\\ \title{

Planar $\mathcal{N}=4$ at
 \title{ \section*{Planar $\mathcal{N}=4$ at

 High Loops and Large Multiplicity}

 High Loops and Large Multiplicity}}

```
Planar \mathcal{N}=4 at
    High Loops and
    Large Multiplicity
```

Andrew McLeod

Niels Bohr Institute

Recent Developments in S-Matrix Theory
July 27, 2020

JHEP 1908 (2019) 016 and JHEP 1909 (2019) 061, with
S. Caron-Huot, L. Dixon, F. Dulat, M. von Hippel, and G. Papathanasiou

- Physical Constraints
- Results

Novel Analytic
Properties and
Symmetries

- Extended Steinmann
- Cosmic Galois Symmetry
- Cluster Algebras

Motivation

Andrew McLeod

- Computing scattering amplitude using traditional methods is hard, even in 'simpler' theories like planar $\mathcal{N}=4$ supersymmetric Yang-Mills theory and scalar ϕ^{4} theory
- Typically, the computational bottleneck is evaluating the integrals that arise in Feynman diagrams at higher loops
- Results

Novel Analytic
Properties and
Symmetries

- Extended Steinmann
- Cosmic Galois Symmetry

Cluster Algebras
Conclusion

Motivation

- Computing scattering amplitude using traditional methods is hard, even in 'simpler' theories like planar $\mathcal{N}=4$ supersymmetric Yang-Mills theory and scalar ϕ^{4} theory
- Typically, the computational bottleneck is evaluating the integrals that arise in Feynman diagrams at higher loops

Can we bypass the evaluation of these integrals, and just look for a function that has all the expected properties of the amplitude?

Motivation

- Computing scattering amplitude using traditional methods is hard, even in 'simpler' theories like planar $\mathcal{N}=4$ supersymmetric Yang-Mills theory and scalar ϕ^{4} theory
- Typically, the computational bottleneck is evaluating the integrals that arise in Feynman diagrams at higher loops

Can we bypass the evaluation of these integrals, and just look for a function that has all the expected properties of the amplitude?

Bootstrapping
Amplitudes
Coaction and Symbol

- The Function Space
- Physical Constraints
- Results

Novel Analytic
Properties and
Symmetries
Extended Steinmann

- Cosmic Galois Symmetry
- Cluster Algebras
- This is the 'bootstrap' philosophy (described also in Claude's lectures)
- Has proven highly successful in planar $\mathcal{N}=4$

Status of Loops and Legs in Planar $\mathcal{N}=4$

Planar $\mathcal{N}=4$ at
High Loops and
Large Multiplicity
Andrew McLeod

Planar $\mathcal{N}=4$
$\mathrm{MHV} \longrightarrow \quad$ Bootstrapping $\mathrm{NMHV} \longrightarrow$
[Bern, Caron-Huot, Del Duca, Dixon, Drummond, Duhr, Foster, Golden, Gürdoğan, He, Henn, von Hippel, Kosower, Li, AJM, Papathanasiou, Pennington, Roiban, Smirnov, Spradlin, Vergu, Volovich, Zhang,...]

Amplitudes
Coaction and Symbol

- The Function Space

Physical Constraints
Results
Novel Analytic
Properties and
Symmetries
Extended Steinmann
Cosmic Galois Symmetry
Cluster Algebras
Conclusion

Status of Loops and Legs in Planar $\mathcal{N}=4$

[Bern, Caron-Huot, Del Duca, Dixon, Drummond, Duhr, Foster, Golden, Gürdoğan, He, Henn, von Hippel, Kosower, Li, AJM, Papathanasiou, Pennington, Roiban, Smirnov, Spradlin, Vergu, Volovich, Zhang,...]

Andrew McLeod

Planar $\mathcal{N}=4$
Bootstrapping
Amplitudes

- Coaction and Symbol
- The Function Space
- Physical Constraints
- Results

Novel Analytic
Properties and
Symmetries

- Extended Steinmann

Cosmic Galois Symmetry

- Cluster Algebras
- The last amplitude to be calculated by direct integration was at two loops and six points [Del Duca, Duhr, Smirnov]

Status of Loops and Legs in Planar $\mathcal{N}=4$

[Bern, Caron-Huot, Del Duca, Dixon, Drummond, Duhr, Foster, Golden, Gürdoğan, He, Henn, von Hippel, Kosower, Li, AJM, Papathanasiou, Pennington, Roiban, Smirnov, Spradlin, Vergu, Volovich, Zhang, ...]

Andrew McLeod

Planar $\mathcal{N}=4$
Bootstrapping
Amplitudes
Coaction and Symbol
The Function Space

- Physical Constraints
- Results

Novel Analytic
Properties and
Symmetries
Extended Steinmann
Cosmic Galois Symmetry
Cluster Algebras

- The last amplitude to be calculated by direct integration was at two loops and six points [Del Duca, Duhr, Smirnov]
- The four- and five-particle amplitudes are given by the BDS ansatz to all orders [Bern, Dixon, Smirnov]

Status of Loops and Legs in Planar $\mathcal{N}=4$

[Bern, Caron-Huot, Del Duca, Dixon, Drummond, Duhr, Foster, Golden, Gürdoğan, He, Henn, von Hippel, Kosower, Li, AJM, Papathanasiou, Pennington, Roiban, Smirnov, Spradlin, Vergu, Volovich, Zhang, ...]

Extended Steinmann

Cosmic Galois Symmetry
Cluster Algebras

- The last amplitude to be calculated by direct integration was at two loops and six points [Del Duca, Duhr, Smirnov]
- The four- and five-particle amplitudes are given by the BDS ansatz to all orders [Bern, Dixon, Smirnov]
- The one- and two-loop amplitudes can be computed using generalized unitarity and constraints from Dual Conformal Symmetry, respectively [Bern, Dixon, Dunbar, Kosower] [Caron-Huot, He]

Status of Loops and Legs in Planar $\mathcal{N}=4$

[Bern, Caron-Huot, Del Duca, Dixon, Drummond, Duhr, Foster, Golden, Gürdoğan, He, Henn, von Hippel, Kosower, Li, AJM, Papathanasiou, Pennington, Roiban, Smirnov, Spradlin, Vergu, Volovich, Zhang,...]

Andrew McLeod

Planar $\mathcal{N}=4$
Bootstrapping
Amplitudes
Coaction and Symbol

- The Function Space
- Physical Constraints
- Results

Novel Analytic
Properties and
Symmetries

- Extended Steinmann

Cosmic Galois Symmetry

- Cluster Algebras

This talk will focus on the techniques used to calculate amplitudes for $n \geq 6$ and $L \geq 3$

Status of Loops and Legs in Planar $\mathcal{N}=4$

[Bern, Caron-Huot, Del Duca, Dixon, Drummond, Duhr, Foster, Golden, Gürdoğan, He, Henn, von Hippel, Kosower, Li, AJM, Papathanasiou, Pennington, Roiban, Smirnov, Spradlin, Vergu, Volovich, Zhang, ...]

