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Consider a violent explosion in space

D

A bound system breaks apart into fragments.

This process emits gravitational waves

Detector D placed far away detects hµν ≡ (gµν − ηµν)/2

Examples: Explosion of supernova, binary black hole merger
etc.
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A more general situation: collision

A set of objects come together, interact strongly, and produce
another set of objects.

This will also produce gravitational waves.

A simple example: Bullet cluster

A supercluster of galaxies passing through another supercluster
of galaxies.
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In general, computing gravitational wave-form hµν produced
during such processes is complicated.

1. When the objects are close, they may undergo complicated,
non-gravitational interactions, as in the case of explosion of
supernova.

2. Gravity is non-linear

– even if the interactions were purely gravitational, e.g. in the
case of black hole merger, the analysis is complicated.
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However certain results involving S-matrix of quantum theory of
gravity, known as soft graviton theorem, suggest some exact
results for these classical problems.

The goal of these lectures is to explain the soft graviton
theorem, its derivation, and the kind of results we can get by
taking its classical limit.

We shall begin by giving a preview of some of the classical
results that will come out of this analysis.
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General case: Consider a scattering in space

A set of objects of four momenta p′1, · · ·p′m come together,
interact, and disperse as a set of other objects with four
momenta p1, · · ·pn.

p2
i ≡ −(p0

i )2 + ~p2
i = −m2

i , p′2i = −m′2i , i = 1,2, · · · ,

We shall choose the origin of space-time to be in the region
where the scattering event takes place

Detector D placed at a far way point ~x detects
hµν ≡ (gµν − ηµν)/2 around time t0:

t0 = R/c + correction, R ≡ |~x|

The correction is due to the gravitational drag on the
gravitational radiation. 6



Define retarded time:
u ≡ t− t0

Our focus will be on the late and early time tail of the radiation –
the value of hµν at D at large positive u and large negative u.

Define eµν via:

eµν = hµν −
1
2
ηµν η

ρσ hρσ ⇔ hµν = eµν −
1
2
ηµν η

ρσ eρσ

Up to gauge transformations and corrections of order R−2,

eµν = Aµν +
1
u

Bµν +O(u−2ln|u|), for large positive u

eµν =
1
u

Cµν +O(u−2ln|u|), for large negative u

Aµν ,Bµν ,Cµν are given solely by the momenta of the ingoing and
outgoing objects without requiring any knowledge of the details
of the scattering process. 7



Aµν =
2 G
R c3

[
−

n∑
i=1

pµi pνi
1

n.pi
+

m∑
i=1

p′µi p′νi
1

n.p′i

]
, R ≡ |~x|, n ≡ (1, ~x/R)

Bµν = − 4 G2

R c7

 n∑
i=1

n∑
j=1
j 6=i

pi.pj

{(pi.pj)2 −m2
i m2

j c4}3/2

{
3
2

m2
i m2

j c4 − (pi.pj)
2
}

×
pµi

n.pi
(n.pj pνi − n.pi pνj )

−
n∑

j=1

pj.n

{
n∑

i=1

1
pi.n

pµi pνi −
m∑

i=1

1
p′i .n

p′µi p′νi

}

Cµν=
4 G2

R c7

[
m∑

i=1

m∑
j=1
j 6=i

p′i .p
′
j

{(p′i .p′j)2 −m′2i m′2j c4}3/2

{
3
2

m′2i m′2j c4 − (p′i .p
′
j)

2
}

×
p′µi
n.p′i

(n.p′j p′νi − n.p′i p′νj )

]
.

8



eµν = Aµν +
1
u

Bµν +O(u−2ln|u|), for large positive u

eµν =
1
u

Cµν +O(u−2ln|u|), for large negative u

Aµν: memory term

– a permanent change in the state of the detector after the
passage of gravitational waves

Zeldovich, Polnarev; Braginsky, Grishchuk; Braginsky, Thorne; · · ·

– connected to the leading soft graviton theorem Strominger; · · ·

Bµν ,Cµν: tail terms

– connected to logarithmic terms in the subleading soft graviton
theorem Laddha, A.S.; Sahoo, A.S.
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1. The result is a statement in classical GR, even though it was
originally suggested by quantum soft graviton theorem.

Now we have a fully classical derivation. Saha, Sahoo, A.S.

2. Aµν ,Bµν ,Cµν can be expressed in terms of the momenta of
incoming and outgoing objects without knowing what forces
operated and how the objects moved during the scattering.

– consequence of soft graviton theorem

3. If a significant fraction of energy is carried away by radiation,
then the sum over i,j includes integration over outgoing flux of
radiation, regarded as a flux of massless particles.

4. The result matches explicit known results in special cases.
Peters; Ciafaloni, Colferai, Veneziano; Addazi, Bianchi, Veneziano
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5. Explosion can be regarded as a special case of scattering
when the initial state has just one object.

In this case Cµν vanishes and eµν takes the form:

eµν = Aµν +
1
u

Bµν +O(u−2ln|u|), for large positive u

eµν = 0, for large negative u
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6. For explosion, the contribution to Bµν vanishes unless there
are at least two massive objects in the final state

– result of cancellation between different terms

Bµν = −
4 G2

R c7


n∑

i=1

n∑
j=1
j 6=i

pi.pj

{(pi.pj)
2 − m2

i m2
j c4}3/2

{ 3

2
m2

i m2
j c4 − (pi.pj)

2
}

×
pµi
n.pi

(n.pj pνi − n.pi pνj )

−
n∑

j=1

pj.n


n∑

i=1

1

pi.n
pµi pνi −

m∑
i=1

1

p′i .n
p′µi p′νi




⇒ the coefficient of the 1/u tail vanishes for binary black hole
merger!

