other without encountering prohibitive energy barriers.

The basin-hopping approach therefore transforms the energy landscape to a
discrete set of energy levels corresponding to the energies of local minima,

and must be combined with a search strategy.

In the ‘Monte Carlo plus energy minimisation’ procedure steps are proposed
by perturbing the current coordinates and carrying out a minimisation from

the resulting geometry.

A step is accepted if the energy of the new minimum, E\., is lower than the
starting point, Foq. If Enew > FEolq then the step is accepted if exp|(Fgq —
Frew)/KT) is greater than a random number drawn from the interval [0,1].

The temperature, T', becomes an adjustable parameter.



lllustration of the E(X) energy landscape transformation.
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Basin-hopping succeeds for multi-funnel surfaces because the transitions are
broadened,?’ giving a larger overlap in the probability distributions of different

morphologies (right panels). (cf. Tsallis statistics, non-Boltzmann sampling).



Examples from the Cambridge Cluster Database
38 75 ‘ii 76 ‘ii 08 ﬁ
77 102 103 104

Non-icosahedral Lennard-Jones Clusters
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polytetrahedral clusters

(NaC|)18N8+



28,29

The Thomson Problem

N = 4352

Long-ranged potential: V' =}, .1/[r; — r;| with |r;| = 1. Twelve five-
coordinate particles (disclinations) enable a spherical system to obey Euler’s

rule for the disclination charge.

Pentagon patches, extended dislocations (scars), twinned defects, rosettes,

and embryonic grain boundaries occur in larger systems.

Structures provide models for spherically constrained systems: multielectron
bubbles in superfluid helium, cell surface layers, ‘colloidosomes’, colloidal silica

microspheres, superconducting films, lipid rafts deposited on vesicles.



Mixing building blocks that favour shells and tubes produces structures with

distinct head and tail regions (left): the Franhmphage.

Particles with a Lennard-Jones site buried in the ellipsoid assemble into a

spiral structure (right) with parameters similar to tobacco mosaic virus.



Polytetrahedral Clusters

(b) (c)

)

(a) Packing five regular tetrahedra around an edge leaves a gap of 7.36°.
(b) Packing twelve regular tetrahedra around a common vertex leaves a gap

of 1.54 steradians.

Extended polytetrahedral packing requires negative disclination lines, where

six tetrahedra share a common edge.

(c) For atomic clusters larger than the 45-atom rhombic triacontahedron (first

described by Kepler) further polytetrahedral growth must involve disclinations.



Polytetrahedral packing is also found in quasicrystals, liquids and glasses.

For clusters Kasper polyhedra can be low-lying or global minima for inter-

atomic potentials that enable strain to be accommodated.

original Dzugutov potential

modijified N

1l

0.8\1/ 1.4 16

Dzugutov designed a potential (blue) to encourage polytetrahedral and local

icosahedral order. This potential reproduces the structure of liquid MgZn,

which forms a Frank-Kasper C14 solid phase.
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The disclination networks for the magic number clusters with the modified

potential are analogous to linear, ring and cage hydrocarbon structures.

The calculated scattering function for the 166-atom adamantane analogue

reproduces many of the features observed for cobalt clusters.



85  Thermodynamics: the Superposition Approach

The harmonic approximation for the total energy density of vibrational states
associated with a single minimum of a system with fixed centre of mass and

fixed orientation with respect to space fixed axes gives?

(E - VO)m—l
L) T v

QO(FE) = (4)

A factor of 1/h" provides the semiclassical approximation.

To calculate the total vibrational density of states all the minima need to be
considered. In the superposition approximation we simply sum the density of

states over all the minima low enough in energy to contribute.

This approximation is equivalent to assuming that the phase space hyperel-

lipsoids associated with each minimum do not overlap.



B n5<E . V;O)/i—l
e V;:E [(k) [Tj= g )

J=1"""7
where the sum is over all the structurally distinct minima on the surface
and ng, the number of permutational isomers of minimum s, is given by

ns = 2N!/os where oy is the order of the point group of s.

The canonical partition function in the same approximation is

QT) = / QE)edE = Y 0

~Vop

(BhTs)r (©)

where 3 = 1/kT and 7, is the geometric mean normal mode frequency.

The difficulty with equation (5) is that for all but the very smallest clusters

the sum involves an impractically large number of minima.

