Stability of many-body localization in two and higher dimension

Sumilan Banerjee

Indian Institute of Science

Correlation and Disorder in Classical and Quantum Systems ICTS, June 2, 2017

Congratulations to HRK and Chandan for inspiring generations of students!!

Stability of many-body localization in two and higher dimension

Ehud Altman (UC Berkeley) Ionut-Dragos Potirniche (UC Berkeley)

Anderson localization

Anderson (single-particle) localization (1958)

Localized

 $|\psi_{\alpha}(r)|^2 \sim e^{\frac{|r-r_{\alpha}|}{\xi}}$

Abrahams et al. Scaling theory of localization (1979) Lee & Ramakrishnan (1985), ...

Many-body localization (MBL)

All states localized

 $|\psi_{\alpha}(r)|^{2} \sim \frac{e^{-\frac{|r-r_{\alpha}|}{\xi}}}{\xi^{d}}$

$$\mathcal{H} = -t \sum_{\langle ij \rangle} \left(c_i^{\dagger} c_j + h. c. \right) - \sum_i \varepsilon_i n_i + V \sum_{\langle ij \rangle} n_i n_j \qquad \varepsilon_i \in [-W, W]$$
$$= \sum_{\alpha} \epsilon_{\alpha} c_{\alpha}^{\dagger} c_{\alpha} + \sum_{\alpha \beta \gamma \delta} V_{\alpha \beta \gamma \delta} c_{\alpha}^{\dagger} c_{\beta}^{\dagger} c_{\gamma} c_{\delta} \qquad \text{Add interaction}$$

At high energies interaction connects between $\sim \exp(L^d)$ localized states ! Can localization survive?

Many-body localization (MBL)

Yes! For sufficiently strong disorder

Basko, Aleiner, Altshuler (2005); Gornyi, Mirlin, Polyakov (2005)

Oganesyan and Huse (2007), Pal and Huse (2010),

Existence of MBL \rightarrow

- o 1D
- -- Numerical evidence
- -- Mathematical proof

Oganesyan and Huse (2007), Pal and Huse (2010),

Imbrie (2016)

Existence of MBL \rightarrow

 \circ General dimension, e.g. d > 1only perturbative proof Basko, Aleiner, Altshuler (2005), Gornyi, Mirlin, Polyakov (2005)

Perturbative treatment for weak interaction, $V/\Delta_{\xi} \ll 1$

V, interaction strength

 $\Delta_{\boldsymbol{\xi}}$, level spacing within a localization volume

 Are there nonperturbative effects that can destabilize MBL in higher dimension?

Stability of MBL in the presence of ergodic grain?

De Roeck and Huveneers (2016)

Outline

- Introduction to MBL.
- \circ Instability argument for d > 1.

 Solvable models and exact diagonalization studies to test the instability argument.

• Conclusions.

Models for MBL

Disordered interacting fermions

Disordered spin chains

Ο

$$\mathcal{H} = -t \sum_{\langle ij \rangle} \left(c_i^{\dagger} c_j + h. c. \right) - \sum_i \varepsilon_i n_i + V \sum_{\langle ij \rangle} n_i n_j \qquad \varepsilon_i \in [-W, W]$$

Hilbert space dimension $D = 2^N$

$$\mathcal{H} = J \sum_{i} (S_{i}^{+} S_{i+1}^{-} + h.c.) + J_{z} \sum_{i} S_{i}^{z} S_{i+1}^{z} + \sum_{i} h_{i} S_{i}^{z} \qquad h_{i} \in [-W, W]$$

• Disordered Hubbard model, transverse field Ising model, ...

Many-body eigenstates $\mathcal{H}|\Psi_n\rangle = E_n|\Psi_n\rangle$ Bounded spectrum

Localization and thermalization in eigenstates

Diagnostic of MBL

Many-body localization

 \Rightarrow Lack of thermalization in a generic system!