This talk will focus on the techniques used to calculate amplitudes for $n \geq 6$ and $L \geq 3$

- Unexpected and striking structure exists in the the direction of both higher loops and legs
- Extended Steinmann Relations
- Cosmic Galois Coaction Principle
- Cluster-Algebraic Structure

Planar $\mathcal{N}=4$ at
High Loops and
Large Multiplicity
Andrew McLeod

Planar $\mathcal{N}=4$

Bootstrapping Amplitudes

Coaction and Symbol
The Function Space
Planar $\mathcal{N}=4$ supersymmetric Yang-Mills theory

Results

Novel Analytic
Properties and
Symmetries
Extended Steinmann
Cosmic Galois Symmetry
Cluster Algebras
Conclusion

Scattering Amplitudes

Andrew McLeod

A number of nice simplifications occur in planar $\mathcal{N}=4$ SYM

SUSY Ward identities \Rightarrow relate amplitudes with different helicity structure

Conformal symmetry $\quad \Rightarrow \quad$ no running of the coupling or UV divergences

Planar limit $\quad \Rightarrow \quad$ trivial color structure
Coaction and Symbol

- The Function Space
- Physical Constraints
- Results

Novel Analytic
Properties and
Symmetries
Extended Steinmann

- Cosmic Galois Symmetry
- Cluster Algebras

Conclusion
AdS/CFT $\quad \Rightarrow \quad$ dual to string theory on $A d S_{5} \times S^{5}$

Much of what we learn here also augments our understanding of QCD

Planar Limit and Dual Conformal Symmetry

An additional simplification occurs in the planar limit, where $N_{c} \rightarrow \infty$ for fixed $g^{2}=g_{\mathrm{YM}}^{2} N_{c} /\left(16 \pi^{2}\right)$

Planar $\mathcal{N}=4$ at
High Loops and
Large Multiplicity
Andrew McLeod

Planar $\mathcal{N}=4$

- The suppression of non-planar graphs allows us to endow the scattering particles with an ordering

$$
\mathcal{A}_{n}^{\text {non-planar }}=\sum_{\sigma \in S_{n}} \operatorname{Tr}\left[T^{a_{\sigma_{1}}} \ldots T^{a_{\sigma_{n}}}\right] \mathcal{A}_{n}\left(p_{\sigma_{1}}^{\mu}, \ldots, p_{\sigma_{n}}^{\nu}\right)+\mathcal{O}\left(\frac{1}{N_{c}^{2}}\right)
$$

Bootstrapping
Amplitudes
Coaction and Symbol

- The Function Space
- Physical Constraints
- Results

Novel Analytic
Properties and
Symmetries
Extended Steinmann
Cosmic Galois Symmetry

- Cluster Algebras

Conclusion

Planar Limit and Dual Conformal Symmetry

An additional simplification occurs in the planar limit,
Planar $\mathcal{N}=4$ at
High Loops and
Large Multiplicity
Andrew McLeod where $N_{c} \rightarrow \infty$ for fixed $g^{2}=g_{\mathrm{YM}}^{2} N_{c} /\left(16 \pi^{2}\right)$

- The suppression of non-planar graphs allows us to endow the scattering particles with an ordering

$$
\mathcal{A}_{n}^{\text {non-planar }}=\sum_{\sigma \in S_{n}} \operatorname{Tr}\left[T^{a_{\sigma_{1}}} \cdots T^{a_{\sigma_{n}}}\right] \mathcal{A}_{n}\left(p_{\sigma_{1}}^{\mu}, \ldots, p_{\sigma_{n}}^{\nu}\right)+\mathcal{O}\left(\frac{1}{N_{c}^{2}}\right)
$$

- This ordering gives rise to a natural set of dual coordinates (see also Mark's second lecture)

$$
p_{i}^{\mu}=x_{i}^{\mu}-x_{i+1}^{\mu}
$$

- The coordinates x_{i}^{μ} can be thought of as labelling the cusps of a light-like polygonal Wilson loop in the dual theory, which respects a superconformal symmetry in this dual space [Alday, Maldacena] [Drummond, Korchemsky, Sokatchev]

- This strongly constrains the kinematic dependence of the amplitude

Helicity and Infrared Structure

Planar $\mathcal{N}=4$ at
High Loops and
Large Multiplicity
Andrew McLeod

- The infrared-divergent part of these amplitudes is accounted for at all particle multiplicity by the 'BDS ansatz' [Bern, Dixon, Smirnov]
- In the dual theory, the BDS ansatz solves an anomalous conformal Ward identity that determines the Wilson loop up to a function of dual conformal invariants [Drummond, Henn, Korchemsky, Sokatchev]
- Dual conformal invariants can first be formed in six-particle kinematics, so the four- and five-particle amplitudes are entirely described by the BDS ansatz

Planar $\mathcal{N}=4$
Bootstrapping
Amplitudes
Coaction and Symbol
The Function Space

- Physical Constraints
- Results

Novel Analytic
Properties and
Symmetries

- Extended Steinmann

Cosmic Galois Symmetry

- Cluster Algebras

Conclusion

Helicity and Infrared Structure

Planar $\mathcal{N}=4$ at
High Loops and
Large Multiplicity
Andrew McLeod

- The infrared-divergent part of these amplitudes is accounted for at all particle multiplicity by the 'BDS ansatz' [Bern, Dixon, Smirnov]
- In the dual theory, the BDS ansatz solves an anomalous conformal Ward identity that determines the Wilson loop up to a function of dual conformal invariants [Drummond, Henn, Korchemsky, Sokatchev]
- Dual conformal invariants can first be formed in six-particle kinematics, so the four- and five-particle amplitudes are entirely described by the BDS ansatz

$$
\mathcal{A}_{4}=\mathcal{A}_{4}^{\mathrm{BDS}} \quad \mathcal{A}_{5}=\mathcal{A}_{5}^{\mathrm{BDS}}
$$

$$
\mathcal{A}_{n}=\underbrace{\mathcal{A}_{n}^{\mathrm{BDS}}}_{\text {IR structure }} \times \underbrace{\exp \left(R_{n}\right) \times \overbrace{\left(1+\mathcal{P}_{n}^{\mathrm{NMHV}}+\mathcal{P}_{n}^{\mathrm{N}^{2} \mathrm{MHV}}+\cdots+\mathcal{P}_{n}^{\overline{\mathrm{MHV}})}\right.}^{\text {helicity structure }}}_{\text {finite function of dual conformal invariants }}
$$

- Thus, the problem of calculating the n-point amplitude is reduced to the problem of calculating the DCI functions R_{n} and $\mathcal{P}_{n}^{\mathrm{N}^{k} \mathrm{MHV}}$

Dual Conformal Invariants

- In general, we can construct dual conformally invariant cross ratios out of combinations of Mandelstam invariants

$$
x_{i j}^{2} \equiv\left(x_{i}-x_{j}\right)^{2}=\left(p_{i}+p_{i+1}+\cdots+p_{j-1}\right)^{2} \equiv s_{i, \ldots, j-1}
$$

that remain invariant under the dual inversion generator

$$
I\left(x_{i}^{\alpha \dot{\alpha}}\right)=\frac{x_{i}^{\alpha \dot{\alpha}}}{x_{i}^{2}} \quad \Rightarrow \quad I\left(x_{i j}^{2}\right)=\frac{x_{i j}^{2}}{x_{i}^{2} x_{j}^{2}}
$$

- For six particles, three dual conformal invariants can be formed

$$
\begin{aligned}
& u=\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}}=\frac{s_{12} s_{45}}{s_{123} s_{345}} \\
& v=\frac{x_{24}^{2} x_{51}^{2}}{x_{25}^{2} x_{41}^{2}}=\frac{s_{23} s_{56}}{s_{234} s_{123}} \\
& w=\frac{x_{35}^{2} x_{62}^{2}}{x_{36}^{2} x_{52}^{2}}=\frac{s_{34} s_{61}}{s_{345} s_{234}}
\end{aligned}
$$

Bootstrapping
Amplitudes
Coaction and Symbol

- The Function Space
- Physical Constraints
- Results

Novel Analytic
Properties and
Symmetries

- Extended Steinmann
- Cosmic Galois Symmetry
- Cluster Algebras

Conclusion

Planar $\mathcal{N}=4$ at
High Loops and
Large Multiplicity
Andrew McLeod

Planar $\mathcal{N}=4$
Bootstrapping
Amplitudes
Coaction and Symbol
The Function Space
Physical Constraints
Bootstrapping Amplitudes in Planar $\mathcal{N}=4$

Novel Analytic
Properties and
Symmetries
Extended Steinmann
Cosmic Galois Symmetry
Cluster Algebras
Conclusion

The Coaction and Symbol

Recall from Claude's lectures that polylogarithms come equipped with a coaction and symbol:

Planar $\mathcal{N}=4$ at
High Loops and
Large Multiplicity
Andrew McLeod

Planar $\mathcal{N}=4$

- The coaction maps polylogarithms to a tensor product of lower-weight polylogarithms

$$
\mathcal{H}_{w} \xrightarrow{\Delta} \bigoplus_{p+q=w} \mathcal{H}_{p} \otimes \mathcal{H}_{q}^{\pi}
$$

$$
\text { Example: } \quad \Delta \operatorname{Li}_{m}(z)=1 \otimes \operatorname{Li}_{m}(z)+\sum_{k=0}^{m-1} \operatorname{Li}_{m-k}(z) \otimes \frac{\log ^{k} z}{k!}
$$

