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Motivation

◦ Computing scattering amplitude using traditional methods is
hard, even in ‘simpler’ theories like planar N = 4
supersymmetric Yang-Mills theory and scalar φ4 theory

◦ Typically, the computational bottleneck is evaluating the
integrals that arise in Feynman diagrams at higher loops

Can we bypass the evaluation of these integrals, and just look for
a function that has all the expected properties of the amplitude?

◦ This is the ‘bootstrap’ philosophy (described also in Claude’s
lectures)

◦ Has proven highly successful in planar N = 4
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Status of Loops and Legs in Planar N = 4

Legs

∞
...
8
7
6
5
4

1 2 3 4 5 6 7 . . . ∞
Loops

•

MHV

NMHV

[Bern, Caron-Huot, Del Duca, Dixon, Drummond, Duhr, Foster, Golden, Gürdoğan, He, Henn, von Hippel,
Kosower, Li, AJM, Papathanasiou, Pennington, Roiban, Smirnov, Spradlin, Vergu, Volovich, Zhang, . . . ]

◦ The last amplitude to be calculated by direct integration was at
two loops and six points [Del Duca, Duhr, Smirnov]

◦ The four- and five-particle amplitudes are given by the BDS
ansatz to all orders [Bern, Dixon, Smirnov]

◦ The one- and two-loop amplitudes can be computed using
generalized unitarity and constraints from Dual Conformal
Symmetry, respectively [Bern, Dixon, Dunbar, Kosower] [Caron-Huot, He]

This talk will focus on the techniques used to calculate amplitudes for
n ≥ 6 and L ≥ 3

◦ Unexpected and striking structure exists in the the direction of
both higher loops and legs

• Extended Steinmann Relations
• Cosmic Galois Coaction Principle
• Cluster-Algebraic Structure

...
...
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Planar N = 4 supersymmetric
Yang-Mills theory
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Scattering Amplitudes

A number of nice simplifications occur in planar N = 4 SYM

SUSY Ward identities ⇒ relate amplitudes with
different helicity structure

Conformal symmetry ⇒ no running of the coupling
or UV divergences

Planar limit ⇒ trivial color structure

AdS/CFT ⇒ dual to string theory
on AdS5 × S5

Much of what we learn here also augments our understanding of QCD
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Planar Limit and Dual Conformal Symmetry

An additional simplification occurs in the planar limit,
where Nc →∞ for fixed g2 = g2

YMNc/(16π2)

◦ The suppression of non-planar graphs allows us to endow the
scattering particles with an ordering

Anon-planar
n =

∑
σ∈Sn

Tr [T aσ1 · · · T aσn ]An (pµσ1 , . . . , p
νµ
σn) +O

(
1

N2
c

)

◦ This ordering gives rise to a natural set of dual coordinates
(see also Mark’s second lecture)

pµi = xµi − x
µ
i+1

◦ The coordinates xµi can be thought of
as labelling the cusps of a light-like
polygonal Wilson loop in the dual
theory, which respects a superconformal
symmetry in this dual space
[Alday, Maldacena] [Drummond, Korchemsky, Sokatchev]

◦ This strongly constrains the kinematic
dependence of the amplitude

p1

p2
p3

p4

p5x1

x2

x3

x4

x5
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Helicity and Infrared Structure

◦ The infrared-divergent part of these amplitudes is accounted for at
all particle multiplicity by the ‘BDS ansatz’ [Bern, Dixon, Smirnov]

◦ In the dual theory, the BDS ansatz solves an anomalous conformal
Ward identity that determines the Wilson loop up to a function of
dual conformal invariants [Drummond, Henn, Korchemsky, Sokatchev]

◦ Dual conformal invariants can first be formed in six-particle
kinematics, so the four- and five-particle amplitudes are entirely
described by the BDS ansatz

A4 = ABDS
4 A5 = ABDS

5

An =
∣∣∣ABDS

n︸ ︷︷ ︸
IR structure

× exp(Rn)×

helicity structure︷ ︸︸ ︷(
1 + PNMHV

n + PN2MHV
n + · · ·+ PMHV

n

)
︸ ︷︷ ︸

finite function of dual conformal invariants

◦ Thus, the problem of calculating the n-point amplitude is reduced

to the problem of calculating the DCI functions Rn and PNkMHV
n
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Dual Conformal Invariants