Localization and thermalization

Thermalization or ergodicity

- \Rightarrow "Eigenstate thermalization hypothesis" (ETH)
- Deutsch 91, Srednicki 94

Generic high-energy eigenstates $|E\rangle$ (finite energy density above ground state)

→ Eigenstates of <u>thermalizing</u> system appear thermal to all local measurements

$$\circ \ \rho_A = \mathrm{Tr}_{\mathrm{B}} |E\rangle \langle E| \to \frac{1}{Z_A} \ e^{-\beta H_A}$$

 $\circ S_A = -\mathrm{Tr}[\rho_A \ln \rho_A] = s(E)L^d \quad \text{Volume law}$

ETH fails for MBL states

Area law entanglement

 $S_A \propto L^{d-1}$

Effective model of MBL

$$H = \sum_{\alpha} \epsilon_{\alpha} c_{\alpha}^{\dagger} c_{\alpha} + \sum_{\alpha \beta \gamma \delta} V_{\alpha \beta \gamma \delta} c_{\alpha}^{\dagger} c_{\beta}^{\dagger} c_{\gamma} c_{\delta}$$
$$c_{\alpha}^{\dagger} = \sum_{i} \psi_{\alpha}(i) c_{i}^{\dagger}$$

MBL fixed point \rightarrow Emergent integrability \rightarrow Complete set of quasi local integrals of motion (LIOMs) $\tilde{n}_{\alpha} = \tilde{c}_{\alpha}^{\dagger} \tilde{c}_{\alpha}$

Huse & Oganesyan (2013) Serbyn et al. (2013)

$$H_l = \sum_{\alpha} \epsilon_{\alpha} \tilde{n}_{\alpha} + \sum_{\alpha\beta} U_{\alpha\beta} \tilde{n}_{\alpha} \tilde{n}_{\beta} + \cdots \qquad U_{\alpha\beta} \sim e^{-|r_{\alpha} - r_{\beta}|/\xi}$$

$$\tilde{c}_{\alpha}^{\dagger} \simeq c_{\alpha}^{\dagger} + \sum_{\beta\gamma\delta} \frac{V_{\delta\gamma\beta\alpha}}{\epsilon_{\alpha} + \epsilon_{\beta} - \epsilon_{\gamma} - \epsilon_{\delta}} c_{\delta}^{\dagger} c_{\gamma}^{\dagger} c_{\beta} + \cdots \qquad \text{Basko, Aleiner, Altshuler (2005)}$$

Effective Hamiltonian corresponding to real-space RG fixed point

Dasgupta-Ma RG Phys. Rev. B 22, 1305 (1980) Vosk & Altman (2012,2014)

- Condition persists to $t \to \infty$
- 2. Quantum dynamics
- 3. Area law, $S_A \sim L^{d-1}$
- 4. Discrete local spectra

- condition is lost
- 2. Classical hydrodynamics
- 3. Volume law, $S_A \sim L^d$
- 4. Continuous local spectra $\rho_i(\omega)$

Spectral signatures of MBL

Local spectral function of an eigenstate

 $\rho_{i,n}(\omega)$

 $\leftarrow \text{Single-particle Green's function} \\ G_{i,n}^{R}(t) = -i\langle \Psi_n \left| \left\{ c_i(t), c_i^{\dagger}(0) \right\} \right| \Psi_n \rangle \theta(t)$

o Thermal spectral function

$$\rho_i^{th}(\omega) = \frac{1}{Z} \sum_n e^{-\beta E_n} \rho_{i,n}(\omega)$$

* Generically, $\rho_i^{th}(\omega)$ does not contain information about localization at $T \neq 0$ Infinite temperature $(\beta \to 0)$, $\rho_i^{th}(\omega) = (1/D) \sum_n \rho_{i,n}(\omega)$ Hilbert space dimension D

Delocalized state, $\rho_i^{th}(\omega) = \rho_{i,n}(\omega)$ for $T \to \langle E \rangle = E_n$ \leftarrow ETH

Is MBL stable in the presence of a thermal bubble?