Bootstrapping
Amplitudes
Coaction and Symbol
The Function Space

- Physical Constraints
- Results

Novel Analytic
Properties and
Symmetries
Extended Steinmann

- Cosmic Galois Symmetry
- Cluster Algebras

Conclusion

The Coaction and Symbol

Recall from Claude's lectures that polylogarithms come equipped with a coaction and symbol:

- The coaction maps polylogarithms to a tensor product of lower-weight polylogarithms

$$
\mathcal{H}_{w} \xrightarrow{\Delta} \bigoplus_{p+q=w} \mathcal{H}_{p} \otimes \mathcal{H}_{q}^{\pi}
$$

$$
\text { Example: } \quad \Delta \operatorname{Li}_{m}(z)=1 \otimes \operatorname{Li}_{m}(z)+\sum_{k=0}^{m-1} \operatorname{Li}_{m-k}(z) \otimes \frac{\log ^{k} z}{k!}
$$

Novel Analytic
Properties and
Symmetries
Extended Steinmann

- Cosmic Galois Symmetry
- Cluster Algebras
- If we iterate this map $w-1$ times we will arrive at a function's symbol, in terms of which all identities reduce to familiar logarithmic identities

$$
\text { Example: } \quad \Delta_{1, \ldots, 1} \operatorname{Li}_{m}(z)=-\log (1-z) \otimes \log z \otimes \cdots \otimes \log z
$$

(note that one still has to contend with algebraic identities between the symbol letters, which can be arbitrarily complicated)

The Coaction and Symbol

- The derivative of a polylogarithm is entirely determined by the $\Delta_{w-1,1}$ component of its coproduct

$$
\text { Example: } \quad \begin{aligned}
\Delta_{m-1,1} \operatorname{Li}_{m}(z) & =\operatorname{Li}_{m-1}(z) \otimes \log z \\
d \operatorname{Li}_{m}(z) & =\frac{1}{z} \operatorname{Li}_{m-1}(z) d z
\end{aligned}
$$

Novel Analytic
Properties and
Symmetries

- Extended Steinmann
- Cosmic Galois Symmetry
- Cluster Algebras

Conclusion

Example: $\quad \Delta_{1, m-1} \operatorname{Li}_{m}(z)=-\log (1-z) \otimes \frac{\log ^{m-1} z}{(m-1)!}$
$\operatorname{Disc}_{\circlearrowleft_{z}^{1}} \operatorname{Li}_{m}(z)=-2 \pi i \frac{\log ^{m-1} z}{(m-1)!}$

Building the Function Space

We specialize to the six-particle MHV amplitude for concreteness
Planar $\mathcal{N}=4$ at
High Loops and
Large Multiplicity
Andrew McLeod

Planar $\mathcal{N}=4$
Our first task is to build the space of functions we expect the six-particle amplitude to be a member of

Bootstrapping
Amplitudes
Coaction and Symbol

- The Function Space
- Physical Constraints

Results
Novel Analytic
Properties and
Symmetries
Extended Steinmann

- Cosmic Galois Symmetry

Cluster Algebras
Conclusion

Building the Function Space

We specialize to the six-particle MHV amplitude for concreteness
Our first task is to build the space of functions we expect the six-particle amplitude to be a member of

Three (well-motivated) assumptions about this amplitude:
(1) It is polylogarithmic to all loop orders
(2) It has uniform transcendental weight $2 L$ at L loops
(3) Its symbol alphabet to all loop orders is

$$
\mathcal{S} \equiv\left\{u, v, w, 1-u, 1-v, 1-w, y_{u}, y_{v}, y_{w}\right\}
$$

where

$$
\begin{gathered}
y_{u}=\frac{1+u-v-w-\sqrt{(1-u-v-w)^{2}-4 u v w}}{1+u-v-w+\sqrt{(1-u-v-w)^{2}-4 u v w}}, \\
y_{v}=\left[y_{u}\right]_{u \rightarrow v \rightarrow w \rightarrow u}, \quad y_{w}=\left[y_{u}\right]_{u \rightarrow w \rightarrow v \rightarrow u}
\end{gathered}
$$

Building the Function Space

Planar $\mathcal{N}=4$ at

- Assumption (2) is consistent with all known polylogarithmic amplitudes in this theory
- The symbol alphabet \mathcal{S} can be 'read off' of the two-loop amplitude, and is consistent with an all-loop analysis of the Landau equations [Prlina, Spradlin, Stanojevic]
- ...most importantly, in conjunction with the physical constraints described in a few slides, these assumptions give rise to a unique amplitude that passes a number of consistency checks (at least through seven loops)

So how do we construct this space of functions?

Building the Function Space

Andrew McLeod

Approach 1

Planar $\mathcal{N}=4$
Use a basis of G functions, whose definition we recall:

$$
G\left(a_{1}, \ldots, a_{k} ; z\right) \equiv \int_{0}^{z} \frac{d t}{t-a_{1}} G\left(a_{2}, \ldots, a_{k} ; t\right), \quad G(\underbrace{0, \ldots, 0}_{k} ; z) \equiv \frac{\log ^{k} z}{k!}
$$

Coaction and Symbol

- The Function Space
- Physical Constraints
- Results
- For instance, in the $\left\{y_{u}, y_{v}, y_{w}\right\}$ variables the functions

$$
\begin{gathered}
\left\{G_{\vec{a}}\left(y_{u}\right) \mid a_{i} \in\{0,1\}\right\} \cup\left\{G_{\vec{a}}\left(y_{v}\right) \left\lvert\, a_{i} \in\left\{0,1, \frac{1}{y_{u}}\right\}\right.\right\} \\
\cup\left\{G_{\vec{a}}\left(y_{w}\right) \left\lvert\, a_{i} \in\left\{0,1, \frac{1}{y_{u}}, \frac{1}{y_{v}}, \frac{1}{y_{u} y_{v}}\right\}\right.\right\}
\end{gathered}
$$

Novel Analytic
Properties and
Symmetries

- Extended Steinmann
- Cosmic Galois Symmetry
- Cluster Algebras

Conclusion
span the space of polylogarithms with the desired symbol letters

Building the Function Space

Andrew McLeod

Approach 1

Use a basis of G functions, whose definition we recall:
$G\left(a_{1}, \ldots, a_{k} ; z\right) \equiv \int_{0}^{z} \frac{d t}{t-a_{1}} G\left(a_{2}, \ldots, a_{k} ; t\right), \quad G(\underbrace{0, \ldots, 0}_{k} ; z) \equiv \frac{\log ^{k} z}{k!}$

- For instance, in the $\left\{y_{u}, y_{v}, y_{w}\right\}$ variables the functions

$$
\begin{gathered}
\left\{G_{\vec{a}}\left(y_{u}\right) \mid a_{i} \in\{0,1\}\right\} \cup\left\{G_{\vec{a}}\left(y_{v}\right) \left\lvert\, a_{i} \in\left\{0,1, \frac{1}{y_{u}}\right\}\right.\right\} \\
\cup\left\{G_{\vec{a}}\left(y_{w}\right) \left\lvert\, a_{i} \in\left\{0,1, \frac{1}{y_{u}}, \frac{1}{y_{v}}, \frac{1}{y_{u} y_{v}}\right\}\right.\right\}
\end{gathered}
$$

span the space of polylogarithms with the desired symbol letters

- Drawback: this space of functions grows very quickly; at four loops (weight eight) this gives rise to $1,675,553$ functions!

