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Anderson localization 

Anderson (single-particle) localization (1958)

Localized Extended

𝜓𝛼 𝑟 2 ∼ 𝑒
−
𝑟−𝑟𝛼
𝜉

∼
1

𝐿𝑑/2

Abrahams et al. Scaling theory of localization (1979)
Lee & Ramakrishnan (1985), …



Many-body localization (MBL)

ℋ = −𝑡 ෍

<𝑖𝑗>

𝑐𝑖
†𝑐𝑗 + ℎ. 𝑐. −෍

𝑖

𝜀𝑖𝑛𝑖

All states localized

𝜓𝛼 𝑟 2 ∼
𝑒
−
|𝑟−𝑟𝛼|
𝜉

𝜉𝑑

=෍

𝛼

𝜖𝛼𝑐𝛼
†𝑐𝛼

At high energies interaction connects between ∼ exp(𝐿𝑑)
localized states !    Can localization survive?

+𝑉෍

〈𝑖𝑗〉

𝑛𝑖𝑛𝑗

+ ෍

𝛼𝛽𝛾𝛿

𝑉𝛼𝛽𝛾𝛿𝑐𝛼
†𝑐𝛽

†𝑐𝛾𝑐𝛿
Add interaction

𝜀𝑖 ∈ [−𝑊,𝑊]



Localized (𝜅, 𝜎 = 0)

Disorder strength

𝑇, 𝐸
Delocalized 

𝑇 = ∞

Non-ergodic

Thermalizing

Basko, Aleiner, Altshuler (2005); Gornyi, Mirlin, Polyakov (2005)

Many-body localization (MBL)

Oganesyan and Huse (2007), Pal and Huse (2010), ….

Yes! 

For sufficiently strong disorder



MBL

Disorder strength

𝑇, 𝐸 Delocalized 

𝑇 = ∞

Non-ergodic

Thermalizing

o 1D  

-- Numerical evidence                  

-- Mathematical proof 

Oganesyan and Huse (2007), Pal and 
Huse (2010), ……

Imbrie (2016)

Existence of MBL 



Existence of MBL 

o General dimension, e.g. 𝑑 > 1
only perturbative proof 

Basko, Aleiner, Altshuler (2005), 
Gornyi, Mirlin, Polyakov (2005)

Perturbative treatment for weak interaction, V/Δ𝜉 ≪ 1

𝑉, interaction strength

Δ𝜉 , level spacing within a localization volume

o Are there nonperturbative effects that can destabilize MBL in higher 

dimension?

De Roeck and Huveneers (2016)

Stability of MBL in the presence of ergodic grain?



Outline 

o Introduction to MBL.

o Instability argument for 𝑑 > 1.

o Solvable models and  exact diagonalization studies to test

the instability argument.

o Conclusions.



Models for MBL

o Disordered interacting fermions

𝜀𝑖 ∈ [−𝑊,𝑊]
ℋ = −𝑡 ෍

<𝑖𝑗>

𝑐𝑖
†𝑐𝑗 + ℎ. 𝑐. −෍

𝑖

𝜀𝑖𝑛𝑖 + 𝑉෍

⟨𝑖𝑗⟩

𝑛𝑖𝑛𝑗

ℋ = 𝐽෍

𝑖

(𝑆𝑖
+𝑆𝑖+1

− + ℎ. 𝑐. ) + 𝐽𝑧෍

𝑖

𝑆𝑖
𝑧𝑆𝑖+1

𝑧 +෍

𝑖

ℎ𝑖𝑆𝑖
𝑧

o Disordered spin chains

ℎ𝑖 ∈ [−𝑊,𝑊]

o Disordered Hubbard model, transverse field Ising model, …

Bounded spectrum Many-body eigenstates                  ℋ Ψ𝑛 = 𝐸𝑛|Ψ𝑛⟩

Localization and thermalization in eigenstates 

Hilbert space dimension
𝐷 = 2𝑁



Localized (𝜅 = 0, 𝜎 = 0)

Disorder strength

𝑇, 𝐸
Delocalized 

𝑇 = ∞

Non-thermalizing

Thermalizing

Many-body localization 

⇒ Lack of thermalization in a generic system!

