
Kinetically constrained models and
dynamical facilitation

Lecture 1 – Kinetically constrained models (KCMs)

Lecture 2 – Dynamical facilitation:
KCMs as ‘realistic’ models



Are KCMs like real glasses?

In favour

– Fluid states with slow, co-operative, heterogeneous
dynamics

Against

– No elasticity, phonons, β-relaxation

– Simple thermodynamic properties
(but this might also be an advantage)

Recall:
Probabilities of specific configurations are the same for
different KCMs.
. . . but probabilities of trajectories are different



A purely dynamic glass transition

Freezing: liquid → crystal:

Probabilities of configurations change qualitatively.

Compare: liquid → glass:

Probabilities of configurations change only slightly

Probabilities of trajectories change qualitatively.

Motivation: whereever possible, ignore configurational
quantities including liquid structure, entropy; focus on
dynamical quantities such as relaxation time and
heterogeneity.



Facilitation

2d mixture of repulsive particles [Garrahan and Chandler, 2009]
(molecular dynamics, not a KCM)
Time increases from left to right. Darker particles have
moved further.

Observe ‘spreading of mobility’:
[Pan, Garrahan and Chandler (2005)]



KCMs and facilitation

In using a KCM to describe a realistic system, we somehow
assume that facilitation is the dominant effect.

Analogy: if gas particles attract each other, they tend to
make liquids (or sometimes crystals).
Can use simple models (eg Ising) to descripe
condensation: these models contain only a few ingredients
of the system but still describe it semi-quantitatively.

Many people agree that facilitation exists in glassy liquids.
The question of its dominance is much more controversial.
Idea of this dominance proposed by Garrahan & Chandler.

One hypothesis : all ‘interesting’ features of glassy liquids
can be explained in terms of KCMs.



Coarse-graining

"Cage" effect

"Jammed" System may be local
jammed or mobile.

Like an FA model with
jammed being ni = 0, and
mobile being ni = 1.

Regions tend to become mobile only when nearby regions
are mobile (that is the idea of facilitation)

Think in terms of a ‘mapping’ from the liquid to the KCM
[Garrahan and Chandler, (2003)]

(neglect of elasticity might be important here)



Coarse-graining

"Mobile"

"Cage" effect

"Jammed" System may be local
jammed or mobile.

Like an FA model with
jammed being ni = 0, and
mobile being ni = 1.

Regions tend to become mobile only when nearby regions
are mobile (that is the idea of facilitation)

Think in terms of a ‘mapping’ from the liquid to the KCM
[Garrahan and Chandler, (2003)]

(neglect of elasticity might be important here)



Single-particle picture

We want to consider motion of a particle in this fluctuating
environment. Suppose that the ni evolve independently of
the particle, but the particle can hop only between sites with
ni = 1.

1-FA for example

Grey : ni = 1 ;
white ni = 0;
Black : single particle

Particle motion is
intermittent when c is
small.
[Jung, Garrahan and
Chandler (2004)]



Stretched exponential relaxation

In supercooled liquids, often fit Fs(k, t) ≈ q exp(−(t/τα)β)
for structural relaxation (t ≈ τα), β < 1.

1-spin facilitated FA:

Excitation density c.

Diffusion constant for
excitations is D ∼ c

Particle is a distance ℓ from the nearest excitation.
It moves for the first time at t ∼ ℓ2/D.

Fraction of particles that are distance ℓ > x from nearest
excitation: e−cx,
Fraction that have not moved at all at time t: P (t) ∼ e−c

√
Dt

(stretching, β = 0.5, τ ∼ c−3)



Stretched exponentials (2)

Working more carefully, can check that

– Fs(k, t) for probe particles does follow e−A
√

c3t for t ≈ tα.

– Proven crossover to exponential at longer times.
(but stretched exponential is just a fit)

– FA with f = 1 has simple exponential in d ≥ 2.

– Other KCMs have various β < 1.

Conclusion: in KCMs, stretched exponentials arise from a
distribution of particle environments (near and far from
excitations).

Stretching linked to dynamical heterogeneity.



Stokes-Einstein relation

In simple liquids (high temperatures), general arguments
imply

η ∼ τ ∼ D−1
p

(viscosity η, relaxation time τ , diffusion constant Dp)

Observed to break down in supercooled regime.

Tentative explanation: there is a range of relaxation times τ ,
depending on local environments (ie heterogeneity again)

Can we test this idea in KCMs?

We have a lattice, so particles move in discrete hops.
Consider a ‘jump model’, using continuous time random
walk.



Jump models, CTRW

Particle on a lattice, moving by unbiased hops.
Times between hops are independent random variables
with distribution ψ(t). [Berthier lectures]

A surprising(?) thing about probabilities:

Mean exchange time τx: the average time between successive
hops.

Mean persistence time τp: starting at a random time, the
average time before the next hop takes place

Can (easily) show that

τx =
∫

dt tψ(t)

τp = τ−1
x

∫
dt t2ψ(t)

The persistence time notices the large times more. . .



CTRW and decoupling

Within CTRW, we have

Particle diffusion constant Dp = a2/τx

Structural relaxation time is τα ≃ τp.

If particles follow CTRW, expect

Dpτα ≈ a2(τp/τx)

This is

– Good for 1-FA (in 1d)

– Bad for East and other models
Hop directions are not independent: more likely to go
back than twice in the same direction

– Extend idea to real liquids. . .