Building the Function Space

Planar $\mathcal{N}=4$ at
High Loops and
Large Multiplicity
Andrew McLeod
Approach 2
'Build' a space of functions that has the right analytic structure out of coaction entries that make this structure manifest

- Constraints on the derivative of a function and the location of its discontinuities can be imposed by allowing only specific symbol letters to appear in the first and last entry

Planar $\mathcal{N}=4$
Bootstrapping Amplitudes

Coaction and Symbol

- The Function Space
- Physical Constraints
- Results

Novel Analytic
Properties and
Symmetries
Extended Steinmann

- Cosmic Galois Symmetry
- Cluster Algebras

Conclusion

Building the Function Space

Approach 2

'Build' a space of functions that has the right analytic structure out of coaction entries that make this structure manifest

- Constraints on the derivative of a function and the location of its discontinuities can be imposed by allowing only specific symbol letters to appear in the first and last entry
- Drawback: a generic linear combinations of coaction terms does not necessarily correspond to a genuine function; in particular, partial derivatives must commute

$$
\text { Example: } \begin{aligned}
\quad \frac{\partial}{\partial x} \frac{\partial}{\partial y}(\log x \otimes \log y) & =\frac{1}{x y} \\
\neq \frac{\partial}{\partial y} \frac{\partial}{\partial x}(\log x \otimes \log y) & =0
\end{aligned}
$$

Building the Function Space

Approach 2

- We can construct the relevant space of functions iteratively, by considering an ansatz of $\Delta_{m-1,1}$ coproduct entries

$$
\sum_{i, j} c_{j i} f_{j}^{(m-1)} \otimes \log s_{i}
$$

where
Bootstrapping
Amplitudes
Coaction and Symbol

- The Function Space
- Physical Constraints
- Results

Novel Analytic
Properties and
Symmetries

- Extended Steinmann
- Cosmic Galois Symmetry
- Cluster Algebras
- $c_{j i}$ is a free rational coefficient
- $f_{j}^{(m-1)}$ is the j th weight $m-1$ function in our basis
- s_{i} is the i th symbol letter in \mathcal{S}
and imposing the constraint that partial derivatives commute
- To satisfy these constraints we solve for some of the $c_{j i}$ in terms of the others
- This generates the space of 'integrable' weight m functions

Imposing Physical Constraints

Andrew McLeod

Planar $\mathcal{N}=4$
Bootstrapping Amplitudes

Once we have built a basis of weight $2 L$ functions, we can now constrain a general ansatz of these functions to have the properties expected of the amplitude

- Analytic Constraints
- Symmetries
- Special kinematic limits

The Function Space

- Physical Constraints
- Results

Novel Analytic
Properties and
Symmetries
Extended Steinmann
Cosmic Galois Symmetry

- Cluster Algebras

Conclusion

Analytic Constraints

Physical Branch Cuts

- Massless scattering amplitudes in the Euclidean region can only have branch cuts where one of the Mandelstam invariants vanishes
- In six-particle kinematics, this implies that the first symbol entries of the amplitude can only be u, v, and w

$$
\Delta_{1, w-1} F=\log u \otimes{ }^{u} F+\log v \otimes{ }^{v} F+\log w \otimes{ }^{w} F
$$

Planar $\mathcal{N}=4$ at
High Loops and
Large Multiplicity
Andrew McLeod

Planar $\mathcal{N}=4$
Bootstrapping
Amplitudes
Coaction and Symbol

- The Function Space
- Physical Constraints
- Results

Novel Analytic
Properties and
Symmetries

- Extended Steinmann
- Cosmic Galois Symmetry
- Cluster Algebras

Conclusion

Analytic Constraints

Physical Branch Cuts

- Massless scattering amplitudes in the Euclidean region can only have branch cuts where one of the Mandelstam invariants vanishes
- In six-particle kinematics, this implies that the first symbol entries of the amplitude can only be u, v, and w

$$
\Delta_{1, w-1} F=\log u \otimes{ }^{u} F+\log v \otimes{ }^{v} F+\log w \otimes^{w} F
$$

Steinmann Relations

- Additional restrictions come from the Steinmann relations, which tell us that amplitudes cannot have double discontinuities in partially overlapping channels [Steinmann] [Cahill, Stapp]
lanar $\mathcal{N}=4$ at
High Loops and
Large Multiplicity
Andrew McLeod

Planar $\mathcal{N}=4$
Bootstrapping Amplitudes

Coaction and Symbol
The Function Space
Physical Constraints
Results
Novel Analytic
Properties and
Symmetries
Extended Steinmann

- Cosmic Galois Symmetry
- Cluster Algebras

Conclusion

vs.

$\operatorname{Disc}_{s_{234}}\left(\operatorname{Disc}_{s_{345}}\left(\mathcal{A}_{n}\right)\right)=0$

- However, to see this one must normalize the amplitude appropriately...

Shifted Infrared Subtraction

Andrew McLeod

- The BDS ansatz exponentiates the one-loop amplitude, leading to products of Steinmann functions starting at two loops

$$
\begin{gathered}
\operatorname{Disc}_{s_{i-1, i, i+1}}\left[\mathcal{A}_{6}^{(1)}\right] \neq 0 \\
\Downarrow \\
\operatorname{Disc}_{s_{234}}\left[\operatorname{Disc}_{s_{345}}\left[\left(\mathcal{A}_{6}^{(1)}\right)^{2}\right]\right] \neq 0
\end{gathered}
$$

- Therefore, we instead normalize by a 'BDS-like' ansatz that depends on only two-particle Mandelstam invariants

$$
\mathcal{A}_{n}^{\mathrm{MHV}}=\mathcal{A}_{n}^{\mathrm{BDS}} \times \exp \left(R_{n}\right) \rightarrow \rho \times \mathcal{A}_{n}^{\mathrm{BDS}-\text { like }} \times \mathcal{E}_{n}^{\mathrm{MHV}}
$$

where a transcendental constant ρ can also appear

- This only scrambles the Steinmann relations involving two-particle invariants, which are obfuscated in massless kinematics anyways

Analytic Constraints

Planar $\mathcal{N}=4$ at
High Loops and
Large Multiplicity
Andrew McLeod

Planar $\mathcal{N}=4$

- These analytic properties can be imposed directly on our space of functions in the first and second entry of the symbol, at the outset of our iterative construction
- This greatly decreases the number of functions that are generated by this procedure. For instance, at four loops:

Imposed Constraints	Number of Functions
Generalized polylogarithms with the correct kinematic dependence	$1,675,553$
That have branch cuts only in physical channels	6,916
That satisfy the Steinmann relations	839

Bootstrapping
Amplitudes

- Coaction and Symbol
- The Function Space
- Physical Constraints
- Results

Novel Analytic
Properties and
Symmetries
Extended Steinmann

- Cosmic Galois Symmetry
- Cluster Algebras

Conclusion

Symmetries

```
Planar \(\mathcal{N}=4\) at
High Loops and
Large Multiplicity
```


Bose Symmetry

- The MHV amplitude is invariant under the dihedral group, representing permutations of the external particles that are consistent with the planar embedding
- In the $\{u, v, w\}$ variables, this corresponds to an S_{3} permutation symmetry

$$
\begin{aligned}
& \mathcal{A}_{6}^{\mathrm{MHV}}(u, v, w)=\mathcal{A}_{6}^{\mathrm{MHV}}(v, w, u) \\
& \mathcal{A}_{6}^{\mathrm{MHV}}(u, v, w)=\mathcal{A}_{6}^{\mathrm{MHV}}(u, w, v)
\end{aligned}
$$

Bootstrapping
Amplitudes
Coaction and Symbol

- The Function Space
- Physical Constraints
- Results

Novel Analytic
Properties and
Symmetries

- Extended Steinmann
- Cosmic Galois Symmetry

Cluster Algebras
Conclusion

Symmetries

Bose Symmetry

- The MHV amplitude is invariant under the dihedral group, representing permutations of the external particles that are consistent with the planar embedding
- In the $\{u, v, w\}$ variables, this corresponds to an S_{3} permutation symmetry

$$
\begin{aligned}
& \mathcal{A}_{6}^{\mathrm{MHV}}(u, v, w)=\mathcal{A}_{6}^{\mathrm{MHV}}(v, w, u) \\
& \mathcal{A}_{6}^{\mathrm{MHV}}(u, v, w)=\mathcal{A}_{6}^{\mathrm{MHV}}(u, w, v)
\end{aligned}
$$

\bar{Q} Equation

- The derivative of the amplitude is also constrained by the action of the dual superconformal generator \bar{Q} [Caron-Huot, He]
- In the MHV sector, this constraint implies that the last entry of the symbol must be drawn from the set

$$
\left\{\frac{1-u}{u}, \frac{1-v}{v}, \frac{1-w}{w}, y_{u}, y_{v}, y_{w}\right\}
$$