No! for $d \ge 2$

De Roeck and Huveneers, PRB (2017)

Instability argument \rightarrow

A finite 'thermal bubble' (disorder fluctuation) within a MBL

 $H = H_b + H_l + H_{bl}$

• Ergodic bubble \rightarrow RMT $H_b(N)$, fermions c_i^{\dagger}

GOE random $2^N \times 2^N$ matrix Level spacing $\delta_{\epsilon} \sim \mathcal{W}/2^N$

 $\underbrace{\mathsf{MBL}}_{\alpha} \rightarrow H_{l} = \sum_{\alpha} \epsilon_{\alpha} \tilde{n}_{\alpha} + \sum_{\alpha\beta} \sum_{\alpha\beta} \tilde{n}_{\alpha} \tilde{n}_{\beta} + \cdots$ $\widetilde{n}_{\alpha} = a_{\alpha}^{\dagger} a_{\alpha} \qquad a_{\alpha}^{\dagger} = \sum_{i} \psi_{\alpha}(i) a_{i}^{\dagger} + \cdots$ $\circ \text{ Coupling, } H_{bl} = \sum_{i\alpha} (V_{i\alpha} c_{i}^{\dagger} a_{\alpha} + h.c.) \qquad V_{i\alpha} \sim V \exp(-r_{\alpha}/\xi)$

Can the single bubble destroy the entire MBL system?

 \circ RMT Matrix element, ETH \rightarrow

$$\langle \Psi_n \left| c_i^{\dagger} \right| \Psi_m \rangle \simeq \sqrt{\delta_{\epsilon} \rho(\omega)} \eta_{n,m} \qquad \omega = E_n - E_m$$

$\rho(\omega) \rightarrow$ Single-particle spectral function of the bubble

The site is absorbed into the bubble if $\frac{V \left| \langle \Psi_n \left| c_i^{\dagger} \right| \Psi_m \rangle \right|}{\delta_{\epsilon}} \gg 1$

 \Rightarrow non-zero Fermi-Golden rule decay rate.

<u>Assumption:</u> The expanded bubble remains a 'featureless' RMT \rightarrow the spectral function does not change

$$\rho(\omega) \to \tilde{\rho}(\omega) \qquad \qquad \delta_{\epsilon} \to \tilde{\delta}_{\epsilon} = \delta_{\epsilon}/2$$

Thermal bubble grows! A better bath!

Instability of MBL in higher dimension

Level spacing $\delta_R \sim \delta_\epsilon \exp(-R^d)$

Matrix element $J_R \sim V \left| \langle \widetilde{\Psi}_b \left| c_i^{\dagger} \right| \widetilde{\Psi}_{b'} \rangle \right| \exp(-R/\xi)$ $\sim V \sqrt{\delta_{\epsilon} \rho(\omega)} \exp(-R/\xi)$

For
$$d > 1$$
, $\frac{J_R}{\delta_R} \sim \exp\left(\frac{R^d}{2} - \frac{R}{\xi}\right) \gg 1$

→ No MBL in two and higher dimension ??!!!

Hard to prove or disprove, numerics in $d \ge 2$ is difficult

`Solvable' `Toy' models of the thermal bubble coupled to Anderson insulator

- Bubble Sachdev-Ye-Kitaev (SYK)
 model with *N* sites
 Cohechle in Jamme N
- --- Solvable in large-N
- Bubble 'Large dimensional' Hubbard model
- --- Solvable via DMFT
- Bubble RMT
- --- Exact diagonalization (ED) of small systems

 $\circ \xi \gtrsim N^{\frac{1}{d}}$

 $\circ \xi < N^{-\overline{d}}$

- Dynamical transition in spectral function \rightarrow Instability argument breaks down
- $ED \rightarrow$ Instability argument breaks down

How does the spectral function change due to coupling to large number of localized sites in d > 1?

- Sachdev-Ye-Kitaev (SYK) model.
 - -- Solvable model of thermalization.

Transition in bath spectral function due to back reaction of the insulator.

