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               Population Genetics Course 
 
                  Finite Populations and Molecular Evolution and Variation 
 
(sections 4 and 5 are most relevant to the course; the others are for 
information only) 
   
              

1.  Change in inbreeding coefficient in a Wright-Fisher population 

of size N 

  

Let the inbreeding coefficient in generation t be Ft.  Consider a randomly 

chosen individual (if mating is at random, this is equivalent to choosing a 

random pair of alleles at a locus) of this generation.  The chance that one of 

the two alleles at a locus is a copy of a given allele in the preceding 

generation is 1/2N, since there are 2N distinct alleles at the locus, so the 

chance that both alleles are derived from this allele is (1/2N)2.  

 There are 2N alleles present in the population in generation  

t-1, so the chance that the two chosen alleles are copies of the same allele 

from generation t-1, and hence are identical by descent, is 2N x (1/2N)2 = 

1/2N.   

 There is thus a probability 1-1/2N that the pair are copies of 

two different alleles in generation t-1, in which case their probability of 

identity by descent is F
t-1

.   

 We therefore obtain the recurrence relation: 

 

 F
t
 = 1/(2N) + (1-1/2N)F

t-1
                                  ((1) 

 

Subtracting both sides from 1, and defining P as 1-F, we get 

 

 P
t
 = 1-F

t
 = (1-1/2N) P

t-1 

 

so that  

  P
t
 = (1-1/2N)tP

0
  P

0
 exp -(t /2N)                      (2) 

 

2.  The Wahlund Effect 

  

Suppose that we have a set of populations, each of which is in Hardy-

Weinberg equilibrium, but which differ in their allele frequencies at a biallelic 

locus.  The mean and variance of the set of allele frequencies can be written 

as E{p} and 
p

2, respectively (E denotes the operation of taking a mean, 

often called an expectation).   

 Under drift in a set of isolated populations that all started 

with the same initial allele frequency p0, E{p} = p0.  
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 Consider the mean frequency of the A1A1 homozygotes; this 

is the mean of p
i

2, where p
i
 is the frequency of A in the ith population.  But 

the variance of allele frequency is equal to the mean of (p
i
- E{p})2, which can 

be rewritten as 

  

         
p

2 = E{p2} – (E{p})2                                           (3)  

 

where E{p2} is the mean of the p
i

2. (you can check this for yourself!). 

 

 Hence, the mean frequency of A1A1 is equal to 
p

2 + (E{p})2.   

A similar calculation shows that the mean frequency of A2A2 homozygotes is 

equal to 
p

2+(E{q})2 (note that 
q

2= 
p

2, since q = 1-p).  

 Since genotype frequencies sum to 1, the mean frequency of 

heterozygotes, A1A2 is equal to 2 E{p}E{q}) - 2
p

2. 

 The mean frequency of heterozygotes over all populations is 

thus reduced below that expected under Hardy-Weinberg equilibrium in a 

single population with alllele frequency E{p}, while the homozygote 

frequencies are increased.   

  

 This is the Wahlund Effect. 

 

3.  Relation between F and 
p

2 

  

In the above set of populations, there is a probability E{p} that a randomly 

chosen gene is A1 in state.  By definition, the probability that the other gene 

at the same locus of the individual from which this gene was drawn is 

identical by descent is F, in which case the individual is A1A1.   

 There is a probability 1-F  that the other gene is non-identical 

by descent, in which case there is a probability E{p} that it is A1.  Hence, the 

probability that a random individual from the set of populations has genotype 

A1A1 (which is equivalent to the above mean frequency of A1A1) is  

  

 F E{p} + (1-F) (E{p})2= (E{p})2+ F E{p}E{q}               ((4) 

 

Comparison of this with the earlier formula shows that 

 

  
p

2 = F E{p}E{q} 
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i.e. F = 
p

2/ ( E{p}E{q})                                                 ((5)                              

  

  

 This relation is very widely used in describing genetic 

differences between populations, as we will see in a later lecture. 

 

 Importantly, it implies that, under random genetic drift in a 

Wright-Fisher population, the variance in gene frequency between 

populations increases in parallel with the approach to homozygosity of each 

population. 

 

4.  Fixation probabil ities and the rate of molecular evolution 

  

The results derived in ssection 1 imply that a population subject to a purely 

neutral process of pure genetic drift will approach complete homozygosity 

for any alleles that may be segregating initially, with probability one.  Since 

drift cannot alter mean allele frequencies, this means that a population that 

was initially segregating for an allele present at frequency p0 will end up 

either fixed for this allele (with probability p0) or having lost it (probability 1- 

p0), so that the mean allele frequency remains at p0.   

 

Under neutrality, therefore, an allele with initial frequency p0 has a probability 

of fixation of p0. 