Kinematic Limits as Boundary Data

Planar $\mathcal{N}=4$ at
High Loops and
Large Multiplicity
Andrew McLeod

Planar $\mathcal{N}=4$
Bootstrapping
Amplitudes
Coaction and Symbol
The Function Space
Physical Constraints
Results

- Collinear Limits
- Multi-Regge Limits
- Near-Collinear Operator Product Expansion
- Multi-Particle Factorization
- Self-Crossing Limit

Novel Analytic
Properties and
Symmetries
Extended Steinmann

- Cosmic Galois Symmetry
- Cluster Algebras

Conclusion

Collinear Limits

Andrew McLeod

- The BDS ansatz smoothly limits to itself in collinear limits:

$$
\mathcal{A}_{n}^{\mathrm{BDS}} \xrightarrow{\text { collinear }} \mathcal{A}_{n-1}^{\mathrm{BDS}}
$$

- This implies that the same must be true of the remainder function:

$$
R_{n} \xrightarrow{\text { collinear }} R_{n-1}
$$

- In six-particle kinematics, the limit in which two external momenta become collinear corresponds to sending one of the cross ratios to zero and the sum of the remaining two cross ratios to one:
- Results

Novel Analytic
Properties and
Symmetries
Extended Steinmann

- Cosmic Galois Symmetry
- Cluster Algebras

$$
v \rightarrow 1-u, \quad w \rightarrow 0
$$

- Thus, we require that

$$
R_{6} \xrightarrow{\substack{v \rightarrow 1-u \\ w \rightarrow 0}} 0
$$

which can be easily translated into a constraint on the BDS-like normalized amplitude

Multi-Regge Kinematics

Andrew McLeod

- Describes $2 \rightarrow 4$ and $3 \rightarrow 3$ with large separations in rapidity

$$
s_{12} \gg s_{345}, s_{456} \gg s_{34}, s_{45}, s_{56} \gg s_{23}, s_{61}, s_{234}
$$

- In six-particle kinematics, this corresponds to the limit

$$
v, w \rightarrow 0, \quad u \rightarrow 1-\delta, \quad \delta \ll 1
$$

where we have fixed the ratios

$$
\frac{v}{1-u}=\frac{1}{(1-z)(1-\bar{z})}, \quad \frac{w}{1-u}=\frac{z \bar{z}}{(1-z)(1-\bar{z})}
$$

- To compare to physical predictions, we analytically continue to the Minkowski region $u \rightarrow e^{-2 \pi i}|u|$ where we find

$$
R_{6}^{(L)} \xrightarrow{\mathrm{MRK}} 2 \pi i \sum_{n=0}^{L-1} \log ^{n}(1-u)\left[g_{n}^{(L)}(z, \bar{z})+2 \pi i h_{n}^{(L)}(z, \bar{z})\right]
$$

- These MRK limits can be compared to a pair of factorization relations in Fourier-Mellin transformed space [Fadin, Lipatov]

Current Results

These constraints have been used to uniquely determine the six-particle amplitude through seven (six) loops in the MHV (NMHV) sector

Constraint	$L=1$	$L=2$	$L=3$	$L=4$	$L=5$	$L=6$
1. $\mathcal{H}^{\text {hex }}$	6	27	105	372	1214	3692
2. Bose Symmetry	$(2,4)$	$(7,16)$	$(22,56)$	$(66,190)$	$(197,602)$	$(567,1795)$
3. \bar{Q} Symmetry	$(1,1)$	$(4,3)$	$(11,6)$	$(30,16)$	$(85,39)$	$(236,102)$
4. Collinear	$(0,0)$	$(0,0)$	$(0,0)$	$(0,2)$	$(1,5)$	$(6,17)$
5. LL MRK	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(1,2)$
6. NLL MRK	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(1,0)$
7. NNLL MRK	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(1,0)$
8. N^{3} LL MRK	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(1,0)$
9. Full MRK	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(1,0)$
10. T^{1} OPE	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(1,0)$
11. T^{2} OPE	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$

Coaction and Symbol
The Function Space

- Physical Constraints

Results
Novel Analytic
Properties and
Symmetries
Extended Steinmann
Cosmic Galois Symmetry

- Cluster Algebras

Current Results

Andrew McLeod

- Through five loops, collinear factorization and multi-Regge

Planar $\mathcal{N}=4$ factorization are sufficient to determine the amplitude; all other limits provide cross-checks

- At six loops and seven loops, the near-collinear OPE is needed to fix a single residual ambiguity in the MHV sector
- The barrier to going to higher loops is "just" computational
- A similar bootstrap program has also been carried out in seven-particle kinematics through four loops

Bootstrapping
Amplitudes
Coaction and Symbol

- The Function Space
- Physical Constraints

Results
Novel Analytic
Properties and
Symmetries

- Extended Steinmann

Cosmic Galois Symmetry

- Cluster Algebras

Current Results

Planar $\mathcal{N}=4$ at
High Loops and
Large Multiplicity
Andrew McLeod

- Through five loops, collinear factorization and multi-Regge factorization are sufficient to determine the amplitude; all other limits provide cross-checks
- At six loops and seven loops, the near-collinear OPE is needed to fix a single residual ambiguity in the MHV sector
- The barrier to going to higher loops is "just" computational
- A similar bootstrap program has also been carried out in seven-particle kinematics through four loops
- ... however, note that the space of 'Hexagon functions' $\mathcal{H}^{\text {hex }}$ that was used as a starting point in this table has a smaller dimension at four loops than reported on an earlier slide
- This more restricted space of functions was built using novel constraints, which we now describe

Planar $\mathcal{N}=4$ at
High Loops and
Large Multiplicity
Andrew McLeod

Planar $\mathcal{N}=4$
Bootstrapping Amplitudes

Coaction and Symbol
The Function Space
Physical Constraints
Novel Analytic Properties and Symmetries

Novel Analytic
Properties and Symmetries

Extended Steinmanr
Cosmic Galois Symmetry
Cluster Algebras
Conclusion

The Extended Steinmann Relations

Andrew McLeod

Planar $\mathcal{N}=4$

- The Steinmann relations correspond to the constraint that certain sequences of letters never appear in the first two entries

$$
\begin{aligned}
& \frac{\log \left(\frac{u}{v w}\right)}{l} \otimes \log \left(\frac{w}{u v}\right) \otimes \cdots \\
& \frac{u}{v w} \sim s_{234}^{2}, \quad \frac{\log \left(\frac{u}{v w}\right) \otimes \log \left(\frac{v}{u w}\right) \otimes \cdots}{w u} \sim s_{345}^{2}, \quad \frac{w}{u v} \sim s_{123}^{2}
\end{aligned}
$$

Bootstrapping Amplitudes

- Coaction and Symbol
- The Function Space
- Physical Constraints
- Results

Novel Analytic
Properties and
Symmetries
Extended Steinmann

- Cosmic Galois Symmetry
- Cluster Algebras

Conclusion

The Extended Steinmann Relations

Andrew McLeod

Planar $\mathcal{N}=4$

- The Steinmann relations correspond to the constraint that certain sequences of letters never appear in the first two entries

$$
\begin{aligned}
& \log \left(\frac{u}{v w}\right) \otimes \log \left(\frac{w}{u v}\right) \otimes \cdots \quad \log \left(\frac{u}{v w}\right) \otimes \log \left(\frac{v}{u w}\right) \otimes \cdots \\
& \frac{u}{v w} \sim s_{234}^{2}, \quad \frac{v}{w u}
\end{aligned} \sim s_{345}^{2}, \quad \frac{w}{u v} \sim s_{123}^{2}
$$

- However, the symbols of BDS-like normalized amplitudes exhibit a more surprising property: they obey the Steinmann relations in all adjacent entries of the symbol
[Caron-Huot, Dixon, von Hippel, AJM, Papathanasiou]
$\cdots \otimes \log \left(\frac{u}{v w}\right) \otimes \log \left(\frac{w}{u v}\right) \otimes \cdots \quad \cdots \otimes \log \left(\frac{u}{v w}\right) \otimes \log \left(\frac{v}{u w}\right) \otimes \cdots$