• Self-consistency for Green's function $(N \rightarrow \infty)$

$$G^{-1}(\omega) = \omega + \mu - \Sigma_{\rm J}(\omega)$$

 $\Sigma_{\rm J}(\tau) = -J^2 G^2(\tau) G(-\tau)$

Sachdev & Ye, PRL (1993) Kitaev, KITP (2015) Sachdev, PRX (2015)

$$P(J_{ijkl}) \sim e^{-\frac{\left|J_{ijkl}\right|^2}{J^2}}$$

→ Diverging DOS for $\omega \to 0$, $G(\omega) \sim 1/\sqrt{\omega}$

Solvable model for thermalization and quantum chaos. -- Lyapunov exponent, $\lambda_L = 2\pi T$ Maximally chaotic, like a black hole \rightarrow model for holography

 \rightarrow Use as a model for thermal bubble for large but finite N

Coupling to localized sites

 $\epsilon_{\alpha} \in [-W, W]$

$$H_l = \sum_{\alpha} \epsilon_{\alpha} a_{\alpha}^{\dagger} a_{\alpha}$$

Fixed $\{\epsilon_{\alpha}\}$, no disorder averaging

 $\alpha = 1, \dots, M$

$$H_{bl} = \frac{1}{\sqrt{N}} \sum_{i\alpha} (V_{i\alpha} c_i^{\dagger} a_{\alpha} + h.c.)$$

Random coupling

 $P(V_{i\alpha}) \sim \exp(-|V_{i\alpha}|^2/V_{\alpha}^2)$

 $V_{\alpha}^2 = V^2 \exp(-r_{\alpha}/\xi)$

Self-consistency equations for Green's functions

 V^2

 $\mathcal{G}_{\alpha}(\omega)$

 J^2

 V^2

 $G(\omega)$

+

 \circ SYK model+ localized sites, large N

Disorder averaging over J_{ijkl} , $V_{i\alpha}$ \rightarrow

$$G^{-1}(\omega) = \omega - \Sigma_{J}(\omega) - \frac{1}{N} \sum_{\alpha} V_{\alpha}^{2} G_{\alpha}(\omega)$$
$$G_{\alpha}^{-1}(\omega) = \omega + \epsilon_{\alpha} - V_{\alpha}^{2} G(\omega)$$

Fixed $\{\epsilon_{\alpha}\}$ realization

→ Bubble spectral function $\rho(\omega) \sim -\text{Im}G(\omega)$

Coupling V= 0.1 $\xi = 2$

N = 30 bath sites *M* localized sites

Coupling V = 0.1 $\xi = 10$

Thermal bubble is destroyed. Localized ??!!

Dynamical transition in bubble spectrum

Only sites within the localization length ξ strongly affects the bath

For $\xi \gg 1$,

 $\rightarrow M \approx \pi \xi^2$ sites "strongly" coupled with coupling strength V with N bath sites

N SYK sites $M \simeq \pi \xi^2$ peripheral sites

Ergodic bubble in an Anderson insulator

$$\begin{split} H &= \frac{1}{(2N)^{3/2}} \sum_{ijkl} J_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l + \frac{1}{\sqrt{M}} \sum_{\alpha\beta} t_{\alpha\beta} a_{\alpha}^{\dagger} a_{\beta} \\ &+ \frac{1}{(MN)^{1/4}} \sum_{i\alpha} (V_{i\alpha} c_i^{\dagger} a_{\alpha} + h.c.) \end{split}$$

SB & E. Altman, Phys. Rev. B 95, 134302 (2017)

 $p > 1 \rightarrow$ Perturbative fixed point

- \circ Fermi liquid state at infinite *N*.
- Finite *N*, quantum dot

→ Many body localization at low $T < T_c$ Altshuler, Gefen, Kamenev & Levitov, PRL (1997)

→ Ergodic bubble is destroyed for $\xi > N^{1/d}$

→ After adding ~ *N* sites the bubble flows to the perturbative fixed point at low energies $\omega < \omega_N^*$.

$$\omega_N^* \simeq (V^4/W^2 J) e^{-4\sqrt{N/\pi\xi^2}}$$

→ Non-perturbative effects of ergodic grain are not important?
→ Not an obstruction to MBL at low but finite temperature?

Ergodic grain: Hubbard model with *N* sites

seems to hold!

Thermal spectral function is insufficient

Need to look into spectral properties of eigenstates.