Various reweighting schemes have been used to obtain an approximate global

partition function based on local minima.



The basin-sampling approach®® involves a convolution of the potential energy

density of minima with vibrational densities of states.

Both basin-hopping global optimisation and basin-sampling require only lo-
cal minimisation. In the reaction path Hamiltonian superposition approach

(RPHSA) we use pathway information to improve the global partition func-

tion.3!

Free energy surfaces for alanine dipeptide (CHARMM22 /vacuum) from su-
perposition, replica exchange, and RPHSA:
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§5.1 The Reaction Path Hamiltonian Superposition Approach

The total partition function as a function of order parameter a is constructed
as a superposition of contributions from local minima, Z;(a,T’), and config-

urations taken from the pathways that connect them, Z!(a, T):

Z(aT) = (kT)*‘exp(—w/kT) - {_(a—a@-)2 |

hv, V2mkT A; 2KT A,

g Vel —al)’
ZHa.T) - (kT) o, exp (—=V,I/kT) exp |- (a —af)
h (gi)’*_l 27T]€T\/A(JL~ 2kT Al

where 7; is the geometric mean of the normal mode frequencies, v; -, V; and

)

a; are the potential energy and order parameter for minimum ¢, Kk = 3N — 6,

0, 1s a displacement, 7 labels transition states, and

2
1
A Z |: Q= 27TV@'77:|

The method can be extended for projections onto additional order parameters.

9Gi



The ‘filling in" problem for barrier regions in low-dimensional projections due

to overlapping distributions can be avoided using disconnectivity graphs.

The effect of regrouping for a barrier threshold of 3 kcal/mol is shown below
for AMBER(ff03) /GBV®E (left) and compared with the CHARMM22 /vacuum

surface (right). Free energy of group J: F;(T) = —kTIn) ., Z;(T) with

jeJ

F}(T)=—kTn)  ZI(T),

]

rgy [kcal mol™!]
© = v W & o > N ®
free energy [kcal mol™!]
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56 Global Dynamics

A database of local minima and the transition states that connect them

constitutes a kinetic transition network.3!32

To complete this coarse-grained representation we need the rate constants

associated with the forward and backward rates for each transition state.

If the minimum-to-minimum dynamics are assumed Markovian then the time
evolution of the occupation probabilities P(t) = (Pi(t), Ps(t),...)" is de-
scribed by a ‘'master equation’:

T = S kA (0) — R Fa(0) (7

b#a
where P,(t) is the probability of the system being in state a at time ¢, and

k.1, Is the rate constant for transitions from minimum b to minimum a.

Consistent theories must be used for thermodynamic properties, such as P9,

and the rate constants, so that detailed balance is satisfied.



The transition state theory expression for the unimolecular canonical rate

constant k; out of minimum a through transition state 7 is
kKT Z7
ENT) = ——Z-e AV/KT 8
1) =55 )
where the transition state partition function Z' does not include the unique
mode with imaginary frequency, and AV = VT — V, is the potential energy

difference between the transition state and minimum a.

Using harmonic vibrational densities of states gives:

vy i
kIN(T) = e (VI-Va)/kT (9)

In this picture all minimum-to-minimum transitions are activated, in the sense

that there is an underlying barrier on the PES.

The rearrangement barriers involved in diffusion and structural relaxation are

intensive quantities. Rate constants depend only on ratios of either intensive

15,16 ;

or extensive quantities, independent of system size.



In defining a transition state as a stationary point with a single negative Hes-

sian eigenvalue we follow the geometrical approach of Murrell and Laidler.33

There are two reasons why these points provide the foundation for a coarse-

grained formulation of global kinetics.

The Murrell-Laidler theorem states that if two local minima are connected
by a path involving a saddle point of index two or more, then a lower energy

path exists involving only true transition states with index one.

Proof: consider a saddle point with two negative Hessian eigenvalues, w? and
w3, for normal modes Q1 and Q5. With all the other coordinates fixed the

change in potential energy, AV, for small displacements from the saddle is:

1
AV = §(w% Q% +wiQ3) < 0. (10)

Hence any displacement in this two-dimensional space lowers the energy. The

saddle is therefore a ‘hill’ in these two dimensions.