  

Another way of looking at this, for the case of a new mutation present as a 

single copy, is as follows.  There are 2N potentially distinct alleles at an 

autosomal locus in a population of N breeding adults.  Only one out of these 

2N alleles will be the ancestor of all alleles at the locus at some time in the 

future, when full homozygosity has been attained.  

  

The probability that a given allele is the lucky one is thus 1/2N, under 

neutrality.  The probability of fixation of a new neutral mutation, which is 

present initially as a single copy, is thus 1/2N.   

  

If there is a mutation rate u to new neutral variants at a particular locus, the 

expected number of new mutations that arise in the population per 

generation is 2Nu.  But the probability that any one of these is ultimately 

fixed in the population is 1/2N, so that the net rate per generation at which 

new mutations arise that ultimately become fixed is 

 

 K = 2Nu x (1/2N) = u                                    ((6) 

 

 In a steady-state situation, the mean number of mutations 

that become fixed each generation must also equal K, so that K is often 

referred to as the rate of substitution– over a period of T generations, KT 

mutations are expected to become fixed. This quantity can be related to 
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data on DNA sequence divergence between species with known divergence 

dates, on the hypothesis of neutral molecular evolution. 

 

 

5.  The theory of the coalescent process; sequence diversity 

 

Suppose we consider a pair of alleles at a locus sampled from a Wright-Fisher 

population of size N at a given point in time.  From what has been shown in 

section 1, it is evident that there is a probability of 1/2N that the two 

alleles are replicates of a single ancestral allele in the previous generation.  If 

this happens, the two alleles are said to coalesce.  In general, the probability 

that two alleles coalesce t generations back in time is: 

 

 Pr(t) = (1-1/2N)t-1(1/2N)                             ((7) 

 

since this is the probability that no coalescent events happen over t-1 

generations, followed by a coalescent in generation t.   

 This is the well-known geometric distribution.  From the 

properties of this distribution, the mean time to coalescence of a pair of 

alleles is 2N generations, and the variance of the coalescent time is 

approximately (2N)2 if N is large.   

  

 Under the infinite sites model of variability, at most one 

mutation can occur at a nucleotide site on the genealogical tree connecting 

two sampled alleles, whose expected length is twice the mean coalescent 

time i.e. 4N.  If the mutation rate per site is u, then the frequency with which 

two alleles differ at a given site is equal to the product of the mutation rate 

and the time separating them i.e. 

 

                                                            (8)  

 

 

where  = 4Nu is the scaled mutation rate.  

 This relates the pairwise nucleotide site diversity measure of 

Lecture 2 to the properties of a finite population with mutation. 

  

 This reasoning can be extended to samples of arbitrary size k.  

If the population size is fairly large, it is reasonable to assume that at most 

one coalescent event can occur among a set of alleles in a given generation, 

so that the genealogy connecting the alleles is a bifurcating tree with a 

steadily decreasing number of nodes (see diagram on p. 208 of the 

textbook).  With i alleles present at a given point in time, the total number of 

ways in which coalescent events can occur is ji = i(i-1)/2, so that the 

probability of an event is ji 2N instead of 2N.   

 Coalescent events thus occur fast at first, and then more and 

more slowly as the number of distinct alleles decreases.   

  



 

 

                                                    5 

 

 

  

  

 The mean time back to the common ancestor of a sample of 

k alleles can be shown to be 4N(1-1/k), so that, for a large sample of alleles, 

about half the total average time to the common ancestor is taken up with 

the coalescence of the last remaining pair of alleles.   

  

 The mean sum of lengths of all the branches in a gene tree 

can found as follows.  The mean time to the next coalescence when there are 

i alleles present immediately after a coalescent event is, by the results 

derived above, 2N/ji =  4N/i(i-1).   

  

 There are i branches connecting these alleles to the next 

coalescent, so that the net contribution of this section of the tree to the 

mean total length of the tree is i x 4N/i(i-1) = 4N/(i-1).   

  

 The mean total length of the tree is obtained by summing 

over all values of i, from the initial value of n down to the final value of i = 2.  

It is thus equal to 4Nak, where ak is the sum from i = 1 to k-1 of (1/i).   

  

 Under the infinite sites model, where each new mutation is at 

a unique position in a given DNA sequence, the expected number of sites in a 

sequence of length m that are segregating in the sample, E{S}, is equal to 

the expected number of mutations (mu) that occur in the sequence per 

generation, times the total length of the tree i.e. 

 

         E{S}= m ak                                                                                                               (9)  

  

 This provides a useful method for estimating  from data on 

DNA sequence variation, by equating the observed number of segregating 

sites to the expectation given by equation (9), as we discussed in lecture 1. 

The method assumes equilibrium under neutrality, with a constant population 

size. 