Final state contains one massive object (remnant black hole)
and a flux of massless particles (gravitational radiation).

In contrast, the coefficient of the 1/u term is non-zero for
supernova explosion, binary neutron star merger etc. 12



PLAN

1. Quantum soft graviton theorem and its derivation

2. Classical limit

3. Classical proof

4. Issues with infrared divergences in D=4

5. Resolution

Convention: ~ = 1, c = 1, 8πG = 1
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Quantum soft graviton
theorem
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What is soft graviton theorem?

Take a general coordinate invariant quantum theory of gravity
coupled to matter fields

Consider an S-matrix element involving

– arbitrary number N of external particles of finite momentum
p1, · · ·pN

– M external gravitons carrying small momentum k1, · · · kM.

Soft graviton theorem: Expansion of this amplitude in power
series in k1, · · · kM in terms of the amplitude without the low
energy (soft) gravitons.
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There are many explicit results.

1. General results at leading order in k Weinberg; . . .

2. For one soft graviton, there are general subleading results in
D=4 via BMS

Strominger; Strominger, Zhiboedov; Campiglia, Laddha; . . .

3. Results in specific theories in general dimensions
White; Cachazo, Strominger; Bern, Davies, Di Vecchia, Nohle; Elvang, Jones, Naculich; . . .

Klose, McLoughlin, Nandan, Plefka, Travaglini; Saha

Bianchi, Guerrieri; Di Vecchia, Marotta, Mojaza; . . .

Our goal: Study soft graviton amplitudes in generic quantum
theory of gravity, in generic number of dimensions, for arbitrary
mass and spin of external states
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Validity

1. For tree amplitudes our analysis will be valid in all dimensions

2. For loop amplitudes the results will be valid if we assume that
1PI vertices do not generate soft factors in the denominator

True by power counting for

– subleading order for D > 5

– subsubleading order for D > 6

D: number of non-compact space-time dimensions 17



For single soft gravitons we can argue that the unwanted terms
cancel in the sum over graphs and the results are also valid for
D=5,6

We expect a similar result to hold for multiple soft gravitons, but
this has not been proved.

In D=4 the S-matrix elements themselves are infrared divergent,
introducing additional subtleties. Bern, Davies, Nohle

In D = 4, our analysis will apply to only tree amplitudes, but our
results in D>4 will suggest how to modify the results in D=4.

A.S. arXiv:1702.03934, 1703.00024: Subleading single soft

A. Laddha, A.S., arXiv:1706.00759: Sub-subleading single soft

Subhroneel Chakrabarti, Sitender Kashyap, Biswajit Sahoo, A.S., Mritunjay Verma, arXiv:1707.06803;
subleading multiple soft
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Single soft graviton

We divide the Feynman diagrams into two classes

Γ(3) Γ
εi,pi pi + k

ε,k

ε1,p1

εi−1,pi−1

εN,pN
· ·

· ·

εi+1,pi+1

Γ: Full amputated Green’s function

Internal lines: Full renormalized propagators

ε,k: polarization, momentum of soft graviton

εi,pi: polarization, momentum of finite energy external particles.

pi,k counted with + sign if outgoing and − sign if ingoing 19



Γ(3) Γ
εi,pi pi + k

ε,k

ε1,p1

εi−1,pi−1

εN,pN
· ·

· ·

εi+1,pi+1

The internal line carrying momentum pi + k has denominator
factor

{(pi + k)2 + m2}−1 = (2pi · k)−1 if m = mi

using p2
i + m2

i = 0, k2 = 0.

⇒ this starts contributing at the leading order.
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Second class of diagrams

ε1,p1

ε2,p2 ·
·
εN,pN

ε,k

Γ̃

Γ̃: Amputated amplitudes in which the external soft graviton
does not get attached to an external line

– has no pole as k→ 0

⇒ the contribution from this diagram begins at the subleading
order. 21



Strategy for computation

1. Consider the gauge invariant one particle irreducible (1PI)
effective action of the theory

2. Expand the action in powers of all fields, including the metric
fluctuations, around the extremum of the action

3. Add manifestly Lorentz invariant gauge fixing terms.

4. This action is used to compute vertices and propagators of
finite energy external states but not of soft external gravitons.
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5. To calculate the coupling of the soft graviton Sµν to the rest of
the fields, we covariantize the gauge fixed action.

a. Replace the background metric ηµν by ηµν + 2 Sµν

b. Replace all derivatives by covariant derivatives computed
with the metric ηµν + 2 Sµν

This misses terms involving Riemann tensor computed from the
metric ηµν + 2 Sµν but that contains two derivatives and hence is
sub-subleading.
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1. We choose

Sµν = εµνeik·x, εµν = ενµ, εµµ = kµεµν = 0

All indices raised and lowered by η.

2. All fields representing finite energy external states are taken
to carry tangent space Lorentz indices

– allows us to give uniform treatment to fermions and bosons.

3. To first order in Sµν , we take the vielbeins to be

e a
µ = δ a

µ + S a
µ , E µ

a = δ µa − S µ
a , gµν = ηµν − 2 Sµν
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{φα}: set of all the fields in the theory with α’s including Lorentz
indices.

i(Σab) βα : Infinitesimal Lorentz transformation matrix

Covariantization: Acting on a field φα:

∂a1 · · · ∂an ⇒ E µ1
a1 · · ·E

µn
an Dµ1 · · ·Dµn , E µ

a ≡ (δ µa − S µ
a )

Dµφα = ∂µφα −
i
2
ωab
µ (Σab) γα φγ

D(µDν)φα = ∂µ∂νφα − iωab
(µ (Σab) γα ∂ν)φγ −

i
2
∂(µω

ab
ν) (Σab) γα φγ +

{
ρ

µ ν

}
∂ρφα

etc.