Surface and contour plots illustrating the Murrell-Laidler theorem. M, TS and S denote

minima, transition states and the index two saddle, respectively.
To derive the transition state theory rate constant we define a dividing surface

between reactants and products, and assume no dynamical recrossings.3% 3°

The eigenvector corresponding to the unique negative Hessian eigenvalue of
an index one saddle defines a hyperplane, which acts as the dividing surface

in a local harmonic expansion about the transition state.

Higher index saddles are not required in unimolecular rate theory.



§6.1 Discrete Path Sampling3® 37

———————————————————————————————————————

____________

VB L B A B
_________________________________ bt e
no intervening minima Pa(t) — ]ﬁ. .p-(.t) .: () . pb—(t) : pzq
pa(t)  py py(t)  py

Phenomenological A < B rate constants can be formulated as sums over
discrete paths, defined as sequences of local minima and the transition states

that link them, weighted by equilibrium occupation probabilities, p;":

1 1« Ci'py?
SS E : —1,eq __ E ( b b
kAB T Tq PailpiliZ C Pln—lznpbanb pb o Tq T )
Pp = PB yep 7P

where P, 3 Is a branching probability and 054 is the committor probability that

the system will visit an A minimum before it returns to the B region.



§6.2 Permutational Isomerisation of LJZ"
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Disconnectivity graphs for LJ2P. Left: permutation-inversion isomers of the

four local minima are collected together. Right: one of the atoms is tagged,

lowering the permutational degeneracy.

The fastest ten paths contribute about 74% of the total rate constant at
kT /e = 0.05. Various combinations of diamond-square-diamond rearrange-

ments make significant contributions.



37 Bulk Matter

?(?}I’o’}

106 :?r-':r;.-.
AN :; I.r

Disconnectivity graphs in the vicinity of the crystal for Stillinger-Weber silicon
(left), a Lennard-Jones solid (middle), and a binary Lennard-Jones (BLJ)
model (right). The BLJ landscape is clearly more frustrated, with larger

downhill barriers to the perfect crystal.



§7.1 Thermodynamics of the BLJ Solid33

BLJgo | BLJas | f\
~ H0e
| Cu/k _
~ 114e I T
_~ 15e ~ 67¢ Jf ~ 47¢ 1 ' '
7290 —280 —270 —260 —250 —240—1220 —1200 —1180 —1160 —1140 —1120 09 10
V/e kT/E

Equilibrium thermodynamic properties such as Q(E) and C, (right, for
BLJ3s0) can be obtained from parallel tempering, despite the extensive energy
gap in the probability distribution for local minima between the crystal and

the amorphous states (left).

We were unable to converge Wang-Landau calculations because the proba-
bility of return to the crystal from the amorphous region is so low, even when

a two-dimensional scheme based on Q(FE, (Js) was used.



§7.2 Glassy Phenomenology>’

To calculate the thermodynamic and kinetic properties of supercooled liquids
and glasses using coarse-grained descriptions based on stationary points we

must allow for ergodicity breaking.3>*

Acknowledging that ergodicity can be associated with an observation time
scale,*> 7, we should write a superposition partition function that includes

only the accessible configuration space:®

Z<T7 7_) - Zx<T>@[f:c(T) o 1/7_] + Z Za(T)@[fa(T) o 1/T]° (11)

Here, © is the Heaviside step function, the sum is over regions of the PES a,
fa(T) is the probability flux out of region a at temperature T, and region x

corresponds to the crystal.

f. 1s also a function of 7 because the flux depends upon which regions are

connected.
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Average potential energy of the occupied minima as a function of temperature

and observation time scale for a model PES 3°

(Vis) is a function of both T" and 7. The red lines correspond to increas-
ing 7 for decreasing potential energy, and the solid black line is the result

corresponding to equilibrium within the non-crystalline phase space.

The left and right panels correspond to parameter sets that produce fragile

and strong behaviour, respectively.



Longer observation times, corresponding to slower cooling rates, result in

relaxation to deeper potential energy minima, as expected.*

For an infinite time scale, but excluding the crystal, i.e. equilibrium within the
non-crystalline configuration space, the model exhibits an underlying second-

order phase transition.>?

Fragility is associated with more local minima, lower effective potential en-
ergy barriers, and higher vibrational frequencies, in agreement with Angell’s

previous suggestions.**

Increasing the energy density of minima alone was found to produce more

fragile thermodynamics but stronger, more Arrhenius, dynamics.