Cosmic Galois Theory

Planar $\mathcal{N}=4$ at
High Loops and
Large Multiplicity
However, we know that the symbol only captures some of the information encoded by the coaction

Cosmic Galois Theory

However, we know that the symbol only captures some of the information encoded by the coaction

Planar $\mathcal{N}=4$ at
High Loops and
Large Multiplicity
Andrew McLeod

Planar $\mathcal{N}=4$
Bootstrapping
Amplitudes
Coaction and Symbol
The Function Space

- Physical Constraints
- Results
- The cosmic Galois group extends the classical Galois theory to the study of periods-integrals of rational functions over rational domains
- Thus, we can explore the stability of amplitudes and integrals under the action of this Galois group

Novel Analytic
Properties and
Symmetries
Extended Steinmann

- Cosmic Galois Symmetry
- Cluster Algebras

Conclusion

Cosmic Galois Theory

However, we know that the symbol only captures some of the information encoded by the coaction

To capture more of this information, we study the 'cosmic Galois group', which is dual to the coaction on generalized polylogarithms

- The cosmic Galois group extends the classical Galois theory to the study of periods-integrals of rational functions over rational domains
- Thus, we can explore the stability of amplitudes and integrals under the action of this Galois group

Amplitudes
Coaction and Symbol
The Function Space
Physical Constraints

- Results

Novel Analytic
Properties and
Symmetries
Extended Steinmann
Cosmic Galois Symmetry

- Cluster Algebras

Conclusion

In science you sometimes have to find a word that strikes, such as "catastrophe", "fractal", or "noncommutative geometry". They are words which do not express a precise definition but a program worthy of being developed.

- Pierre Cartier

The Coaction Principle

Planar $\mathcal{N}=4$ at
High Loops and
Large Multiplicity
Andrew McLeod
Specifically, we ask: does the space of Steinmann hexagon functions $\mathcal{H}^{\text {hex }}$ satisfy a 'coaction principle'? [Schnetz] [Brown]

$$
\Delta \mathcal{H}^{\text {hex }} \subset \mathcal{H}^{\text {hex }} \otimes \mathcal{H}^{\pi}
$$

- This can be formulated in terms of the action of the cosmic Galois group C as

$$
C \times \mathcal{H}^{\text {hex }} \xrightarrow{?} \mathcal{H}^{\text {hex }}
$$

- Part of the content of this statement is that the coaction preserves the locations of branch cuts (which we already know is the case from general physical principles)
- However, more general transcendental constants also appear in this space (multiple zeta values, alternating sums,...)
- These constants exhibit nontrivial structure under the coaction, which is not a priori constrained by physical principles

The coaction on MZVs

Andrew McLeod

- For instance, we can consider our function space at $(u, v, w)=$ $(1,1,1)$, where everything evaluates to multiple zeta values
- There exist natural derivations $\partial_{2 m+1}$ in the Lie algebra of the cosmic Galois group that act on the zeta values as

$$
\partial_{2 m+1} \zeta_{2 n+1}=\delta_{m, n}
$$

and that satisfy the Leibniz rule-for example,

$$
\partial_{3}\left(\zeta_{7} \zeta_{3}^{2}\right)=2 \zeta_{7} \zeta_{3}
$$

- These operators act nontrivially on the multiple zeta values, for instance:

$$
\partial_{3}\left(\zeta_{5,3}\right)=0, \quad \partial_{5}\left(\zeta_{5,3}\right)=-5 \zeta_{3}
$$

- There is no ∂_{2}, as the even zeta values are semi-simple elements of the coaction

The coaction principle at $(1,1,1)$

High Loops and
Large Multiplicity

Weight	Multiple Zeta Values	Appear in $\left.\mathcal{H}^{\text {hex }}\right\|_{u, v, w \rightarrow 1}$
0	1	1
1		
2	ζ_{2}	ζ_{2}
3	ζ_{3}	
4	ζ_{4}	ζ_{4}
5	$\zeta_{5}, \zeta_{3} \zeta_{2}$	$5 \zeta_{5}-2 \zeta_{3} \zeta_{2}$
6	ζ_{3}^{2}, ζ_{6}	ζ_{6}
7	$\zeta_{7}, \zeta_{5} \zeta_{2}, \zeta_{3} \zeta_{4}$	$\zeta_{5} \zeta_{2}-7 \zeta_{7}+3 \zeta_{3} \zeta_{4}$
8	$\zeta_{5} \zeta_{3}, \zeta_{5,3}, \zeta_{8}, \zeta_{3}^{2} \zeta_{2}$	$\zeta_{5,3}+5 \zeta_{5} \zeta_{3}-\zeta_{3}^{2} \zeta_{2}, \zeta_{8}$

Andrew McLeod

Planar $\mathcal{N}=4$
Bootstrapping Amplitudes

- Coaction and Symbol

The Function Space

- Physical Constraints
- Results

Novel Analytic Properties and Symmetries

Extended Steinmann
Cosmic Galois Symmetry
Cluster Algebras

The coaction principle at $(1,1,1)$

High Loops and
Large Multiplicity

Weight	Multiple Zeta Values	Appear in $\left.\mathcal{H}^{\text {hex }}\right\|_{u, v, w \rightarrow 1}$
0		
1		1
2	∂_{3}	ζ_{2}
3	ζ_{3}	ζ_{2}
4	ζ_{4}	
5	$\zeta_{5}, \zeta_{3} \zeta_{2}$	ζ_{4}
6	ζ_{3}^{2}, ζ_{6}	$5 \zeta_{5}-2 \zeta_{3} \zeta_{2}$
7	$\zeta_{7}, \zeta_{5} \zeta_{2}, \zeta_{3} \zeta_{4}$	ζ_{6}
8	$\zeta_{5} \zeta_{3}, \zeta_{5,3}, \zeta_{8}, \zeta_{3}^{2} \zeta_{2}$	$\zeta_{5,3}+5 \zeta_{7}+3 \zeta_{3} \zeta_{3}-\zeta_{3}^{2} \zeta_{2}, \zeta_{8}$

Andrew McLeod

Planar $\mathcal{N}=4$
Bootstrapping Amplitudes

- Coaction and Symbol

The Function Space

- Physical Constraints
- Results

Novel Analytic
Properties and
Symmetries
Extended Steinmann
Cosmic Galois Symmetry
Cluster Algebras

The coaction principle at $(1,1,1)$

High Loops and
Large Multiplicity

Weight	Multiple Zeta Values	Appear in $\left.\mathcal{H}^{\text {hex }}\right\|_{u, v, w \rightarrow 1}$
0	1	1
1		
2	ζ_{2}	ζ_{2}
$\checkmark 3$	ζ_{3}	
4	ζ_{4}	ζ_{4}
5	$\zeta_{5}, \zeta_{3} \zeta_{2}$	$5 \zeta_{5}-2 \zeta_{3} \zeta_{2}$
6	ζ_{3}^{2}, ζ_{6}	ζ_{6}
7	$\zeta_{7}, \zeta_{5} \zeta_{2}, \zeta_{3} \zeta_{4}$	$\zeta_{5} \zeta_{2}-7 \zeta_{7}+3 \zeta_{3} \zeta_{4}$
8	$\zeta_{5} \zeta_{3}, \zeta_{5,3}, \zeta_{8}, \zeta_{3}^{2} \zeta_{2}$	$\zeta_{5,3}+5 \zeta_{5} \zeta_{3}-\zeta_{3}^{2} \zeta_{2}, \zeta_{8}$

Andrew McLeod

Planar $\mathcal{N}=4$
Bootstrapping Amplitudes

- Coaction and Symbol

The Function Space

- Physical Constraints
- Results

Novel Analytic
Properties and
Symmetries
Extended Steinmann
Cosmic Galois Symmetry
Cluster Algebras