ωab
µ = ∂bS a

µ − ∂aS b
µ , Sµν = εµνeik·x{

ρ

µ ν

}
=

1
2
[
∂µ S ρ

ν + ∂ν S ρ
µ − ∂ρ Sµν

]
25



Consider a Lorentz invariant functional∫
dDp1 · · ·dDpN φα1 (p1) · · ·φαN (pN)

δ(D)(p1 + · · ·pN) Fα1···αN (p1, . . .pN)

Covariantization produces an additional term∫
dDp1 · · ·dDpN φα1 (p1) · · ·φαN (pN) δ(D)(p1 + · · ·pN + k)

N∑
i=1

[
−δ αi

βi
ε νµ piν

∂

∂piµ
− i

2
(kbε a

µ − kaε b
µ )(Σab) αi

βi

∂

∂piµ

−1
2
δ αi
βi

{
kµε ρν + kνε ρµ − kρεµν

}
piρ

∂2

∂piµ∂piν

]
Fα1···αi−1βiαi+1···αN (p1, . . . ,pN) +O(kµkν) .
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After some algebra, this can be rewritten as∫
dDp1 · · ·dDpN φα1 (p1) · · ·φαN (pN)

N∑
i=1

[
−δ αi

βi
ε νµ piν

∂

∂piµ
− i

2
(kbε a

µ − kaε b
µ )(Σab) αi

βi

∂

∂piµ

−1
2
δ αi
βi

{
kµε ρν + kνε ρµ − kρεµν

}
piρ

∂2

∂piµ∂piν

]
{

Fα1···αi−1βiαi+1···αN (p1, . . . ,pN) δ(D)(p1 + · · ·pN)
}

+O(kµkν) .
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Now consider

ε1,p1

ε2,p2 ·
·
εN,pN

ε,k

Γ̃

1. Take the amplitude without soft graviton.

ε1,p1

ε2,p2 ·
·
εN,pN

Γ

2. Covariantize it to order kµ 28



Denote the amplitude without the soft graviton by

ε1,α1 (p1) . . . εN,αN (pN) Γα1...αN (p1, . . . ,pN)

αi: tangent space tensor / spinor indices labelling all the fields
of the theory

Γα1···αN includes the δ(D)(p1 + · · ·pN) factor.

Then the result for Γ̃ is
N∑

i=1

[
−δ αi

βi
ε νµ piν

∂

∂piµ
− i kbε a

µ (Σab) αi
βi

∂

∂piµ

−1
2
δ αi
βi

{
kµε ρν + kνε ρµ − kρεµν

}
piρ

∂2

∂piµ∂piν

]
Γα1···αi−1βiαi+1···αN (p1, . . . ,pN) +O(kµkν) .
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Next consider

Γ(3) Γ
εi,pi pi + k

ε,k

ε1,p1

εi−1,pi−1

εN,pN
· ·

· ·

εi+1,pi+1

Need to focus on the three point coupling computed from the 1PI
action.

Begin with two point function without the soft graviton and
covariantize it to order kµkν .
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S(2) =
1
2

∫
dDq1

(2π)D
dDq2

(2π)D φα(q1)Kαβ(q2)φβ(q2) (2π)Dδ(D)(q1 + q2)

{φα}: set of all the fields

Kαβ(q): Kinetic operator, chosen to satisfy

Kαβ(q) = Kβα(−q)

For grassmann odd fields the sign is opposite but the final result
is not affected.

Covariantization⇒ coupling of φα to soft graviton

S(3) =
1
2

∫
dDq1

(2π)D
dDq2

(2π)D (2π)Dδ(D)(q1 + q2 + k)

×φα(q1)

[
−εµνqν2

∂

∂q2µ
Kαβ(q2) + i ka εbµ

∂

∂q2µ
Kαγ(q2)

(
Σab

) β

γ

−1
2
{

kµε ρν + kνε ρµ − kρεµν
}

q2ρ
∂2Kαβ(q2)

∂q2µ∂q2ν

]
φβ(q2) +O(kµkν)

– determines the coupling of the soft graviton to the finite
energy particles 31



Γ(3)αβ(ε,k; p,−p− k)

=
i
2

[
− εµν(p + k)ν

∂

∂pµ
Kαβ(−p− k)− εµνpν

∂

∂pµ
Kβα(p)

− i
2

(ka εbµ − kb εaµ)
∂

∂pµ
Kαγ(−p− k)

(
Σab

) β

γ

+
i
2

(ka εbµ − kb εaµ)
∂

∂pµ
Kβγ(p)

(
Σab

) α

γ

−1
2
∂2Kαβ(−p− k)

∂pµ∂pν
(−pρ − kρ)

(
kµε ρν + kνε ρµ − kρεµν

)
−1

2
∂2Kβα(p)

∂pµ∂pν
pρ
(
kµε ρν + kνε ρµ − kρεµν

)
+ O(kµkν)

]

Note: This is determined in terms of Kαβ .
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We also need the propagator of φα carrying momentum q

Define N j
αβ(q) ≡ i (q2 + m2

j )K−1
αβ(q) (fixed j)

mj: mass of the j-th external particle.

Nj(q) has no pole at q2 + m2
j = 0.