However, systems with a higher density of local minima are expected to have
higher vibrational frequencies, and the observed correlations between dynamic
and thermodynamic properties for strong and fragile behaviour are then re-

covered.3d
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The heat capacity, C, relaxation time, 7, and entropy difference,

AS = Sliquid — Serystal, Of strong and fragile liquids calculated within this

model are compared above.




§7.3 Glassy Landscapes

Barrier distributions for bulk models have been reported using both

48-51

4541 includ-

and the activation-relaxation approach,
47,52

eigenvector-following

ing enthalpy barriers at constant pressure.

The barrier heights for cage-breaking processes are significantly larger than
for non-cage-breaking processes, and the difference is greater for silicon

(Stillinger-Weber potential) than for BLJ.%°

The barriers that we deduce from the slope of an Arrhenius plot for the
diffusion constant or the viscosity correspond to multiple transition states on

the potential energy or enthalpy surface.

The large number of rearrangements with low barriers indicates that the sys-

tem is not trapped in a single local minimum at the glass transition. 1394047

Sets of minima that can interconvert without encountering a cage-breaking

t53—55 56

rearrangemen may provide a useful definition of a ‘metabasin’.
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Disconnectivity graphs for BLJg, including only transition states for noncage-
breaking (top) and cage-breaking (bottom) paths.®® Changes in colour in-
dicate disjoint sets of minima. Cage-breaking transitions, defined by two

nearest-neighbour changes, define a higher order metabasin structure.



§7.4 Strong and Fragile Dynamics for the BLJ Solid

To identify local ergodicity in a molecular dynamics trajectory we have used
the energy fluctuation metric of Mountain and Thirumalai,>’ defined in terms

of the time-averaged energy of the jth particle of type «, €;(¢; ), as

00 = Y0+ D les(tia) —eltsa)?, (12)

where €(t;a) = A

Nq
« 1

) (13)
J

If the system is ergodic within a well-defined region of configuration space,

['(t) should vanish for long times, as the average energy of each individual

particle reaches the ensemble average for the appropriate species, .

For a particular trajectory, the form of I'(¢) plotted against 1/t can be used

to determine ergodic and non-ergodic time scales.>8:>
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We calculate D(7) by dividing a locally ergodic trajectory into shorter seg-
ments. The figure shows results for the most and least mobile A atoms, along
with the average, for 7 = 25, 250 and 2500 (crosses, squares and circles) in

a 60-atom BLJ mixture with number density 1.3.

The true diffusion constant obtained by averaging over all A atoms on the

longest time scale is shown by filled diamonds.



On short non-ergodic time scales all the atoms, whether more or less mobile,

exhibit Arrhenius behaviour.

The true super-Arrhenius behaviour at this density results from negative cor-
relation between the atomic displacements in successive time windows, not

from a distribution of barrier heights.

To quantify this correlation, we write the mean square displacement after

time, ¢, in terms of atomic displacements in m time intervals of length 7,

AI‘@(If)Q — Z ‘|‘ 2 Z AI'@ Ar%(k>
j=1 j<k
=Y Ar(j)’ +2)  |Ar(j)||Ari(k)| cos 0. (14)
j=1 i<k

When determining the mean square displacement for a time interval 7, we

include the first term in Equation (14) but not the second term.
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The behaviour of D(7) shows that this second term is nonzero at low temper-
ature, and by effectively averaging over the atoms too early, we miscalculate

the diffusion constant and obtain Arrhenius temperature dependence.>®

The second term is therefore responsible for the super-Arrhenius behaviour.

Displacements within successive time windows are negatively correlated on

average (left). D(7) can be corrected as D(7)" = D(7) x (1 + 2(cost2)).



To calculate the diffusion constant from local properties of the energy land-
scape we need to know the connectivity of a representative local minimum in
terms of cage-breaking processes, and the probability that such cage-breaking

events are not simply reversed.®!

The number of reversals increases at lower temperatures and for more fragile

systems, as the number of accessible connections decreases.

Cage-breaking events, which are necessary for diffusion, can be modelled
as a correlated random walk, and for BLJ it is sufficient to consider short

simulations that extend up to two cage-breaking events.

Instead of coarse-graining over time window steps, as above, we are now

considering the correlations between cage-breaking events.

In this analysis fragility is associated with a larger entropic barrier, which
results from a faster reduction in connectivity as the temperature decreases,

and hence more cage-breaking reversals.®!