Exact diagonalization

RMT coupled to Anderson insulator

 $H = H_b + H_l + H_{bl}$

• RMT $H_b(N)$, N interacting spins S_i GOE random $2^N \times 2^N$ matrix Level spacing $\delta_{\epsilon} \sim W/2^N$

$$\circ \quad H_l = \sum_{\alpha} h_{\alpha} S_{\alpha}^{Z} + \cdots \qquad \qquad h_{\alpha} \in [-W, W]$$

• Coupling, $H_{bl} = \sum_{i\alpha} (V_{\alpha} S_i^+ S_{\alpha}^- + h.c.)$ $V_{\alpha} \sim V \exp(-r_{\alpha}/\xi)$

Many-body 'Thouless conductance', effect of local perturbation on eigenstates

$$\mathcal{G}(\epsilon, N) = \ln \frac{|V_{n,n+1}|}{E'_{n+1} - E'_n}$$

Serbyn et al. PRX (2015)

XXZ spin chain

Spectral signatures of MBL

Local spectral function of an eigenstate

 $\rho_{i,n}(\omega)$

 $\leftarrow \text{Single-particle Green's function} \\ G_{i,n}^{R}(t) = -i\langle \Psi_n | \{S_i^+(t), S_i^-(0)\} | \Psi_n \rangle \theta(t)$

• Thermal spectral function

Infinite temperature ($\beta \rightarrow 0$), $\rho_i^{th}(\omega) = (1/D) \sum_n \rho_{i,n}(\omega)$

Hilbert space dimension *D*

• Typical spectral function

$$\rho_i^{typ}(\omega) = \exp\left(\frac{1}{D}\sum_n \ln \rho_{i,n}(\omega)\right)$$

 $\rightarrow 0$ In the MBL state

Bubble is localized due to back reaction of the insulator

How does the instability argument fail?

Level spacing $\delta_R \sim \delta_\epsilon \exp(-R^d)$

Matrix element $J_R \sim V \left| \langle \widetilde{\Psi}_b \left| c_i^{\dagger} \right| \widetilde{\Psi}_{b'} \rangle \right| \exp(-R/\xi)$ $\sim V \sqrt{\delta_{\epsilon} \rho(\omega)} \exp(-R/\xi)$

$$\frac{J_R}{\delta_R} \sim \frac{V}{\sqrt{\delta_\epsilon}} \exp\left(\frac{R^d}{2} - \frac{R}{\xi}\right) \exp\left(\frac{1}{2}\ln\rho(\omega)\right)$$
$$\left(\frac{J_R}{\delta_R}\right)_{typ} \sim \frac{V}{\sqrt{\delta_\epsilon}} \exp\left(\frac{R^d}{2} - \frac{R}{\xi}\right) \sqrt{\rho_{typ}(\omega)} \to 0$$

When enough number of Anderson sites are coupled to the bubble.

Conclusions

• Arguments for instability of localized state in the presence of thermal bubble in d > 1 MBL Bubble

Solvable toy models \rightarrow controlled calculation of spectral function.
 SYK or Hubbard model coupled to Anderson localized sites.

→ Bubble gets destroyed via a dynamical transition for large localization length, $\xi > N^{1/d}$.

• For small localization length, $\xi < N^{1/d}$, instability argument fails due to vanishing of typical spectral function due to back reaction of the insulator.

Thermal bubble is not an obstruction of MBL in d > 1.

Thank you!

Hubbard model bubble

'Large dimensional' Hubbard model with N sites as bath.

$$H_b = \frac{1}{\sqrt{N}} \sum_{ij\sigma} t_{ij,\sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_i n_{i\uparrow} n_{i\downarrow}$$

Non-interacting part – single-particle GOE random matrix

Solved via single-site dynamical mean field theory (DMFT)

Use iterative perturbation theory (IPT) as impurity solver

$$\frac{J_R}{\delta_R} \sim \exp\left(\frac{\pi R^2}{2} - \frac{R}{\xi}\right)$$

$$\rightarrow \pi R^2 = M > M_{min} \sim 1/\xi^2$$