The propagator of the particle carrying momentum pj + k

iK−1
αβ(pj + k) ≡ (2pj · k)−1N j

αβ(pj + k)

Note: The same propagator is expressed differently for different
external states to make the pole structure manifest.
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Γ(3) Γ
εi,pi pi + k

ε,k

ε1,p1

εi−1,pi−1

εN,pN
· ·

· ·

εi+1,pi+1

Once we compute the Feynman diagram with these Feynman
rules, we find that all dependence on Kαβ cancels, and we get a
simple expression to subleading order in expansion in the soft
momentum.

Need to use

– on-shell condition: εiαKαβ = 0

– Lorentz invariance of Kαβ under simultaneous Lorentz
transformation of α, β and momenta. 34



Final result for the soft graviton amplitude to subleading order:

N∏
j=1

εj,αj (pj)
[
S(0)Γα1...αN +

{
S(1)Γ

}α1...αN
]

S(0) ≡
N∑

i=1

(pi · k)−1 εµν pµi pνi

{
S(1)Γ

}α1...αN

=
N∑

i=1

(pi · k)−1 εµν pµi kρ
(

pνi
∂

∂piρ
− pρi

∂

∂piν

)
Γα1···αN

− i
N∑

i=1

(pi · k)−1 εµb pµi ka (Σab) αi
γ Γα1···αi−1γαi+1···αN

This is the subleading soft graviton theorem

– agrees with all known results in field theory / string theory 35



This analysis can be extended to subsubleading order but we
shall not discuss this

– has non-universal terms due to possible coupling of the soft
graviton via Riemann tensor.
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Multiple soft gravitons

Naive guess: To subleading order,

N∏
j=1

εj,αj (pj)
[{

S(0)(ε1,k1) + S(1)(ε1,k1)
}
· · ·

· · ·
{

S(0)(εM,kM) + S(1)(εM,kM)
}

Γ
]α1···αN

Problem: S(0) and S(1) do not commute.

This expression is not symmetric under the exchange of the soft
gravitons.

We have to do the analysis afresh.
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The procedure is identical, except that while constructing the
soft graviton coupling via covariantization we need to include
higher powers of the soft graviton field Sµν .

For computations up to subleading order, we need to keep terms
up to two powers of Sµν in the covariantization of the kinetic
operator.

– leads to a four point interaction vertex

p

α

−p− k1 − k2

β
Γ(4)

k1 ε1 k2 ε2

38



The other new vertex is three point coupling of soft gravitons.

V(3)

µ, ν −k1 − k2

ε1

k1
ε2

k2

We need this to leading order in soft momenta

– can be obtained by expanding the Einstein-Hilbert action
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Result for M soft gravitons and N finite energy particles
Chakrabarti, Kashyap, Sahoo, A.S, Verma{

N∏
i=1

εi,αi (pi)

} [{
M∏

r=1

S(0)
r

}
Γα1···αN +

M∑
s=1

{
M∏

r=1
r6=s

S(0)
r

} [
S(1)

s Γ
]α1···αN

+
M∑

r,u=1
r<u

{
M∏

s=1
s 6=r,u

S(0)
s

} {
N∑

j=1

{pj · (kr + ku)}−1 M(pj; εr,kr, εu,ku)

}
Γα1···αN

]

S(0) ≡
N∑

i=1

(pi · k)−1
εµν pµi pνi

{
S(1)Γ

}α1...αN =
N∑

i=1

(pi · k)−1
εµν pµi kρ

(
pνi

∂

∂piρ
− pρi

∂

∂piν

)
Γα1···αN

− i
N∑

i=1

(pi · k)−1
εµb pµi ka (Σab)

αi
γ Γ

α1···αi−1γαi+1···αN

M: ‘contact term’
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M(pi; ε1,k1, ε2,k2)

= (pi · k1)−1(pi · k2)−1

{
− k1 · k2 pi · ε1 · pi pi · ε2 · pi

+ 2 pi · k2 pi · ε1 · pi pi · ε2 · k1 + 2 pi · k1 pi · ε2 · pi pi · ε1 · k2

−2 pi · k1 pi · k2 pi · ε1 · ε2 · pi

}

+ (k1 · k2)−1

{
− (k2 · ε1 · ε2 · pi)(k2 · pi)− (k1 · ε2 · ε1 · pi)(k1 · pi)

+ (k2 · ε1 · ε2 · pi)(k1 · pi) + (k1 · ε2 · ε1 · pi)(k2 · pi)

−εγδ1 ε2γδ(k1 · pi)(k2 · pi)− 2(pi · ε1 · k2)(pi · ε2 · k1)

+(pi · ε2 · pi)(k2 · ε1 · k2) + (pi · ε1 · pi)(k1 · ε2 · k1)

}
,

– agrees with results for two soft gravitons in specific theories
Klose, McLoughlin, Nandan, Plefka, Travaglini; Saha
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Classical limit

42



We take the external momenta {pi} to be large compared to the
Planck mass.

S(0) ≡
N∑

i=1

(pi · k)−1 εµν pµi pνi

is a large number.

Consider the leading amplitude for M soft gravitons

Amplitude:
{∏M

r=1 S(0)(εr,kr)
}

Γ

Γ: amplitude without soft graviton

Laddha, A.S., arXiv:1801.07719
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Probability of producing M soft gravitons of

• polarization ε,

• energy between ω and ω(1 + δ)

• within a solid angle Ω around a unit vector n̂

|Γ|2 AM/M! ,

A ≡ |S(0)(ε,k)|2 1
(2π)D−1

1
2ω

ωD−2 ω δΩ

≡ 1
2DπD−1 |S

(0)(ε,k)|2ωD−2 Ω δ .

k = ω(1, n̂)

Note: In the classical limit, A is large.
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|Γ|2 AM/M! ,

is maximized at
∂

∂M
ln
{
|Γ|2 AM/M!