68 A Connection Between Dynamics and Thermodynamics*

The organisation of a PES is governed by its stationary points, where Taylor

expansions provide local descriptions in terms of Hessian matrices.

The organisation of families of PES's as a function of parameters in the
potential is determined by the stationary points that possess additional zero

Hessian eigenvalues, known as non-Morse points.

Catastrophe theory provides a local representation of the PES around non-

Morse points as a function of both atomic coordinates and parameters.

The splitting lemma reduces the dimensionality to the essential variables,
while transversality guarantees that the resulting classifications are universal.

The simplest one-parameter catastrophes are the fold, f(x) = o3 4+ az, and

3
1.4 2

the symmetrical cusp, f(z) = j2* + Faa?.



When a = 0 there is a non-Morse point where there is an additional zero
Hessian eigenvalue. This point separates families of surfaces for a < 0 and

a > 0 with different topologies.

We can eliminate parameters of the universal form in favour of AV, the energy
difference between the transition state and the minimum, the curvature at

the minimum, A, and the displacement between the stationary points, As.

For the fold catastrophe we find 6AV/A(As)? = 1, and the smallest Hessian

eigenvalue of the transition state approaches —\.
Similarly, for the symmetrical cusp 4AV/A(As)? = 1.
The fold and cusp ratios, 7t = 6AV/A(As)?, and r. = 4AV/A(As)? should

tend to unity in the limit of short path lengths for catastrophes of the corre-

sponding form.



The Morse potential as a function of the distance between two atoms is:

V = eeP1-R/R) [epu—R/Re) _ 2] | (15)
e and R, are the dimer well depth and equilibrium bond length. They can
conveniently be set to unity and used as the units of energy and distance.

p is a dimensionless parameter that determines the range of the inter-particle

forces, with low values corresponding to long range.



Physically meaningful values vary from p ~ 3 for sodium to around 14 for
Cgo molecules. When p = 6, the Morse potential has the same curvature as
the Lennard-Jones potential at the minimum.
—33 .
—35

—37

—39 |

—41 ©

—43

—45 |

p=4

—47 |

Disconnectivity graphs for M3 with p = 4 and p = 6 plotted on the same energy scale (in
units of the pair well depth).
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Short-ranged potentials lead to potential energy surfaces that are rougher but
flatter. As the range increases minimum/transition state pairs are progres-
sively eliminated as they merge together at non-Morse points corresponding

to fold (or other) catastrophes.



Both AV and As tend to zero as a minimum and transition state approach,
but AV must decrease faster than (As)? because the ratio is proportional to

A, which also tends to zero.
This trend on its own would tend to decrease both uphill and downhill barriers.

However, when a minimum disappears the steepest-descent paths that con-
nected it to higher energy transition states must continue downhill to lower

energy, and the corresponding barriers increase discontinuously.

Hence, as the curvature of the potential decreases the larger barriers and path

lengths tend to grow, while smaller barriers and path lengths tend to shrink.

These results explain Hammond's postulate:®? ‘if two states, as for example a
transition state and an unstable intermediate occur consecutively during a re-
action process and have nearly the same energy content, their interconversion

will involve only a small reorganisation of the molecular structures’.



Geometries of the fold and cusp catastrophes.
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(NaCl)35C1™ bulk glass-formers
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For a fixed potential we effectively have a snap-shot of parameter space. In
bulk systems numerous minima separated by very small barriers have been

characterised.!** These two-level systems generally obey 7, ~ 1.



Software for Exploring and Visualising Landscapes
Non-commercial use is permitted under the Gnu General Public License.
e GMIN: basin-hopping global optimisation and global thermodynamics.

e OPTIM: geometry optimisation, including a wide variety of minimisation
schemes and transition state algorithms. Multi-step pathways exploit the

Dijkstra missing connection algorithm.?

e PATHSAMPLE: discrete path sampling refinement of kinetic transition net-
works. Recursive regrouping (lumping) based on free energy barriers. Ex-

traction of committor probabilities and overall rate constants.

e disconnectionDPS and manipulate: creation and transformation of potential

and free energy disconnectivity graphs from PATHSAMPLE output files.

Current svn tarball image: http://www-wales.ch.cam.ac.uk. Direct access to

the svn source tree can be arranged for developers.
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