◦ In general, we can construct dual conformally invariant cross
ratios out of combinations of Mandelstam invariants

x2
ij ≡ (xi − xj)2 = (pi + pi+1 + · · ·+ pj−1)2 ≡ si,...,j−1

that remain invariant under the dual inversion generator

I(xαα̇i ) =
xαα̇i
x2
i

⇒ I(x2
ij) =

x2
ij

x2
ix

2
j

◦ For six particles, three dual conformal invariants can be formed

u =
x2

13x
2
46

x2
14x

2
36

=
s12s45

s123s345

v =
x2

24x
2
51

x2
25x

2
41

=
s23s56

s234s123

w =
x2

35x
2
62

x2
36x

2
52

=
s34s61

s345s234

x1

x2x3

x4

x5 x6
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Bootstrapping Amplitudes in Planar N = 4
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The Coaction and Symbol

Recall from Claude’s lectures that polylogarithms come equipped
with a coaction and symbol:

◦ The coaction maps polylogarithms to a tensor product of
lower-weight polylogarithms

Hw
∆−→

⊕
p+q=w

Hp ⊗Hπq

Example: ∆Lim(z) = 1⊗ Lim(z) +

m−1∑
k=0

Lim−k(z)⊗ logk z

k!

◦ If we iterate this map w − 1 times we will arrive at a function’s
symbol, in terms of which all identities reduce to familiar
logarithmic identities

Example: ∆1,...,1Lim(z) = − log(1− z)⊗ log z ⊗ · · · ⊗ log z

(note that one still has to contend with algebraic identities
between the symbol letters, which can be arbitrarily complicated)
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The Coaction and Symbol

◦ The derivative of a polylogarithm is entirely determined by the
∆w−1,1 component of its coproduct

Example: ∆m−1,1Lim(z) = Lim−1(z)⊗ log z

dLim(z) =
1

z
Lim−1(z)dz

◦ The location of branch cuts is determined by the ∆1,w−1

component of its coproduct (up to terms involving powers of iπ)

Example: ∆1,m−1Lim(z) = − log(1− z)⊗ logm−1 z

(m− 1)!

Disc	1
z
Lim(z) = −2πi

logm−1 z

(m− 1)!
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Building the Function Space

We specialize to the six-particle MHV amplitude for concreteness

Our first task is to build the space of functions we expect the
six-particle amplitude to be a member of

Three (well-motivated) assumptions about this amplitude:

(1) It is polylogarithmic to all loop orders

(2) It has uniform transcendental weight 2L at L loops

(3) Its symbol alphabet to all loop orders is

S ≡ {u, v, w, 1− u, 1− v, 1− w, yu, yv, yw}

where

yu =
1 + u− v − w −

√
(1− u− v − w)2 − 4uvw

1 + u− v − w +
√

(1− u− v − w)2 − 4uvw
,

yv = [yu]u→v→w→u , yw = [yu]u→w→v→u
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Building the Function Space

◦ Assumption (2) is consistent with all known polylogarithmic
amplitudes in this theory

◦ The symbol alphabet S can be ‘read off’ of the two-loop
amplitude, and is consistent with an all-loop analysis of the
Landau equations [Prlina, Spradlin, Stanojevic]

◦ ...most importantly, in conjunction with the physical
constraints described in a few slides, these assumptions give
rise to a unique amplitude that passes a number of
consistency checks (at least through seven loops)

So how do we construct this space of functions?
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Building the Function Space

Approach 1

Use a basis of G functions, whose definition we recall:

G(a1, . . . , ak; z) ≡
∫ z

0

dt

t− a1
G(a2, . . . , ak; t), G(0, . . . , 0︸ ︷︷ ︸

k

; z) ≡ logk z

k!