}
= 0

Assuming that M is large,

⇒ ∂

∂M
(M ln A−M ln M + M) = 0

⇒ M = A

Classical limit requires M to be large

⇒ A must be large (true since S(0) is large)

Probability distribution of M is sharply peaked
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A =
1

2DπD−1 |S
(0)(ε,k)|2ωD−2 Ω δ

S(0)(ε,k) ≡
N∑

i=1

(pi · k)−1 εµν pµi pνi

The sum over i runs over the macroscopic objects taking part in
the scattering.

Total energy radiated in this bin

Aω =
1

2DπD−1 |S
(0)(ε,k)|2ωD−1 Ω δ

46



This result can be related to the radiative part of the gravitational
field hµν .

Define eµν via

hµν = eµν −
1

D− 2
ηµν e ρ

ρ ⇔ eµν = hµν −
1
2
ηµνh ρ

ρ

ẽµν(ω,~x): time Fourier transform of eµν(t, ~x)

Then the result for energy flux can be translated to the following
result for the wave-form:

εµν ẽµν(ω,~x) =
( ω

2πiR

)(D−2)/2 1
2ω

S(0)(ε,k), R = |~x|, k = ω(1, ~x/|~x|)

up to an overall phase that does not affect the energy flux.
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Subleading order:

One can check that when we take the classical limit by taking the
energies to be large compared to the Planck mass, the effect of
the contact termM gets suppressed.

Therefore the amplitude for M soft gravitons to subleading order
is [

M∏
r=1

{
S(0)(εr,kr) + S(1)(εr,kr)

}]
Γ

Furthermore, S(1) becomes a multiplicative function:

S(1)(ε,k) = −i
N∑

i=1

(pi · k)−1 εµb pµi ka (Jab
i )

Jab
i total angular momentum (orbital + spin) of the i-th particle

If the asymptotic trajectory of the i-th particle is Xµi (τ): then

Jµνi = Xµi pνi − Xνi pµi + spin
48



[
M∏

r=1

{
S(0)(εr,kr) + S(1)(εr,kr)

}]
Γ

Since in the classical limit S(0) and S(1) commute, this is
symmetric under the exchange of the soft gravitons.

We can now repeat previous analysis for computing the angular
power spectrum in classical radiation to subleading order.

– replace S(0) by S(0) + S(1).

εµν ẽµν(ω,~x) =
( ω

2πiR

)(D−2)/2 1
2ω

{
S(0)(ε,k) + S(1)(ε,k)

}
up to an overall phase that does not affect the energy flux.

If a significant amount of energy is carried away by finite
wave-length radiation, its contribution must be included in the
sum over i in S(0) and S(1).
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A classical proof of the
classical soft graviton

theorem in D>4

50



We shall now describe a direct proof of the classical soft
graviton theorem in D>5.

Strategy:

1. Consider a general classical scattering process in which we
have a set of incoming particles and a set of outgoing particles.

2. Calculate the low frequency gravitational radiation during this
process by solving Einstein’s equation.

Laddha, A.S., 1906.08288 51



Recall:
eµν = hµν −

1
2
ηµνh ρ

ρ

In the de Donder gauge, the Einstein’s equation takes the form:

∂ρ∂ρeµν = −Tµν

Tµν denotes the energy-momentum tensor, including that of the
gravitational field obtained by taking the non-linear terms in the
Einstein’s equation to the right hand side.

All indices are raised and lowered by the flat metric ηµν .

Conservation law:
∂µTµν = 0

Formal ‘solution’:

eµν(x) = −
∫

dDx′Gr(x,x′) Tµν(x′)

Gr: retarded Green’s function in flat space-time.

Note: Tµν depends on the metric and hence on eµν 52



Define:
ẽµν(ω,~x) ≡

∫
dx0 eiωx0

eµν(x0, ~x)

Then

ẽµν(ω,~x) =

∫
dDx′

∫
dD−1`

(2π)D−1 eiωx′0+i~̀.(~x−~x′) 1

(ω + iε)2 − ~̀
2 Tµν(x′)

For large R=|~x|, one can do the integration over the longitudinal
component of ~̀ by residue theorem and the transverse
components by saddle point method:

ẽµν(ω,~x) ' iN eiω |~x|
∫

dDx′ e−ik·x′ Tµν(x′)

N =

(
ω

2πi|~x|

)(D−2)/2 1
2ω

, k = ω

(
1,

~x
|~x|

)
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ẽµν(ω,~x) ' iN eiω |~x|
∫

dDx′ e−ik·x′ Tµν(x′)

We shall evaluate the integral over x′ by dividing the integration
region into two parts.

c1
c2

c3c4

S F

1. The scattering region S has finite volume and therefore
integration over this region will produce an analytic function of
k.

2. Free region F, where we approximate Tµν by the energy
momentum tensor of free incoming and outgoing particles.
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Region F:

Tµν(x′) =
∑

i

∫
dτ

[
Viµpiνδ

(D)(x′ − Xi(τ))

+Vi(µΣiν)ρ∂
′ρδ(D)(x′ − Xi(τ)) + · · ·

]
pi: momentum of the i-th particle

Vi = pi/mi: velocity of the i-th particle

Xi(τ) = ci + Viτ : trajectory of the i-th particle parametrized by
proper time τ

Σi: Spin angular momentum of the i-th particle

This contribution depends only on pµi , Σµν
i and cµi .