The coaction principle at $(1,1,1)$

High Loops and
Large Multiplicity

Weight	Multiple Zeta Values	Appear in $\left.\mathcal{H}^{\text {hex }}\right\|_{u, v, w \rightarrow 1}$
0		1
1		
2		ζ_{2}
3	∂_{5}	ζ_{3}
4	ζ_{4}	∂_{3}
5	$\zeta_{5}, \zeta_{3} \zeta_{2}$	ζ_{2}
6	ζ_{3}^{2}, ζ_{6}	ζ_{4}
7	$\zeta_{7}, \zeta_{5} \zeta_{2}, \zeta_{3} \zeta_{4}$	$\zeta_{5} \zeta_{2}-7 \zeta_{7}+3 \zeta_{3} \zeta_{2}$
8	$\zeta_{5} \zeta_{3}, \zeta_{5,3}, \zeta_{8}, \zeta_{3}^{2} \zeta_{2}$	$\zeta_{5,3}+5 \zeta_{5} \zeta_{3}-\zeta_{3}^{2} \zeta_{2}, \zeta_{8}$

Andrew McLeod

Planar $\mathcal{N}=4$
Bootstrapping Amplitudes

- Coaction and Symbol

The Function Space

- Physical Constraints
- Results

Novel Analytic Properties and Symmetries

Extended Steinmann

- Cosmic Galois Symmetry

Cluster Algebras

The coaction principle at $(1,1,1)$

High Loops and
Large Multiplicity

Weight	Multiple Zeta Values	Appear in $\left.\mathcal{H}^{\text {hex }}\right\|_{u, v, w \rightarrow 1}$
0	1	1
1		
2	ζ_{2}	ζ_{2}
$\checkmark 3$	ζ_{3}	
4	ζ_{4}	ζ_{4}
$\checkmark 5$	$\zeta_{5}, \zeta_{3} \zeta_{2}$	$5 \zeta_{5}-2 \zeta_{3} \zeta_{2}$
6	ζ_{3}^{2}, ζ_{6}	ζ_{6}
7	$\zeta_{7}, \zeta_{5} \zeta_{2}, \zeta_{3} \zeta_{4}$	$\zeta_{5} \zeta_{2}-7 \zeta_{7}+3 \zeta_{3} \zeta_{4}$
8	$\zeta_{5} \zeta_{3}, \zeta_{5,3}, \zeta_{8}, \zeta_{3}^{2} \zeta_{2}$	$\zeta_{5,3}+5 \zeta_{5} \zeta_{3}-\zeta_{3}^{2} \zeta_{2}, \zeta_{8}$

Andrew McLeod

Planar $\mathcal{N}=4$
Bootstrapping Amplitudes

- Coaction and Symbol

The Function Space

- Physical Constraints
- Results

Novel Analytic
Properties and
Symmetries
Extended Steinmann
Cosmic Galois Symmetry
Cluster Algebras

The coaction principle at $(1,1,1)$

High Loops and
Large Multiplicity

Weight	Multiple Zeta Values	Appear in $\left.\mathcal{H}^{\text {hex }}\right\|_{u, v, w \rightarrow 1}$
0	1	1
1		
2	ζ_{2}	ζ_{2}
$\checkmark 3$	ζ_{3}	
4	ζ_{4}	ζ_{4}
$\checkmark 5$	$\frac{1}{2} \partial_{3}$	$\zeta_{5}, \zeta_{3} \zeta_{2}$
6	ζ_{3}^{2}, ζ_{6}	$5 \zeta_{5}-2 \zeta_{3} \zeta_{2}$
7	$\zeta_{7}, \zeta_{5} \zeta_{2}, \zeta_{3} \zeta_{4}$	ζ_{6}
8	$\zeta_{5} \zeta_{3}, \zeta_{5,3}, \zeta_{8}, \zeta_{3}^{2} \zeta_{2}$	$\zeta_{5,3}+5 \zeta_{7}+3 \zeta_{3} \zeta_{3}-\zeta_{3}^{2} \zeta_{2}, \zeta_{8}$

Andrew McLeod

Planar $\mathcal{N}=4$
Bootstrapping Amplitudes

- Coaction and Symbol

The Function Space

- Physical Constraints
- Results

Novel Analytic Properties and Symmetries

Extended Steinmann

- Cosmic Galois Symmetry

Cluster Algebras

The coaction principle at $(1,1,1)$

High Loops and
Large Multiplicity

Weight	Multiple Zeta Values	Appear in $\left.\mathcal{H}^{\text {hex }}\right\|_{u, v, w \rightarrow 1}$
0	1	1
1		
2	ζ_{2}	ζ_{2}
$\checkmark 3$	ζ_{3}	
4	ζ_{4}	ζ_{4}
$\checkmark 5$	$\zeta_{5}, \zeta_{3} \zeta_{2}$	$5 \zeta_{5}-2 \zeta_{3} \zeta_{2}$
$\checkmark 6$	ζ_{3}^{2}, ζ_{6}	ζ_{6}
7	$\zeta_{7}, \zeta_{5} \zeta_{2}, \zeta_{3} \zeta_{4}$	$\zeta_{5} \zeta_{2}-7 \zeta_{7}+3 \zeta_{3} \zeta_{4}$
8	$\zeta_{5} \zeta_{3}, \zeta_{5,3}, \zeta_{8}, \zeta_{3}^{2} \zeta_{2}$	$\zeta_{5,3}+5 \zeta_{5} \zeta_{3}-\zeta_{3}^{2} \zeta_{2}, \zeta_{8}$

Andrew McLeod

Planar $\mathcal{N}=4$
Bootstrapping Amplitudes

- Coaction and Symbol

The Function Space

- Physical Constraints
- Results

Novel Analytic
Properties and
Symmetries
Extended Steinmann
Cosmic Galois Symmetry
Cluster Algebras

The coaction principle at $(1,1,1)$

High Loops and
Large Multiplicity

Weight	Multiple Zeta Values	Appear in $\left.\mathcal{H}^{\text {hex }}\right\|_{u, v, w \rightarrow 1}$
0		1
1		
2	∂_{7}	ζ_{2}
3	ζ_{3}	ζ_{2}
4	∂_{5}	ζ_{4}
$\checkmark 5$	$\zeta_{5}, \zeta_{3} \zeta_{2}$	ζ_{4}
$\checkmark 6$	ζ_{3}^{2}, ζ_{6}	∂_{3}
7	$\zeta_{7}, \zeta_{5} \zeta_{2}, \zeta_{3} \zeta_{4}$	$\zeta_{5} \zeta_{2}-7 \zeta_{7}+3 \zeta_{3} \zeta_{4}$
8	$\zeta_{5} \zeta_{3}, \zeta_{5,3}, \zeta_{8}, \zeta_{3}^{2} \zeta_{2}$	$\zeta_{5,3}+5 \zeta_{5} \zeta_{3}-\zeta_{3}^{2} \zeta_{2}, \zeta_{8}$

Andrew McLeod

Planar $\mathcal{N}=4$
Bootstrapping Amplitudes

- Coaction and Symbol

The Function Space

- Physical Constraints
- Results

Novel Analytic Properties and Symmetries

Extended Steinmann

- Cosmic Galois Symmetry

Cluster Algebras

The coaction principle at $(1,1,1)$

High Loops and
Large Multiplicity

Weight	Multiple Zeta Values	Appear in $\left.\mathcal{H}^{\text {hex }}\right\|_{u, v, w \rightarrow 1}$
0	1	1
1		
2	ζ_{2}	ζ_{2}
$\checkmark 3$	ζ_{3}	
4	ζ_{4}	ζ_{4}
$\checkmark 5$	$\zeta_{5}, \zeta_{3} \zeta_{2}$	$5 \zeta_{5}-2 \zeta_{3} \zeta_{2}$
$\checkmark 6$	ζ_{3}^{2}, ζ_{6}	ζ_{6}
$\checkmark \checkmark 7$	$\zeta_{7}, \zeta_{5} \zeta_{2}, \zeta_{3} \zeta_{4}$	$\zeta_{5} \zeta_{2}-7 \zeta_{7}+3 \zeta_{3} \zeta_{4}$
8	$\zeta_{5} \zeta_{3}, \zeta_{5,3}, \zeta_{8}, \zeta_{3}^{2} \zeta_{2}$	$\zeta_{5,3}+5 \zeta_{5} \zeta_{3}-\zeta_{3}^{2} \zeta_{2}, \zeta_{8}$