◦ For instance, in the {yu, yv, yw} variables the functions{
G~a(yu)

∣∣∣ai ∈ {0, 1}} ∪{G~a(yv)
∣∣∣ai ∈ {0, 1,

1

yu

}}
∪
{
G~a(yw)

∣∣∣ai ∈ {0, 1,
1

yu
,

1

yv
,

1

yuyv

}}
span the space of polylogarithms with the desired symbol
letters

◦ Drawback: this space of functions grows very quickly; at four
loops (weight eight) this gives rise to 1,675,553 functions!
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Building the Function Space

Approach 2

‘Build’ a space of functions that has the right analytic structure
out of coaction entries that make this structure manifest

◦ Constraints on the derivative of a function and the location
of its discontinuities can be imposed by allowing only specific
symbol letters to appear in the first and last entry

◦ Drawback: a generic linear combinations of coaction terms
does not necessarily correspond to a genuine function; in
particular, partial derivatives must commute

Example:
∂

∂x

∂

∂y
(log x⊗ log y) =

1

xy

6= ∂

∂y

∂

∂x
(log x⊗ log y) = 0
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Building the Function Space

Approach 2

◦ We can construct the relevant space of functions iteratively,
by considering an ansatz of ∆m−1,1 coproduct entries∑

i,j

cjif
(m−1)
j ⊗ log si

where

• cji is a free rational coefficient
• f

(m−1)
j is the jth weight m−1 function in our basis

• si is the ith symbol letter in S

and imposing the constraint that partial derivatives commute

◦ To satisfy these constraints we solve for some of the cji in
terms of the others

◦ This generates the space of ‘integrable’ weight m functions



Planar N = 4 at
High Loops and

Large Multiplicity

Andrew McLeod

Planar N = 4

Bootstrapping
Amplitudes

· Coaction and Symbol

· The Function Space

· Physical Constraints

· Results

Novel Analytic
Properties and
Symmetries

· Extended Steinmann

· Cosmic Galois Symmetry

· Cluster Algebras

Conclusion

Imposing Physical Constraints

Once we have built a basis of weight 2L functions, we can now
constrain a general ansatz of these functions to have the properties
expected of the amplitude

◦ Analytic Constraints

◦ Symmetries

◦ Special kinematic limits
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Analytic Constraints

Physical Branch Cuts

◦ Massless scattering amplitudes in the Euclidean region can only
have branch cuts where one of the Mandelstam invariants vanishes

◦ In six-particle kinematics, this implies that the first symbol entries
of the amplitude can only be u, v, and w

∆1,w−1F = log u⊗ uF + log v ⊗ vF + logw ⊗ wF

Steinmann Relations

◦ Additional restrictions come from the Steinmann relations, which
tell us that amplitudes cannot have double discontinuities in
partially overlapping channels [Steinmann] [Cahill, Stapp]

1

2

3 4

5

6

vs.

1

2

3 4

5

6

Discs234(Discs345(An)) = 0

◦ However, to see this one must normalize the amplitude
appropriately. . .
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Shifted Infrared Subtraction

◦ The BDS ansatz exponentiates the one-loop amplitude, leading to
products of Steinmann functions starting at two loops

Discsi−1,i,i+1

[
A(1)

6

]
6= 0

⇓

Discs234

[
Discs345

[(
A(1)

6

)2
]]
6= 0

◦ Therefore, we instead normalize by a ‘BDS-like’ ansatz that
depends on only two-particle Mandelstam invariants

AMHV
n = ABDS

n × exp(Rn)→ ρ×ABDS-like
n × EMHV

n

where a transcendental constant ρ can also appear

◦ This only scrambles the Steinmann relations involving two-particle
invariants, which are obfuscated in massless kinematics anyways
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Analytic Constraints

◦ These analytic properties can be imposed directly on our space of
functions in the first and second entry of the symbol, at the outset
of our iterative construction

◦ This greatly decreases the number of functions that are generated
by this procedure. For instance, at four loops:

Imposed Constraints Number of Functions

Generalized polylogarithms with
the correct kinematic dependence 1,675,553

That have branch cuts
only in physical channels 6,916

That satisfy the
Steinmann relations 839
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Symmetries