The higher order terms encoded in · · · are non-universal.
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Region S

c1
c2

c3c4

S F

Need to compute:

Mµν ≡
∫

S
dDx′e−ik.x′Tµν(x′)

– an analytic function of k since the integral is over a finite
region

ikµMµν = −
∫

S
dDx′∂′µ(e−ik.x′)Tµν(x′) = boundary terms

using conservation law ∂′µTµν(x′) = 0.

The boundary terms are computed from the trajectories in
region F and depend on pµi , Σµν

i and cµi . 56



ikµ Mµν is known

Using analyticity of Mµν this leads to a unique solution for Mµν

up to additive terms that are quadratic in k, e.g.

k2ηµν − kµkν

This gives the contribution to eµν from region S:

iN eiω |~x|Mµν

The additive ambiguous terms do not contribute at the
subleading order and we get a result that depends only on pµi ,
Σµν

i and cµi .
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Final result:

ẽµν = N eiω |~x|
[∑

i

piµpiν

k · pi
+ i

∑
i

1
pi · k

pi(µkρJiν)ρ +O(k)

]
,

where
Jiρµ = {ciρpiµ − ciµpiρ + Σiρµ} .

This is exactly the prediction of the classical limit of the
subleading soft graviton theorem.

Some additional subtleties

1. We need to carefully check that in the region F the long range
gravitational force between the particles can be neglected.

2. If the final state contains massless radiation, we have to
analyze their contribution separately and show that they take the
same form as above. 58



D=4
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Quantum soft graviton theorem is a relation between S-matrices
with and without external soft gravitons.

However the S-matrices themselves suffer from infrared (IR)
divergences in D=4.

Nevertheless one could hope that with suitable regulator the IR
divergences factor out from both sides leaving the soft theorem
unaffected.

Unfortunately this is not true. Bern, Davies, Nohle

The model independent analysis described earlier breaks down
due to the fact that the interaction terms of the 1PI effective
action itself become singular in the soft limit.
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Results of explicit one loop computation:

1.The leading soft graviton theorem remains unchanged.

2. The subleading soft graviton theorem gets modified.

Usual soft expansion is a power series expansion in powers of
soft graviton energy ω.

Leading tern ∼ ω−1, subleading term ω0 etc.

Instead, in D=4 we find subleading terms ∝ lnω

Coefficients are free from IR divergences and depend on the
momenta of the finite energy external particles.

Biswajit Sahoo, A.S., arXiv:1808.03288 61



Classical limit:

Unfortunately, the classical limit of this formula has not been
fully understood.

For this reason there is no fully systematic procedure for
deriving a classical soft theorem as limit of a quantum soft
theorem in D=4.

62



Alternative approach:

1. Begin with the classical limit of the quantum soft theorem in
D>4.

2. Set D=4 in this formula.

However this also runs into some hurdle.

Laddha, A.S., 1804.09193
Sahoo, A.S., arXiv:1808.03288
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Problem: Due to long range force on the initial / final trajectories
due to other particles, the trajectory of the i-th particle in D=4
takes the form:

Xµi = cµi + m−1
i pµi τ + bµi ln |τ |

for some computable constants bµi .

Jµνi = (Xµi pνi − Xνi pµi ) = (cµi pνi − cνi pµi ) + (bµi pνi − bνi pµi ) ln |τ |

Due to the ln |τ | term, the soft factors do not have well defined
|τ | → ∞ limit.

e.g. consider a non-relativistic particle in radially outward
trajectory in an inverse square force:

m
d2r
dt2 = −K

r2

Solution
r = v t + c + b ln t + · · · , b =

K
m v2

Relativistic generalization is straightforward. 64



Guess: Soft radiation with frequency ω should not be sensitive
to scales much larger than ω−1.

In that case divergences in ln τ in the large τ limit is cut off at
τ ∼ ω−1.

Jµνi = (cµi pνi − cνi pµi ) + (bµi pνi − bνi pµi ) ln |τ |
⇒ (cµi pνi − cνi pµi ) + (bµi pνi − bνi pµi )lnω−1

This gives

S(1) = i
N∑

i=1

(pi · k)−1 εµν pµi kρ Jρνi

= i
N∑

i=1

(pi · k)−1 εµν pµi kρ (bρi pνi − bνi pρi ) lnω−1

+ finite

We can now compute the bµi ’s and substitute.
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ln |τ | ⇒ lnω−1 rule gives:

ẽµν =
2 G
i R

∑
i

pµi pνi
pi.n

 1
ω
− 2 i G ln(ω−1R−1)

∑
j,ηj=1

n.pj


+2

G2

R
lnω−1

∑
i

∑
j 6=i

ηiηj=1

nρp
(ν
i

pi.n
(pµ)

i pρj − pµ)
j pρi )

×
pj.pi

{(pj.pi)2 −m2
i m2

j }3/2

{
2(pj.pi)

2 − 3m2
i m2

j
}

+ finite .

ηi: -1 if i is incoming, 1 if i is outgoing.

n =
(
1, ~x/|~x|

)
, k = ω n Sahoo, A.S.

The second term in the first line is a pure phase and is not
determined from soft theorem

– was originally determined by comparison with known results
Peters
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Direct classical derivation
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We proceed as in D>4 case, but there are two essential
differences

c1
c2

c3c4

S F

1. We shall be looking for only the singular terms proportional to
1/ω and lnω

– allows us to ignore the contribution from integral over the
finite region S which gives results that are analytic in ω

2. We can no longer treat the movement of the particles in
region F as free since the effect of long range gravitational
forces cannot be ignored.
Saha, Sahoo, A.S., arXiv:1912.06413 68



Express Einstein’s equation as√
−det g

(
Rµν − 1

2
gρσRρσ gµν

)
= 8πG TXµν

TXµν: matter stress tensor

Note somewhat unusual definition of TXµν by including a factor
of
√
−det g.

