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Optical tweezers enable single molecule 
protein-DNA interaction experiments

• Single DNA molecule is tethered 
between two polystyrene beads

• Pipette tip is moved with sub-
nanometer resolution 

• Force exerted by trap is measured 
with picoNewton resolution

• The binding of proteins is detected by 
change in DNA length/tension

• Replication of DNA can be detected in 
real time



Force-extension reveals DNA structural changes
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Summary

• Optical tweezers and DNA stretching
• E. coli pol III core switching between 

pol and exo activity
• DNA binding by human innate immune 

system protein APOBEC3G, which 
inhibits HIV-1 replication α
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There are at least five types of DNA polymerases in E. coli

Fijalkowska, I. J., et al. (2012). FEMS Microbiol Rev.



DNA polymerase III (pol III) holoenzyme is the replicative 
polymerase in E. coli 

Fijalkowska, I. J., et al. (2012). FEMS Microbiol Rev.



DNA polymerase III (pol III) holoenzyme is the replicative 
polymerase in E. coli 

Fijalkowska, I. J., et al. (2012). FEMS Microbiol Rev.

Error frequency 

Without
proofreading

With 
proofreading

10-5/bp 10-8/bp



Polymerization and exonucleolysis are controlled by force

Trapped 
bead
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Pol III core activity at constant force α
ε θ
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Pol III core activity at constant force α
ε θ
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Pauses during exonucleolysis α
ε θ
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α
ε θ
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Pauses during exo depends on pol III concentration
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Exo-initiation rate depends on pol III core concentration
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Two-step mechanism of exo-initiation

init
1 Rate of initiating an exo event= →< >k pause
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Pauses during exo depend on the template tension
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Pauses during exo depend on the template tension
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Pauses during exo depends on the template tension
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At least 2 bp are required to fluctuate open at the 
primer-template junction for exo-initiation 

F F

ss dsx dF x dFG F

G G F

0 0

0

( )

( 62pN)

−∆ =

∆ =∆ =

∫ ∫

0  is the free energy required to open one terminal bp( )G F G∆ −∆

0.5

5

30 40 50 60

k(
F)

  (
s-

1 )

Force (pN)

0n G F G k Tk F k e Bexo,init(Δ ( )- )/
Finit( )  ∆=

~ 2 bp opening

α
ε

θF > 30pN

α
ε

θF > 30pN

α
ε

θ

α
ε

θ
F > 30pN

ck1k-1

k2k-2

kexo = vexo

1
2 2 2

1 1

1
1-

(F)
C    C C ≈ >= =
+ + dinit

d
for C K

kk k k kk k K

0 Bexo,init(Δ ( )- )/
Finit  ∆= n G F G k Tk k e



0.01

0.1

1

10

280 300 320 340

k i
ni

t(
T)

 (s
-1

)

Temperature (K)

dsDNA

max rate on ssDNA 

0.001

0.01

0.1

1

10

100

0 1 2 3 4

k i
ni

t (
s-

1 )

ΔGtot (kBT)

force

temperatureMatch MmT MmTC MmTT MmTTT
time

CC
GGGTCCA

CCT
GGGTCCA

CCTC
GGGTCCA

CCTT
GGGTCCA

CCTTT
GGGTCCA

Primer

Extended 
products

Exo products

Mismatches and temp-dependence mimic destabilization 
by force

Binding to an unstable primer is the primary mechanism for mismatch recognition 
during proofreading

n ~ 2 bp n ~ 2 bpn ~ 2 bp

( )
( )

exo init
B

B

n G T
k T

n H T S
k T

k T k e

k e

†
,

exo,init 0 0

( )

Tinit

-

T

∆
−

∆ ∆
−

=

=

( )
exo init

B

n G F T
k Tk T k e

†
, ( , )

init 0

∆
−

=

Brenowitz S et al. 
(1991) J Biol Chem. 



Summary: E. coli pol III exo and pol switching

• Single molecule system allows us to study 
exo and pol acitivity with high spatial and 
temporal resolution

• Observe force-induced switching between 
two separate exo and pol proteins as part of 
3-protein complex

• Show that pol and exo activities are 
effectively independent

• Type of enzymatic activity determined by 
DNA substrate stability alone

• Only 2 bp must be destabilized to induce 
exo activity

~ 2 bp opening
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Summary

• Optical tweezers and DNA stretching
• E. coli pol III core switching between 

pol and exo activity
• DNA binding by human innate immune 

system protein APOBEC3G, which 
inhibits HIV-1 replication



Life cycle of retroviruses

Jonathan P. Stoye, Nature Reviews Microbiology 10, 395-406 (2012)