Bose Symmetry

◦ The MHV amplitude is invariant under the dihedral group,
representing permutations of the external particles that are
consistent with the planar embedding

◦ In the {u, v, w} variables, this corresponds to an S3 permutation
symmetry

AMHV
6 (u, v, w) = AMHV

6 (v, w, u)

AMHV
6 (u, v, w) = AMHV

6 (u,w, v)

Q̄ Equation

◦ The derivative of the amplitude is also constrained by the action
of the dual superconformal generator Q̄ [Caron-Huot, He]

◦ In the MHV sector, this constraint implies that the last entry of
the symbol must be drawn from the set{

1− u
u

,
1− v
v

,
1− w
w

, yu, yv, yw

}
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Kinematic Limits as Boundary Data

We can then match a general ansatz of such polylogarithms to the
amplitude’s known behavior in various kinematic limits

◦ Collinear Limits

◦ Multi-Regge Limits

◦ Near-Collinear Operator Product Expansion

◦ Multi-Particle Factorization

◦ Self-Crossing Limit
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Collinear Limits

◦ The BDS ansatz smoothly limits to itself in collinear limits:

ABDS
n

collinear−−−−→ ABDS
n−1

◦ This implies that the same must be true of the remainder function:

Rn
collinear−−−−→ Rn−1

◦ In six-particle kinematics, the limit in which two external momenta
become collinear corresponds to sending one of the cross ratios to
zero and the sum of the remaining two cross ratios to one:

v → 1− u, w → 0

◦ Thus, we require that

R6

v→1−u
w→0−−−−−→ 0

which can be easily translated into a constraint on the BDS-like
normalized amplitude



Planar N = 4 at
High Loops and

Large Multiplicity

Andrew McLeod

Planar N = 4

Bootstrapping
Amplitudes

· Coaction and Symbol

· The Function Space

· Physical Constraints

· Results

Novel Analytic
Properties and
Symmetries

· Extended Steinmann

· Cosmic Galois Symmetry

· Cluster Algebras

Conclusion

Multi-Regge Kinematics

◦ Describes 2→ 4 and 3→ 3 with large separations in rapidity

s12 � s345, s456 � s34, s45, s56 � s23, s61, s234

◦ In six-particle kinematics, this corresponds to the limit

v, w → 0, u→ 1− δ, δ � 1

where we have fixed the ratios

v

1− u =
1

(1− z)(1− z̄) ,
w

1− u =
zz̄

(1− z)(1− z̄)

◦ To compare to physical predictions, we analytically continue to
the Minkowski region u→ e−2πi|u| where we find

R
(L)
6

MRK−→ 2πi

L−1∑
n=0

logn(1− u)
[
g

(L)
n (z, z̄) + 2πi h

(L)
n (z, z̄)

]
◦ These MRK limits can be compared to a pair of factorization

relations in Fourier-Mellin transformed space [Fadin, Lipatov]
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Current Results

These constraints have been used to uniquely determine the six-particle
amplitude through seven (six) loops in the MHV (NMHV) sector

Constraint L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

1. Hhex 6 27 105 372 1214 3692

2. Bose Symmetry (2,4) (7,16) (22,56) (66,190) (197,602) (567,1795)

3. Q̄ Symmetry (1,1) (4,3) (11,6) (30,16) (85,39) (236,102)

4. Collinear (0,0) (0,0) (0, 0) (0, 2) (1,5) (6,17)

5. LL MRK (0,0) (0,0) (0,0) (0,0) (0,0) (1,2)

6. NLL MRK (0,0) (0,0) (0,0) (0,0) (0,0) (1,0)

7. NNLL MRK (0,0) (0,0) (0,0) (0,0) (0,0) (1,0)

8. N3LL MRK (0,0) (0,0) (0,0) (0,0) (0,0) (1,0)

9. Full MRK (0,0) (0,0) (0,0) (0,0) (0,0) (1,0)

10. T 1 OPE (0,0) (0,0) (0,0) (0,0) (0,0) (1,0)

11. T 2 OPE (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
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Current Results