Diagnostic of MBL



Localization and thermalization

Generic high-energy eigenstates |𝐸〉
(finite energy density above ground state)

E

Deutsch 91, Srednicki 94

Thermalization or ergodicity
⇒ “Eigenstate thermalization hypothesis” (ETH)

 Eigenstates of thermalizing system appear thermal 

to all local measurements

o 𝜌𝐴 = TrB 𝐸 〈𝐸| →
1

𝑍𝐴
𝑒−𝛽𝐻𝐴

o 𝑆𝐴 = −Tr 𝜌𝐴 ln 𝜌𝐴 = 𝑠 𝐸 𝐿𝑑

L

AVolume law B

ETH fails for MBL states
Area law entanglement

𝑆𝐴 ∝ 𝐿𝑑−1



Effective model of MBL

𝐻 =෍

𝛼

𝜖𝛼𝑐𝛼
†𝑐𝛼 + ෍

𝛼𝛽𝛾𝛿

𝑉𝛼𝛽𝛾𝛿𝑐𝛼
†𝑐𝛽

†𝑐𝛾𝑐𝛿

𝑐𝛼
† =෍

𝑖

𝜓𝛼 𝑖 𝑐𝑖
†

Effective Hamiltonian corresponding to real-space RG fixed point

Vosk & Altman (2012,2014)Dasgupta-Ma RG
Phys. Rev. B 22, 1305 (1980)

MBL fixed point   Emergent integrability

Complete set of quasi local integrals of 

motion (LIOMs)

𝐻𝑙 = σ𝛼 𝜖𝛼 ෤𝑛𝛼 + σ𝛼𝛽𝑈𝛼𝛽 ෤𝑛𝛼 ෤𝑛𝛽 +⋯ 𝑈𝛼𝛽 ∼ 𝑒−|𝑟𝛼−𝑟𝛽|/𝜉

Huse & Oganesyan (2013)
Serbyn et al. (2013)

෤𝑛𝛼 = ǁ𝑐𝛼
† ǁ𝑐𝛼

ǁ𝑐𝛼
† ≃ 𝑐𝛼

† +෍

𝛽𝛾𝛿

𝑉𝛿𝛾𝛽𝛼

𝜖𝛼 + 𝜖𝛽 − 𝜖𝛾 − 𝜖𝛿
𝑐𝛿
†𝑐𝛾

†𝑐𝛽 +⋯ Basko, Aleiner, Altshuler (2005)



E, T, disorder, U
MBL Delocalized

Dynamical

transition

MBL

1. Memory of local initial

Condition persists to 𝑡 → ∞

2. Quantum dynamics

3. Area law, 𝑆𝐴 ∼ 𝐿𝑑−1

4. Discrete local spectra

𝜌𝑖(𝜔)

𝜔

𝜌𝑖(𝜔)

𝜔

1. Memory of local initial

condition is lost

2. Classical hydrodynamics

3. Volume law, 𝑆𝐴 ∼ 𝐿𝑑

4. Continuous local spectra



Spectral signatures of MBL

o Local spectral function of an eigenstate 𝜌𝑖,𝑛(𝜔)

𝜔
 Single-particle Green’s function

𝐺𝑖,𝑛
𝑅 𝑡 = −𝑖⟨Ψ𝑛 𝑐𝑖 𝑡 , 𝑐𝑖

† 0 Ψ𝑛⟩𝜃(𝑡)

𝜌𝑖,𝑛(𝜔)

o Delocalized state,  𝜌𝑖
𝑡ℎ 𝜔 = 𝜌𝑖,𝑛(𝜔) for 𝑇 → 𝐸 = 𝐸𝑛

 ETH

* Generically, 𝜌𝑖
𝑡ℎ(𝜔) does not contain information about localization at 𝑇 ≠ 0

𝜌𝑖
𝑡ℎ 𝜔 =

1

𝑍
෍

𝑛

𝑒−𝛽𝐸𝑛 𝜌𝑖,𝑛(𝜔)