We shall write

gµν = ηµν + 2 hµν , eµν = hµν −
1
2
ηµν η

ρσ hρσ, eµν ≡ ηµαηνβeαβ

and rewrite Einstein’s equation in de Donder gauge ∂µeµν = 0, as

�eµν = −8πG Tµν(x), � ≡ ηρσ∂ρ∂σ Tµν ≡ TXµν + Thµν

Thµν captures all terms quadratic and higher order in hρσ on the
left hand side of Einstein’s equation.
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From now on all indices will be raised and lowered by the flat
metric η.

� eµν = −8πG Tµν can be ‘solved’ as:

eµν(x) = −8πG
∫

d4y Gr(x,y) Tµν(y)

Gr(x,y): retarded Green’s function in flat space-time

Using explicit form of Gr one finds that for large R≡ |~x|,

ẽµν(ω,~x) =
2 G
R

eiω R T̂µν(k), k = ω(1, n̂), n̂ ≡ ~x/R

ẽµν(ω,~x) =

∫
dt eiωt eµν(t, ~x), T̂µν(k) ≡

∫
d4x e−ik.x Tµν(x)

So far the analysis has been the same as in D>4 case.
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ẽµν(ω,~x) =
2 G
R

eiω R T̂µν(k), T̂µν(k) ≡
∫

d4x e−ik.x Tµν(x)

We shall divide the integration region over x into two parts:

c1
c2

c′1c′2
S F

1. Scattering region S: A region of large size L around x=0.

2. Asymptotic region F: Complement of S

Since our goal is to compute terms in T̂µν that are singular as
ω → 0, we can ignore the contribution from the finite region S in∫

d4x.

In the asymptotic region, we can regard TXµν as due to the
incoming and outgoing object trajectories, moving under each
others’ long range gravitational field. 71



TXµν(x) ≡
n∑

i=1

mi

∫ ∞
0

dτ δ(4)(x− Xi(τ))
dXµi
dτ

dXνi
dτ

+
m∑

i=1

m′i

∫ 0

−∞
dτ δ(4)(x− X′i(τ))

dX′µi
dτ

dX′νi
dτ

,

Tµν(x) = TXµν(x) + Thµν(x),

�eµν = −8πG Tµν ,

d2Xµi
dτ2 = −Γµνρ(X(τ))

dXνi
dτ

dXρi
dτ

,
d2X′µi
dτ2 = −Γµνρ(X′(τ))

dX′νi
dτ

dX′ρi
dτ

,

Boundary conditions:

Xµi (τ = 0) = cµi , lim
τ→∞

dXµi
dτ

= Vµi =
1

mi
pµi ,

X′µi (τ = 0) = c′µi , lim
τ→−∞

dX′µi
dτ

= V′µi =
1

m′i
p′µi .
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We solve these equations iteratively, starting with the solution:

eµν = 0, Xµi (τ) = cµi + Vµi τ = cµi +
1

mi
pµi τ,

X′µi (τ) = c′µi + V′µi τ = c′µi +
1

m′i
p′µi τ .

This generates a series expansion in G Mω, possibly with
corrections involving lnω factors.

In order to get ω−1 and lnω terms, it is enough to do one
iteration.
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Steps:

1. The starting solution has Thµν = 0 and TXµν given by that of
free particles.

From this compute eµν using retarded Green’s function.

2. Use eµν to compute Thµν .

3. From eµν compute the Christoffel symbol.

Calculate the Christoffel symbol at the position Xµi , X′µi due to all
objects other than the i-th object.

4. Use this to correct the trajectories Xµi (τ), X′µi (τ).

5. Use the corrected trajectories to compute corrected TXµν .

6. Take Fourier transform of TXµν + Thµν to compute T̂µν and
hence ẽµν = 2 G R−1 eiω R T̂µν(k).
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Result (of a Feynman diagram like expansion):

ẽµν =
2G
R

eiωRT̂µν(k) = eiωR
[

i
ω

Aµν − ln (ω + iε) Bµν + ln (ω − iε) Cµν +O(1)

]
Aµν =

2 G
R

[
−

n∑
i=1

pµi pνi
1

n.pi
+

m∑
i=1

p′µi p′νi
1

n.p′i

]

Bµν = −4 G2

R

[
n∑

i=1

n∑
j=1
i6=j

pi.pj

{(pi.pj)2 − p2
i p2

j }3/2

{
3
2

p2
i p2

j − (pi.pj)
2
}

×
nρp

µ
i

n.pi
(pρj pνi − pνj pρi )

−
n∑

j=1

pj.n
{ n∑

i=1

1
pi.n

pµi pνi −
m∑

i=1

1
p′i .n

p′µi p′νi

}]

Cµν =
4 G2

R

m∑
i=1

m∑
j=1
i 6=j

p′i .p
′
j

{(p′i .p′j)2 − p′2i p′2j }3/2

{
3
2

p′2i p′2j − (p′i .p
′
j)

2
}

×
nρp

′µ
i

n.p′i
(p′ρj p′νi − p′νj p′ρi ) .

n = k/ω = (1, ~x/R) 75



1. If we ignore the iε’s, this agrees with the results obtained from
classical limit of soft theorem with the ln| τ | → lnω−1 rule.