Andrew McLeod

Planar $\mathcal{N}=4$
Bootstrapping Amplitudes

- Coaction and Symbol

The Function Space

- Physical Constraints
- Results

Novel Analytic
Properties and
Symmetries
Extended Steinmann
Cosmic Galois Symmetry
Cluster Algebras

The coaction principle at $(1,1,1)$

Planar $\mathcal{N}=4$ at
High Loops and
Large Multiplicity
Andrew McLeod

Weight	Multiple Zeta Values	Appear in $\left.\mathcal{H}^{\text {hex }}\right\|_{u, v, w \rightarrow 1}$
0	1	1
1		
2	ζ_{2}	ζ_{2}
$\checkmark 3$	ζ_{3}	
4	ζ_{4}	ζ_{4}
$\checkmark 5$	∂_{5}	$5 \zeta_{5}-2 \zeta_{3} \zeta_{2}$
$\checkmark 6$	$\zeta_{3} \zeta_{2}$	ζ_{6}
$\checkmark \checkmark 7$	$\zeta_{3}^{2}, \zeta_{6} \frac{1}{2} \partial_{3}$	$\zeta_{7}, \zeta_{5} \zeta_{2}, \zeta_{3} \zeta_{4}$
8	$\zeta_{5} \zeta_{3}, \zeta_{5,3}, \zeta_{8}, \zeta_{3}^{2} \zeta_{2}$	$\zeta_{5,3} \zeta_{2}-7 \zeta_{7}+3 \zeta_{5} \zeta_{4} \zeta_{3}-\zeta_{3}^{2} \zeta_{2}, \zeta_{8}$

Planar $\mathcal{N}=4$
Bootstrapping Amplitudes

- Coaction and Symbol

The Function Space
Physical Constraints
Results
Novel Analytic
Properties and
Symmetries
Extended Steinmann
Cosmic Galois Symmetry
Cluster Algebras

The coaction principle at $(1,1,1)$

Weight	Multiple Zeta Values	Appear in $\left.\mathcal{H}^{\text {hex }}\right\|_{u, v, w \rightarrow 1}$
0	1	1
1		
2	ζ_{2}	ζ_{2}
$\checkmark 3$	ζ_{3}	
4	ζ_{4}	ζ_{4}
$\checkmark 5$	$\zeta_{5}, \zeta_{3} \zeta_{2}$	$5 \zeta_{5}-2 \zeta_{3} \zeta_{2}$
$\checkmark 6$	ζ_{3}^{2}, ζ_{6}	ζ_{6}
$\checkmark \checkmark 7$	$\zeta_{7}, \zeta_{5} \zeta_{2}, \zeta_{3} \zeta_{4}$	$\zeta_{5} \zeta_{2}-7 \zeta_{7}+3 \zeta_{3} \zeta_{4}$
$\checkmark \checkmark 8$	$\zeta_{5} \zeta_{3}, \zeta_{5,3}, \zeta_{8}, \zeta_{3}^{2} \zeta_{2}$	$\zeta_{5,3}+5 \zeta_{5} \zeta_{3}-\zeta_{3}^{2} \zeta_{2}, \zeta_{8}$

- Unexplained dropouts were required at low weights for the coaction principle to be nontrivial
- Each zeta value that drops out seeds an infinite tower of constraints at higher loop orders, which we find are satisfied

The Coaction Principle

Planar $\mathcal{N}=4$ at
High Loops and
Large Multiplicity
Andrew McLeod
Everywhere we have checked, the coaction principle is respected

Bootstrapping
Amplitudes
Coaction and Symbol
The Function Space
Physical Constraints
Results
Novel Analytic
Properties and
Symmetries
Extended Steinmann
Cosmic Galois Symmetry
Cluster Algebras
Conclusion

The Coaction Principle

Andrew McLeod
Everywhere we have checked, the coaction principle is respected
Coaction principles of this type have been observed in other settings

- Tree-level string theory amplitudes [Schlotterer, Stieberger]
- Feynman graphs in ϕ^{4} theory [Panzer, Schnetz]
- Physical Constraints
- Results
- The electron anomalous magnetic moment [Schnetz]

Novel Analytic
Properties and
Symmetries

- Extended Steinmann
- Cosmic Galois Symmetry
- Cluster Algebras

Conclusion

The Coaction Principle

High Loops and
Large Multiplicity
Andrew McLeod
Everywhere we have checked, the coaction principle is respected

Coaction principles of this type have been observed in other settings

- Tree-level string theory amplitudes [Schlotterer, Stieberger]
- Feynman graphs in ϕ^{4} theory [Panzer, Schnetz]
- The electron anomalous magnetic moment [Schnetz]

It is tempting to believe these coaction principles point to some symmetry respected by quantum field theory more generally

- A coaction can also be defined on the more complicated types of functions that appear in scattering amplitudes
[Brown] [Broedel, Duhr, Dulat, Penante, Tancredi]
- However, things become more complicated when one loses purity and uniform transcendental weight...

Cluster Algebras and Planar $\mathcal{N}=4$

Recall from Mark's lectures that the kinematics of planar $\mathcal{N}=4$ can be mapped to the $\operatorname{Grassmannian~} \operatorname{Gr}(4, n)$, in the guise of n momentum twistors that are combined into a $4 \times n$ matrix
$\operatorname{Gr}(4, n)$ has an associated 'cluster algebra' that appears in planar $\mathcal{N}=4$ supersymmetric Yang-Mills theory in a number of striking ways

- This cluster algebra arises naturally in studying the positivity properties of $\mathrm{Gr}_{+}(4, n)$
- Loosely, cluster algebras are collections of 'cluster coordinates' that come grouped into 'clusters', any of which can be used to parametrize n-particle kinematics
- Operationally, cluster algebras can be generated from an initial seed cluster via a process called mutation

Cluster-Algebraic Structure

High Loops and
Large Multiplicity
Andrew McLeod

Planar $\mathcal{N}=4$

- The symbol alphabets for $n \in\{6,7\}$ and all two-loop MHV amplitudes in this theory are given by cluster coordinates on the Grassmannian $\operatorname{Gr}(4, n)$ [Golden, Goncharov, Spradlin, Vergu, Volovich]
- The extended Steinmann relations seem to be equivalent to requiring that all symbol entries in the amplitude are 'cluster adjacent' [Drummond, Foster, Gurdogan]
- The 'non-classical part' of all two-loop MHV amplitudes can be expressed in terms of functions defined on their A_{2} and A_{3} subalgebras [Golden, Paulos, Spradlin, Volovich]

Bootstrapping Amplitudes

Coaction and Symbol
The Function Space
Physical Constraints

- Results

Novel Analytic
Properties and
Symmetries

- Extended Steinmann

Cosmic Galois Symmetry

- Cluster Algebras
- While cluster algebras cannot generate algebraic symbol letters, there are hints that this type of algebraic structure generalizes in the form of tropical Grassmannians [Drummond, Foster, Gurdogan, Kalousios] [Arkani-Hamed, Lam, Spradlin] [Henke, Papathanasiou]

Conclusions

Planar $\mathcal{N}=4$ at
High Loops and
Large Multiplicity
Andrew McLeod

- A large amount of information is encoded in the formal structure of amplitudes, much of which is still not well understood
- This structure can be leveraged to bootstrap amplitudes that are otherwise well beyond our technical reach
- A great deal of interesting work in planar $\mathcal{N}=4$ is still ongoing:
- The two-loop NMHV eight-point amplitude recently calculated using the \bar{Q} equation [Zhang, Li, He]
- Recent progress has been made on methods for identifying algebraic symbol letters [Mago, Schreiber, Spradlin, Volovich] [He, Li]
- We are starting to better understand the types of functions that appear in this theory beyond polylogarithms
- Bootstrap approaches are also being applied in more realistic theories such as QCD [Li, Zhu] [Almelid, Duhr, Gardi, McLeod, White]

Planar $\mathcal{N}=4$ at
High Loops and
Large Multiplicity

Andrew McLeod

Planar $\mathcal{N}=4$

Bootstrapping Amplitudes

Coaction and Symbol
The Function Space
Physical Constraints
Results
Thanks!
Novel Analytic
Properties and
Symmetries
Extended Steinmann
Cosmic Galois Symmetry
Cluster Algebras
Conclusion