𝜌𝑖(𝜔)

𝜔

Infinite temperature (𝛽 → 0), 𝜌𝑖
𝑡ℎ 𝜔 = (1/𝐷)σ𝑛 𝜌𝑖,𝑛(𝜔)

Hilbert space 
dimension 𝐷

o Thermal spectral function



De Roeck and Huveneers, PRB (2017)

Is MBL stable in the presence of a thermal bubble?

No! for 𝑑 ≥ 2

Instability argument 



MBL

Thermal

A finite ‘thermal bubble’ (disorder fluctuation) 

within a MBL 

𝐻 = 𝐻𝑏 +𝐻𝑙 +𝐻𝑏𝑙

o Ergodic bubble  RMT 𝐻𝑏(N), fermions 𝑐𝑖
†

GOE random 2𝑁 × 2𝑁 matrix

Level spacing 𝛿𝜖 ∼ 𝒲/2𝑁

o Coupling,   𝐻𝑏𝑙 = σ𝑖𝛼(𝑉𝑖𝛼 𝑐𝑖
†𝑎𝛼 + ℎ. 𝑐. ) 𝑉𝑖𝛼 ∼ 𝑉 exp(−𝑟𝛼/𝜉)

Can the single bubble destroy the entire MBL system?

o MBL 𝐻𝑙 = σ𝛼 𝜖𝛼 ෤𝑛𝛼 + σ𝛼𝛽𝑈𝛼𝛽 ෤𝑛𝛼 ෤𝑛𝛽 +⋯

෤𝑛𝛼 = 𝑎𝛼
†𝑎𝛼 𝑎𝛼

† =෍

𝑖

𝜓𝛼 𝑖 𝑎𝑖
† +⋯



The site is absorbed into the bubble if

𝑉 Ψn 𝑐𝑖
† Ψ𝑚

𝛿𝜖
≫ 1

⇒ non-zero Fermi-Golden rule decay rate.

Assumption: The expanded bubble remains a ‘featureless’ RMT

 the spectral function does not change

𝜌 𝜔 → ෤𝜌(𝜔) 𝛿𝜖 → ሚ𝛿𝜖 = 𝛿𝜖/2

Thermal

o RMT Matrix element, ETH 

Ψ𝑛 𝑐𝑖
† Ψ𝑚 ≃ 𝛿𝜖 𝜌 𝜔 𝜂𝑛,𝑚 𝜔 = 𝐸𝑛 − 𝐸𝑚

𝜌(𝜔) Single-particle spectral function 

of the bubble

𝑤

𝑉

Thermal bubble grows! A better bath!



𝑅

V𝑒−𝑅/𝜉

Level spacing 𝛿𝑅 ∼ 𝛿𝜖 exp(−𝑅
𝑑)

Matrix element 

𝐽𝑅 ∼ 𝑉 ෩Ψ𝑏 𝑐𝑖
† ෩Ψ𝑏′ exp(−𝑅/𝜉)

∼ 𝑉 𝛿𝜖𝜌 𝜔 exp(−R/𝜉)

For 𝑑 > 1,
𝐽𝑅

𝛿𝑅
∼ exp

𝑅𝑑

2
−

𝑅

𝜉
≫ 1

 No MBL in two and higher dimension ??!!!

Instability of MBL in higher dimension

Hard to prove or disprove, numerics in 𝑑 ≥ 2 is difficult



`Solvable’ `Toy’ models of the thermal bubble coupled to Anderson 

insulator

Anderson

SYK/

Hubbard

o Bubble - Sachdev-Ye-Kitaev (SYK) 

model with 𝑁 sites

--- Solvable in large-𝑁

o Bubble - ‘Large dimensional’ 

Hubbard model

--- Solvable via DMFT

o Bubble – RMT

--- Exact diagonalization (ED) of small 

systems

o 𝜉 ≳ 𝑁
1

𝑑 Dynamical transition in spectral function

 Instability argument breaks down

o 𝜉 < 𝑁
1

𝑑 ED  Instability argument breaks down



How does the spectral function change due to coupling 

to large number of localized sites in 𝑑 > 1?