2. Taking Fourier transform in ω, we get the result for eµν stated
at the beginning of these lectures.

eµν = Aµν +
1
u

Bµν +O(u−2ln|u|), for large positive u,

eµν =
1
u

Cµν +O(u−2ln|u|), for large negative u,

Note: The iε prescriptions inside lnω are needed in order to
distinguish between the initial state contribution and the final
state contribution.
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Some details:

We represent the retarded Green’s function in momentum space:

Gr(x,x′) =

∫
d4`

(2π)4 ei`.(x−x′) 1

(`0 + iε)2 − ~̀
2

– used to compute the gravitational field at a point x due to the
sources.

Due to this, it is simpler to do the computation fully in the
momentum space.

To first order in iteration, T̂µν(k) is expressed as a single
momentum integral of the form∫

d4`

(2π)4 F(`,k, {pi}, {p′i})

The lnω terms come from ` integration. 77



Two regions contribute to the lnω terms:

‘UV’: ω << |`µ| << L−1 ⇒ ln (Lω)

‘IR’: R−1 << |`µ| << ω ⇒ ln (Rω)

Cµν gets contribution from only the UV region.

Bµν = −
4 G2

R

[ n∑
i=1

n∑
j=1
i 6=j

pi.pj

{(pi.pj)
2 − p2

i p2
j }

3/2

{ 3

2
p2

i p2
j − (pi.pj)

2
}

×
nρpµi
n.pi

(pρj pνi − pνj pρi )

−
n∑

j=1

pj.n
{ n∑

i=1

1

pi.n
pµi pνi −

m∑
i=1

1

p′i .n
p′µi p′νi

}]

The first term in Bµν comes from the UV region but the second
term comes from the IR region.

Nevertheless, for explosion, when the final state has at most one
massive particle, the two terms cancel 78



Emboldened by the success of the soft theorem in predicting
classical gravitational wave-form, we can attempt to arrive at
new conjectures using subsubleading soft graviton theorem.

This has non-universal terms, but the term involving Jµνa is
universal, and logarithmic term arises from this.

This leads to a prediction for terms of order ω (lnω)2 in ẽµν(ω,~x)

– translates to terms of order ln |u|/u2 in eµν(t, ~x). Saha, Sahoo, A.S.
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∆subsubleading eµν → u−2 ln |u| Fµν as u→∞

→ u−2 ln |u|Gµν as u→ −∞ ,

Fµν = 2
G3

R

[
4

n∑
j=1

pb.n
n∑
`=1

p`.n


n∑

i=1

pµi pνi
pi.n

−
m∑

i=1

p′µi p′νi
p′i .n


+4

n∑
`=1

p`.n
n∑

i=1

n∑
j=1
j 6=i

1

pi.n

pi.pb

{(pi.pb)2 − p2
i p2

b}
3/2
{2(pi.pb)2 − 3p2

i p2
b}{n.pb pµi pνi − n.pi pµi pνb }

+2
n∑
`=1

p`.n
m∑

i=1

m∑
j=1
j 6=i

1

p′i .n

p′i .p
′
b

{(p′i .p
′
b)2 − p′2i p′2b }

3/2
{2(p′i .p

′
b)2 − 3p′2i p′2b }{n.p

′
b p′µi p′νi − n.p′i p′µi p′νb }

+
n∑

i=1

n∑
j=1
j 6=i

n∑
`=1
` 6=i

1

pi.n

pi.pb

{(pi.pb)2 − p2
i p2

b}
3/2
{2(pi.pb)2 − 3p2

i p2
b}

pi.p`
{(pi.p`)2 − p2

i p2
`
}3/2

{2(pi.p`)2 − 3p2
i p2
`}{n.pb pµi − n.pi pµb } {n.p` pνi − n.pi pν` }

]
,

Gµν = −2
G3

R

[
2

n∑
`=1

p`.n
m∑

i=1

m∑
j=1
j 6=i

1

p′i .n

p′i .p
′
b

{(p′i .p
′
b)2 − p′2i p′2b }

3/2
{2(p′i .p

′
b)2 − 3p′2i p′2b }

{n.p′b p′µi p′νi − n.p′i p′µi p′νb }

−
m∑

i=1

m∑
j=1
j6=i

m∑
`=1
` 6=i

1

p′i .n

p′i .p
′
b

{(p′i .p
′
b)2 − p′2i p′2b }

3/2
{2(p′i .p

′
b)2 − 3p′2i p′2b }

p′i .p
′
`

{(p′i .p
′
`

)2 − p′2i p′2
`
}3/2

{2(p′i .p
′
`)2 − 3p′2i p′2` }{n.p

′
b p′µi − n.p′i p′µb } {n.p

′
` p′νi − n.p′i p′ν` }

]
.
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This is now under investigation by Biswajit Sahoo using direct
classical analysis.

Stay tuned for further news!
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Material not covered:

1. Soft photon theorem

– analysis proceeds similarly to soft graviton theorem

– non-universal terms appear at the subleading order due to
coupling to the photon via Fµν .

Subleading soft theorem with multiple gravitons and photons is
known. Bhatkar, Sahoo

Its classical limit understood at the same level as that of the soft
graviton theorem

2. Relation to asymptotic symmetries

– see lectures next week 82



For the future:

Polynomials in ω in small ω expansion lead to delta function and
their derivatives in the u-variable

– localized around u=0.

Power law decay in u should come from non-analytic functions
of ω in frequency space

– arise from IR divergent terms and should therefore be
determined by soft physics.

1. Can we develop a systematic procedure for computing all
higher order terms in the large u expansion?

2. Do all such terms vanish for the binary black hole merger
problem? 83