Exchange, persistence and decoupling

2d mixture of
repulsive particles

Top : ratio of
persistence and
exchange times

Bottom : Dpτα.

Semi-quantitative
agreement with
CTRW theory
[Hedges, Maibaum et al
(2007)]

Note : Facilitation enters only indirectly, through ψ(t).



Collective behaviour
Should also consider correlations between particles.

Dynamical propensity: for a typical configuration, measure
averaged displacements for each particle in time τα

Left: TLG model. [Hedges and Garrahan (2007)];
Right: repulsive particles. [Widmer-Cooper & Harrowell, (2007)]
Bright colours show mobile particles, clustered in space.

KCMs show similar phenomena to simulated glass-formers.



What about Vogel-Fulcher?

Often, glassy liquid data is fitted to τ ∼ eA/(T−TK)

For consistency with KCMs, try instead τ ∼ eA/T+B/T 2



What about Vogel-Fulcher?

Often, glassy liquid data is fitted to τ ∼ eA/(T−TK)

For consistency with KCMs, try instead τ ∼ eA/T+B/T 2

VTF not necessary [Elmatad, Garrahan and Chandler (2009)]



So what?

What can we conclude thus far?

– Models with simple thermodynamic properties can still
be ‘glassy’.

– Can get a long way without asking about liquid
structure.
(We ask where mobility happens, but we don’t attempt
to associate it with structural features.)



So what?

What can we conclude thus far?

– Models with simple thermodynamic properties can still
be ‘glassy’.

– Can get a long way without asking about liquid
structure.
(We ask where mobility happens, but we don’t attempt
to associate it with structural features.)

What would qualify as a ‘working theory of the glass
transition’?
– Machinery for exact analytic calculations on liquids?
– Precise procedure for mapping liquids ↔ KCMs?
– ‘Universal’ features of KCMs revealed in liquids?



Facilitation in granular media

Take ball-bearings in 2d in a vertical air current.

At high density, see ‘glassy’ heterogeneous dynamics.

[Keys et al (2007)]



Direct evidence for facilitation

Mobile clusters in space and in space-time, as density is
increased [Candelier, Dauchot and Biroli (2009)]



Mapping to KCM

Facilitation is a strong effect, at least in granular ‘glasses’.

Can we map to excitations with local rules?

Difficult

– Sometimes observe motion starting far from excitations

– Difficult to associate excitations with structural feature
(Is this a problem?)

– Expect facilitation to be a stronger effect at low
temperature and high density: can this scaling be
found?

. . . work continues in this area



A new idea. . .

. . . about universal glassy physics.

Most KCMs remain ergodic at all temperatures/densities.
No ‘ideal glass transitions’ in these models

Idea: to find a phase transition, extend the methods of
thermodynamics from space to space-time.

Eg, in microcanonical ensemble in stat mech:
– Consider configurations with fixed energy E.

Now we consider instead
– trajectories with a fixed value of an activity K, which is the
number of accepted moves in a trajectory of length tobs.

. . . or equivalent ‘canonical ensemble’:
– use a biasing field s analogous to the temperature, which
fixes 〈K〉 instead of K itself.



Thermodynamics, and trajectories
[ Ruelle, Gallavotti-Cohen, Lebowitz-Spohn, Gaspard, Maes, many others ]

Statistics of configurations

Z(β) =
∑

conf

e−βEconf

Change pressure by ∆p,
conjugate to V

Z(β,∆p) =
∑

conf

e−βEconfe−∆pβVconf

〈V 〉p =
∂

β∂∆p
logZ(β,∆p)
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Thermodynamics, and trajectories
[ Ruelle, Gallavotti-Cohen, Lebowitz-Spohn, Gaspard, Maes, many others ]

Statistics of configurations

Z(β) =
∑

conf

e−βEconf

Change pressure by ∆p,
conjugate to V

Z(β,∆p) =
∑

conf

e−βEconfe−∆pβVconf

〈V 〉p =
∂

β∂∆p
logZ(β,∆p)

Statistics of trajectories

Z =
∑

traj

Ptraj

Order parameter:
mobility K

Z(s) =
∑

traj

Ptraje
−sKtraj

〈K〉s = −
∂

∂s
logZ(s)



First-order phase transitions
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KCM : results

Analytic:
Presence of any ‘inactive’ configuration
⇒ first-order transition at s = 0.
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[Garrahan et al (2007)]



Is this an artefact of KCMs?

Repeat similar analysis in system of Lennard-Jones
particles. . .

Activity K becomes indicator of local motion:

K =
∑

it |ri(t+ ∆t) − ri(t)|
2

ri(t): position of particle i at time t.

Sum over t runs over equally-spaced times.

. . . computer simulations. . .



LJ system : results
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Conclusions

– Dynamical faciliation is the idea that particle motion
tends to occur in regions of space near to previously
mobile regions.

– This idea is encapsulated in KCMs, and observed in
experiments

– KCMs can be useful as simple model systems in which
to test the relationships between phenomena like
dynamical heterogeneity, stretched exponential
relaxation and Stokes-Einstein decoupling.

– The kinds of arguments used in these lectures have
emphasised that these dynamical phenomena can be
explained without reference to structural or
thermodynamic ideas.
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