Transition in bath spectral function due to back reaction of the 

insulator.

o Sachdev-Ye-Kitaev (SYK) model.

-- Solvable model of thermalization.

o SYK model coupled to Anderson localized sites.

(Large-𝑁) controlled calculation 

of the spectral function.

SYK

SYK

𝑊

𝜌 𝜔 → ෤𝜌(𝜔) ?



Sachdev-Ye-Kitaev model

 Use as a model for thermal bubble for large but finite 𝑁

 Diverging DOS for 𝜔 → 0,
𝐺 𝜔 ∼ 1/ 𝜔

Solvable model for thermalization and quantum chaos.
-- Lyapunov exponent,  𝜆𝐿 = 2𝜋𝑇
Maximally chaotic, like a black hole  model for holography

𝐻𝑆𝑌𝐾 =
1

2𝑁 3/2
෍

𝑖𝑗𝑘𝑙

𝐽𝑖𝑗𝑘𝑙𝑐𝑖
†𝑐𝑗

†𝑐𝑘𝑐𝑙 − 𝜇෍

𝑖

𝑁

𝑐𝑖
†𝑐𝑖

𝑃 𝐽𝑖𝑗𝑘𝑙 ∼ 𝑒
−
𝐽𝑖𝑗𝑘𝑙

2

𝐽2

Sachdev & Ye, PRL (1993)
Kitaev, KITP (2015)
Sachdev, PRX (2015)

o Self-consistency for 

Green’s function (𝑁 → ∞)

𝐺−1 𝜔 = 𝜔 + 𝜇 − ΣJ(𝜔)

ΣJ 𝜏 = −𝐽2𝐺2 𝜏 𝐺(−𝜏)



Coupling to localized sites

𝐻𝑙 =෍

𝛼

𝜖𝛼𝑎𝛼
†𝑎𝛼

𝐻𝑏𝑙 =
1

𝑁
෍

𝑖𝛼

(𝑉𝑖𝛼𝑐𝑖
†𝑎𝛼 + ℎ. 𝑐. )

𝑃 𝑉𝑖𝛼 ∼ exp(− 𝑉𝑖𝛼
2/𝑉𝛼

2)

𝑉𝛼
2 = 𝑉2 exp(−𝑟𝛼/𝜉)

Random coupling

Fixed 𝜖𝛼 , 
no disorder averaging

𝜖𝛼 ∈ [−𝑊,𝑊]

𝑉𝑖𝛼

𝑟𝛼

𝛼 = 1,… ,𝑀



Self-consistency equations for Green’s functions

o SYK model+ localized sites, large 𝑁

𝐺−1 𝜔 = 𝜔 − Σ𝐽(𝜔) −
1

𝑁
෍

𝛼

𝑉𝛼
2 𝒢𝛼(𝜔)

𝒢𝛼
−1 𝜔 = 𝜔 + 𝜖𝛼 − 𝑉𝛼

2𝐺(𝜔)

 Bubble spectral function    𝜌 𝜔 ∼ −Im𝐺(𝜔)

Disorder averaging over 𝐽𝑖𝑗𝑘𝑙 , 𝑉𝑖𝛼 

𝒢𝛼(𝜔)

𝐺(𝜔)

Fixed 𝜖𝛼 realization



Coupling

V= 0.1
𝜉 = 2

𝑁 = 30 bath sites

𝑀 localized sites

𝑉 𝑟 = 𝑉𝑒
−
𝑟
𝜉



Coupling

𝑉 = 0.1
𝜉 = 10

Thermal bubble is destroyed.

Localized ??!!