◦ Through five loops, collinear factorization and multi-Regge
factorization are sufficient to determine the amplitude; all other
limits provide cross-checks

◦ At six loops and seven loops, the near-collinear OPE is needed to
fix a single residual ambiguity in the MHV sector

◦ The barrier to going to higher loops is “just” computational

◦ A similar bootstrap program has also been carried out in
seven-particle kinematics through four loops

◦ . . . however, note that the space of ‘Hexagon functions’ Hhex that
was used as a starting point in this table has a smaller dimension
at four loops than reported on an earlier slide

◦ This more restricted space of functions was built using novel
constraints, which we now describe
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Novel Analytic Properties and Symmetries
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The Extended Steinmann Relations

◦ The Steinmann relations correspond to the constraint that certain
sequences of letters never appear in the first two entries

log
(
u
vw

)
⊗ log

(
w
uv

)
⊗ · · · log

(
u
vw

)
⊗ log

(
v
uw

)
⊗ · · ·

u

vw
∼ s2

234,
v

wu
∼ s2

345,
w

uv
∼ s2

123

◦ However, the symbols of BDS-like normalized amplitudes exhibit a
more surprising property: they obey the Steinmann relations in all
adjacent entries of the symbol
[Caron-Huot, Dixon, von Hippel, AJM, Papathanasiou]

· · · ⊗log
(
u
vw

)
⊗ log

(
w
uv

)
⊗ · · · · · · ⊗log

(
u
vw

)
⊗ log

(
v
uw

)
⊗ · · ·
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Cosmic Galois Theory

However, we know that the symbol only captures some of the
information encoded by the coaction

To capture more of this information, we study the ‘cosmic Galois
group’, which is dual to the coaction on generalized polylogarithms

◦ The cosmic Galois group extends the classical Galois theory to the
study of periods—integrals of rational functions over rational
domains

◦ Thus, we can explore the stability of amplitudes and integrals
under the action of this Galois group

In science you sometimes have to find a word that strikes, such
as “catastrophe”, “fractal”, or “noncommutative geometry”.
They are words which do not express a precise definition but
a program worthy of being developed.

- Pierre Cartier
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The Coaction Principle

Specifically, we ask: does the space of Steinmann hexagon functions
Hhex satisfy a ‘coaction principle’? [Schnetz] [Brown]

∆Hhex ⊂ Hhex ⊗Hπ

◦ This can be formulated in terms of the action of the cosmic Galois
group C as

C ×Hhex ?−−→ Hhex

◦ Part of the content of this statement is that the coaction
preserves the locations of branch cuts (which we already know is
the case from general physical principles)

◦ However, more general transcendental constants also appear in
this space (multiple zeta values, alternating sums,. . . )

◦ These constants exhibit nontrivial structure under the coaction,
which is not a priori constrained by physical principles
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The coaction on MZVs

◦ For instance, we can consider our function space at (u, v, w) =
(1, 1, 1), where everything evaluates to multiple zeta values

◦ There exist natural derivations ∂2m+1 in the Lie algebra of the
cosmic Galois group that act on the zeta values as

∂2m+1ζ2n+1 = δm,n

and that satisfy the Leibniz rule—for example,

∂3(ζ7ζ
2
3 ) = 2ζ7ζ3

◦ These operators act nontrivially on the multiple zeta values, for
instance:

∂3(ζ5,3) = 0, ∂5(ζ5,3) = −5ζ3

◦ There is no ∂2, as the even zeta values are semi-simple elements
of the coaction
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The coaction principle at (1,1,1)