APOBEC3G (A3G), anti-viral enzyme

• Inhibits HIV-1 replication in the absence of HIV-1 Vif
• Targeted for degradation by HIV-1 Vif
• ssDNA deoxycytidine deaminase, creates C to U 

mutations on minus strand viral ssDNA
• Deaminase-deficient mutants still partially inhibit 

HIV-1 replication
• Disrupts reverse transcription in human T cells at 

endogenous levels of A3G*
• Forms dimers, tetramers, and higher order oligomers, 

especially when bound to RNA/ssDNA
*Gillick et al. Suppression of HIV-1 Infection by APOBEC3 Proteins in Primary Human CD4+T Cells Is Associated with 
Inhibition of Processive Reverse Transcription as Well as Excessive Cytidine Deamination. J. Virol. 87: 1508-1517 
(2013).

CCC→U

HIV-1, +Vif

HIV-1, ∆Vif

A3G
Vif

Minus Strand 
Viral DNA
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Roadblock model for deaminase-independent 
HIV-1 inhibition mechanism

• Model*: bound A3G physically 
blocks and interrupts the activity 
of reverse transcriptase

• However: a small number of A3G 
subunits must rapidly deaminate
approximately 1,000 sites within 
minutes

To what extent does A3G have fast and slow binding kinetics?
*Iwatani et al. Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G. Nucleic Acids Research 35: 7096-7108 (2007)

• Requires slow binding kinetics • Requires fast binding kinetics



Two step binding model,
two modes of HIV-1 inhibition

• Monomers/dimers 
rapidly slide along and 
deaminate minus 
strand DNA

• Oligomers remain 
stably bound and act as 
a roadblock for RT 
activity

Chaurasiya et al. Oligomerization transforms human APOBEC3G from an efficient enzyme to a 
slowly dissociating nucleic acid-binding protein. Nature Chemistry (2014)

In vitro In vivo

 1 2

1 2
3 ( 3 ) ( 3 )ck k

fast slowk k
A G ssDNA A G ssDNA A G ssDNA

− −

→ →+ + +← ←



Mechanisms of A3G oligomerization and its 
effects on A3G-nucleic acid interactions

• To what extent are previously observed slow binding kinetics due to 
oligomerization?

• What degree of oligomerization (dimer/tetramer etc.) is required to 
slow A3G sliding and dissociation?

• How does oligomerization alter enzyme activity?

• To understand oligomerization, examine mutants that lack some 
oligomerization capability



A3G has two potential cytidine deaminase domains

N-Terminal Domain (NTD)
• Catalytically inactive
• Binds RNA/ssDNA
• Required for packaging in virion
• Primary dimerization interface
• Interacts with Vif

C-Terminal Domain (CTD)
• Catalytically active
• Weakly binds ssDNA
• Additional weak dimerization 

interface

N CNTD CTD

CCC→U
3′ 5′



Common structure and function among 
APOBEC3 family proteins

• Many A3 proteins have 
anti-viral functionality

• Each A3 has one or two CD 
domains, but only one is 
catalytically active

• HIV-1 Vif binds certain CD 
domains to restore 
infectivity

• Results with A3G could 
impact understanding of 
other multi-CD domain A3 
proteins

A3DE

A3A

A3C

A3B

A3F

A3G

A3H Vif

Vif

Vif

Vif

Vif

Catalytically Active
Catalytically Inactive



Dimerization can occur between both the N-
and C-terminal domains of A3G

• Dimerization interfaces 
can be disrupted by 
targeted mutations

• Dimerization interfaces 
originally determined 
based on the structure 
of the homologous A2 
tetramer

Chelico et al. Structural Model for 
Deoxycytidine Deamination Mechanisms of 

the HIV-1 Inactivation Enzyme APOBEC3G. JBC 
(2010)

NTD mutant 
F126A/W127A (FW, green)
FW has deaminase activity

Structure from Xiao et al. Crystal structures 
of APOBEC3G N-domain alone and its 
complex with DNA. Nature Communications 
(2016)

CTD mutants 
I314A/Y315A (IY, blue) and 

R313A/D316A/D317A/Q318A (RDDQ, 
red)

Structure from Holden et al. Crystal structure of 
the anti-viral APOBEC3G catalytic domain and 
functional implications. Nature (2008)



AFM imaging shows NTD and CTD 
mutations inhibit oligomerization

• 70 nM A3G bound to linearized m13 
ssDNA

• Most WT A3G forms very large oligomers 
of varying sizes

• NTD mutant (FW) is mostly monomeric, 
with some dimers/tetramers

• CTD mutants (IY and RDDQ) are mostly 
dimeric with some larger oligomers
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Experimental procedure
1) dsDNA is captured by optical trap