Dynamical transition in bubble spectrum

𝜉
Only sites within the localization 

length 𝜉 strongly affects the bath

For 𝜉 ≫ 1,

𝑀 ≈ 𝜋𝜉2 sites “strongly” coupled with 

coupling strength V with 𝑁 bath sites



Ergodic bubble 

in an Anderson insulator

𝑁 SYK sites

𝑀 ≃ 𝜋𝜉2 peripheral sites

𝜉

𝐻 =
1

2𝑁 3/2
෍

𝑖𝑗𝑘𝑙

𝐽𝑖𝑗𝑘𝑙𝑐𝑖
†𝑐𝑗

†𝑐𝑘𝑐𝑙 +
1

𝑀
෍

𝛼𝛽

𝑡𝛼𝛽𝑎𝛼
†𝑎𝛽

+
1

𝑀𝑁 1/4
෍

𝑖𝛼

(𝑉𝑖𝛼𝑐𝑖
†𝑎𝛼 + ℎ. 𝑐. )



𝑝 =
𝜋𝜉2

𝑁

𝜉

𝑝 > 1 Perturbative fixed point

o Fermi liquid state at infinite 𝑁.

o Finite 𝑁, quantum dot

 Many body localization at low 𝑇 < 𝑇𝑐
Altshuler, Gefen, Kamenev & Levitov, PRL (1997)

 Ergodic bubble is destroyed for 𝜉 > 𝑁1/𝑑

𝜉 = 10

SB & E. Altman, Phys. Rev. B 95, 134302 (2017)



V= 0.1
𝜉 = 2

What happens at small localization

length 𝜉 ?

𝜋𝜉2

𝑁
< 1

 After adding ∼ 𝑁 sites the bubble flows to the perturbative fixed 

point at low energies 𝜔 < 𝜔𝑁
∗ .

𝜔𝑁
∗ ≃ (𝑉4/𝑊2𝐽)𝑒−4 𝑁/𝜋𝜉2

 Non-perturbative effects of ergodic grain are not important?

 Not an obstruction to MBL at low but finite temperature?

The assumption

𝜌 𝜔 = ෤𝜌(𝜔)
seems to hold!



Ergodic grain:

Hubbard model with 𝑁 sites

Hubbard 
Model



What happens at small localization
length 𝜉 ?

𝜋𝜉2

𝑁
< 1

The assumption

𝜌 𝜔 = ෤𝜌(𝜔)
seems to hold!

Thermal spectral function is insufficient

Need to look into spectral properties of eigenstates.

Exact diagonalization



MBL

RMT

𝐻 = 𝐻𝑏 +𝐻𝑙 +𝐻𝑏𝑙

o RMT 𝐻𝑏(N) , 𝑁 interacting spins 𝑺𝑖
GOE random 2𝑁 × 2𝑁 matrix

Level spacing 𝛿𝜖 ∼ 𝑊/2𝑁

o Coupling,   𝐻𝑏𝑙 = σ𝑖𝛼(𝑉𝛼𝑆𝑖
+𝑆𝛼

− + ℎ. 𝑐. ) 𝑉𝛼 ∼ 𝑉 exp(−𝑟𝛼/𝜉)

o 𝐻𝑙 = σ𝛼 ℎ𝛼𝑆𝛼
𝑧 +⋯ ℎ𝛼 ∈ [−𝑊,𝑊]

RMT coupled to Anderson insulator



𝒢 𝜖, 𝑁 = ln
𝑉𝑛,𝑛+1

𝐸𝑛+1
′ − 𝐸𝑛

′
Serbyn et al. PRX (2015)

Many-body ‘Thouless conductance’, effect of local perturbation on 

eigenstates

Delocalized Localized

XXZ spin chain



Spectral signatures of MBL

o Local spectral function of an eigenstate 𝜌𝑖,𝑛(𝜔)