Weight Multiple Zeta Values Appear in Hhex
∣∣
u,v,w→1

0 1 1

1

2 ζ2 ζ2

3 ζ3

4 ζ4 ζ4

5 ζ5, ζ3ζ2 5ζ5 − 2ζ3ζ2

6 ζ2
3 , ζ6 ζ6

7 ζ7, ζ5ζ2, ζ3ζ4 ζ5ζ2 − 7ζ7 + 3ζ3ζ4

8 ζ5ζ3, ζ5,3, ζ8, ζ2
3ζ2 ζ5,3 + 5ζ5ζ3 − ζ2

3ζ2, ζ8
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∂5

∂3
1
2∂3

∂3(ζ5,3) = 0, ∂5(ζ5,3) = −5ζ3

⇓
∂3(ζ5,3 + 5ζ5ζ3 − ζ2

3ζ2) = 5ζ5 − 2ζ3ζ2

∂5(ζ5,3 + 5ζ5ζ3 − ζ2
3ζ2) = 0
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4 ζ4 ζ4
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X 6 ζ2
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XX 8 ζ5ζ3, ζ5,3, ζ8, ζ2
3ζ2 ζ5,3 + 5ζ5ζ3 − ζ2

3ζ2, ζ8

◦ Unexplained dropouts were required at low weights for the
coaction principle to be nontrivial

◦ Each zeta value that drops out seeds an infinite tower of
constraints at higher loop orders, which we find are satisfied
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The Coaction Principle

Everywhere we have checked, the coaction principle is respected

Coaction principles of this type have been observed in other settings

◦ Tree-level string theory amplitudes [Schlotterer, Stieberger]

◦ Feynman graphs in φ4 theory [Panzer, Schnetz]

◦ The electron anomalous magnetic moment [Schnetz]

It is tempting to believe these coaction principles point to some
symmetry respected by quantum field theory more generally

◦ A coaction can also be defined on the more complicated types of
functions that appear in scattering amplitudes
[Brown] [Broedel, Duhr, Dulat, Penante, Tancredi]

◦ However, things become more complicated when one loses purity
and uniform transcendental weight. . .
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Cluster Algebras and Planar N = 4

Recall from Mark’s lectures that the kinematics of planar N = 4 can be
mapped to the Grassmannian Gr(4, n), in the guise of n momentum
twistors that are combined into a 4× n matrix

Gr(4, n) has an associated ‘cluster algebra’ that appears in planar
N = 4 supersymmetric Yang-Mills theory in a number of striking ways

◦ This cluster algebra arises naturally in studying the positivity
properties of Gr+(4, n)

◦ Loosely, cluster algebras are collections of ‘cluster coordinates’
that come grouped into ‘clusters’, any of which can be used to
parametrize n-particle kinematics

◦ Operationally, cluster algebras can be generated from an initial
seed cluster via a process called mutation
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Cluster-Algebraic Structure

◦ The symbol alphabets for n ∈ {6, 7} and all two-loop MHV
amplitudes in this theory are given by cluster coordinates on the
Grassmannian Gr(4, n) [Golden, Goncharov, Spradlin, Vergu, Volovich]

◦ The extended Steinmann relations seem to be equivalent to
requiring that all symbol entries in the amplitude are ‘cluster
adjacent’ [Drummond, Foster, Gurdogan]

◦ The ‘non-classical part’ of all two-loop MHV amplitudes can be
expressed in terms of functions defined on their A2 and A3

subalgebras [Golden, Paulos, Spradlin, Volovich]

◦ While cluster algebras cannot generate algebraic symbol letters,
there are hints that this type of algebraic structure generalizes in
the form of tropical Grassmannians [Drummond, Foster, Gurdogan, Kalousios]

[Arkani-Hamed, Lam, Spradlin] [Henke, Papathanasiou]
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Conclusions

◦ A large amount of information is encoded in the formal structure
of amplitudes, much of which is still not well understood

◦ This structure can be leveraged to bootstrap amplitudes that are
otherwise well beyond our technical reach

◦ A great deal of interesting work in planar N = 4 is still ongoing:

• The two-loop NMHV eight-point amplitude recently
calculated using the Q̄ equation [Zhang, Li, He]

• Recent progress has been made on methods for identifying
algebraic symbol letters [Mago, Schreiber, Spradlin, Volovich] [He, Li]

• We are starting to better understand the types of functions
that appear in this theory beyond polylogarithms

...
...

...
...

◦ Bootstrap approaches are also being applied in more realistic
theories such as QCD [Li, Zhu] [Almelid, Duhr, Gardi, McLeod, White]
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Thanks!
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