2) DNA is stretched to a force of 80 pN

3) Protein solution: DNA length decreases as 
A3G binds ssDNA and forms oligomers

4) Buffer solution: Some A3G dissociates

5) DNA is released back to zero force0
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Real time measurements as A3G binds ssDNA, 
forms oligomers, and partially dissociates
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A3G binds then forms oligomers 
on two different timescales

• A3G binding curve must be fit 
with two rates

• Fast rate is free A3G binding 
from buffer 

• Slow rate is bound A3G forming 
oligomers

• WT binding does not reach full 
saturated binding as compared 
to the FW mutant0
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Transiently bound A3G dissociates,
oligomers remain bound

• Dissociation measured after 
rinsing all A3G out of the flow cell

• Some A3G remains bound even 
after dissociation

• Dissociation occurs at a single rate
• The initial and final extension 

quantify how much A3G is 
transiently or stably bound 

• Less A3G forms stable oligomers 
for NTD mutant (FW)
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Binding is concentration-dependent 
Oligomerization saturates at high concentration
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NTD mutant (FW) binds faster but forms oligomers 
significantly more slowly than WT and CTD mutants
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WT and mutant A3G exhibit a single dissociation rate
A3G is monomeric in solution

• Agreement between mutants 
and WT is inconsistent with WT 
initially binding as dimer and FW 
initially binding as monomer

• A faster monomer dissociation 
rate would be clearly visible in 
dissociation curves
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Dimerization is primarily mediated 
by NTD interaction

• Disrupting CTD dimerization interface 
results in statistically insignificant 
reduction in oligomerization

• Dimerization through NTD is at least 
3 times faster than dimerization 
through CTD
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Dimerization slows binding rate

• Monomers slide to accommodate 
additional A3G binding

• Dimers are stationary and occlude 
ssDNA binding sites
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A3G dimerization inhibits deamination
• A3G is first incubated with unlabeled 

DNA for 3 min, then labeled DNA is 
added and deamination is measured 
after 10 min by Uracil DNA 
glycosylase cleavage.

• Without incubation, WT and FW A3G 
both deaminate at a similar rate

• WT A3G deamination decreases with 
unlabeled DNA concentration as 
oligomerized A3G is unavailable

• Given timescale for dimerization, 
results show that dimerization 
inhibits deamination
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Significant new findings

• Transiently bound A3G 
dissociates at a single rate (not 
multiple rates for monomers, 
dimers, etc.) for both WT and CD 
domain mutants

• Mutating the NTD dimerization 
interface drastically reduces 
dimerization

• Mutating the CTD dimerization 
interface does not significantly 
slow dimerization

• Deamination by A3G decreases 
when A3G is pre-incubated with 
ssDNA

Implications:
1. WT A3G exists as a monomer in the 

absence of RNA/ssDNA and during 
deaminase activity

2. Dimerization mediated by NTD 
interactions is sufficient to significantly 
slow A3G binding kinetics

3. Dimerization inhibits deaminase activity



Updated A3G in virio model
• Deamination: A3G monomers bind 

minus strand viral DNA and deaminate
processively 3′ to 5′ 

• Roadblock: Dimers (and possibly larger 
oligomers) can remain bound, unable 
to deaminate ssDNA, acting as a 
roadblock to RT-catalyzed elongation

• Dimerization: Bound monomers form 
dimers through NTD interactions, 
transitioning from transient to stable 
binding

Michael Morse, Ran Huo, Yuqing Feng, Ioulia Rouzina, Linda Chelico, and Mark C. Williams. Dimerization regulates both 
deaminase-dependent and deaminase-independent HIV-1 restriction by APOBEC3G. Nature Communications 8: 597 (2017)

http://dx.doi.org/10.1038/s41467-017-00501-y


A3G conclusions

• At intravirion concentrations, A3G monomers bind transiently to 
ssDNA nearly instantly (<<1s). Monomers are highly mobile and 
rapidly deaminate while bound for ~70s.

• Bound monomers form dimers after ~150s through NTD-NTD
interactions. Dimers do not slide along ssDNA and A3G becomes a 
slow ssDNA binder that acts as a roadblock for reverse transcription

• Correlation between replication studies and DNA binding 
measurements suggest that A3G dimerization is responsible for 
deamination-independent inhibition of HIV-1 replication

• With only ~10 A3G subunits in virion, the ability of monomers to 
deaminate and of dimers to form roadblocks would greatly enhance 
A3G function
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