𝜔

 Single-particle Green’s function

𝐺𝑖,𝑛
𝑅 𝑡 = −𝑖⟨Ψ𝑛 𝑆𝑖

+ 𝑡 , 𝑆𝑖
− 0 Ψ𝑛⟩𝜃(𝑡)

𝜌𝑖,𝑛(𝜔)

Infinite temperature (𝛽 → 0), 𝜌𝑖
𝑡ℎ 𝜔 = (1/𝐷)σ𝑛 𝜌𝑖,𝑛(𝜔) Hilbert space 

dimension 𝐷

o Thermal spectral function

o Typical spectral function

𝜌𝑖
𝑡𝑦𝑝

𝜔 = exp
1

𝐷
෍

𝑛

ln 𝜌𝑖,𝑛 𝜔

→ 0 In the MBL state

RMT



𝜌
𝑖𝑡𝑦
𝑝
𝜔

Typical spectral function

RMT

Thouless conductance Thermal spectral function

𝜌
𝑖𝑡
ℎ
𝜔

Bubble is localized due to back reaction of the insulator

𝑊 = 1
𝑉 = 0.1
𝜉 = 0.4RMT (N=8) + 𝑀(=1,… , 6) spins

0
1
2
3
4

5
6



𝑅

V𝑒−𝑅/𝜉

Level spacing 𝛿𝑅 ∼ 𝛿𝜖 exp(−𝑅
𝑑)

Matrix element 

𝐽𝑅 ∼ 𝑉 ෩Ψ𝑏 𝑐𝑖
† ෩Ψ𝑏′ exp(−𝑅/𝜉)

∼ 𝑉 𝛿𝜖𝜌 𝜔 exp(−R/𝜉)

How does the instability argument fail?

𝐽𝑅
𝛿𝑅

∼
𝑉

𝛿𝜖
exp

𝑅𝑑

2
−
𝑅

𝜉
exp(

1

2
ln 𝜌(𝜔))

𝐽𝑅
𝛿𝑅 𝑡𝑦𝑝

∼
𝑉

𝛿𝜖
exp

𝑅𝑑

2
−
𝑅

𝜉
𝜌𝑡𝑦𝑝 𝜔 → 0

When enough number of Anderson sites are 

coupled to the bubble.



Conclusions

o Solvable toy models  controlled calculation of spectral function. 

SYK or Hubbard model coupled to Anderson localized sites.

 Bubble gets destroyed via a dynamical transition for large 

localization length, 𝜉 > 𝑁1/𝑑.

o For small localization length, 𝜉 < 𝑁1/𝑑, instability argument fails due to

vanishing of typical spectral function due to back reaction of the insulator.  

MBL

Bubble

o Arguments for instability of localized state

in the presence of thermal bubble in 𝑑 > 1

Thermal bubble is not an obstruction of MBL in 𝑑 > 1.  



Thank you!



Hubbard model bubble

‘Large dimensional’ Hubbard model with 𝑁 sites as bath.

𝐻𝑏 =
1

𝑁
෍

𝑖𝑗𝜎

𝑡𝑖𝑗,𝜎𝑐𝑖𝜎
† 𝑐𝑗𝜎 + 𝑈෍

𝑖

𝑛𝑖↑𝑛𝑖↓

Solved via single-site dynamical mean field theory (DMFT)

Use iterative perturbation theory (IPT) as impurity solver 

Hubbard 
Model

Non-interacting part – single-particle GOE random matrix



RMT

RMT RMT + 𝑀 spin

𝐽𝑅
𝛿𝑅

∼ exp
𝜋𝑅2

2
−
𝑅

𝜉

 𝜋𝑅2 = 𝑀 > 𝑀𝑚𝑖𝑛 ∼ 1/𝜉2



Numerical testV(𝑆𝑏
+𝑆𝛼

− + ℎ. 𝑐. )

𝑁-spin RMT 𝑁 + 1-spin RMT

bath
𝑁-spin RMT

+ 1 loose spin

vs.

‘Test spin’

Is the test spin 

thermalized ?

𝑆𝑧 → 0

V


