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Amorphous solids: inhomogeneous response

Varnik et al, PRL 2003

Shi et al, PRB 2005

in numerical simulations

what is the origin? transient/permanent ?



Model and Method

# supercooled liquid quenched to glassy 
temperature (T=0.2), following by aging.
# Response to imposed shear-rate
monitored.



Response to imposed shear-rate at finite T

# characteristic macro response (stress-overshoot); mapped to single particle displacements
# fluctuating velocity profiles; alternative probe: displacement with respect to quiescent state; maps similar to strain field
# region deemed active if displacement above a threshold; cluster analysis of active regions.
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Yielding: a percolation analysis - I

# active sites percolate for all imposed shear-rates, at strains corresponding to stress-overshoot.
# percolating cluster a 3d fractal object - finite size effects can localize clustering.
# beyond percolation, growth of active sites independent on imposed shear-rate; observation of 
further heterogeneities at small shear-rates.
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Yielding: a percolation analysis - II

# finite-size scaling 
analysis of percolation 
threshold as well as 
distribution cluster sizes 
indicate possible directed 
percolation scenario.
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Post-percolation: emergence of shearbands
density 1.2, T=0.2

density 1.3, T=0.1



Mobility of shear-band interface

# identify shearband interface; roughness depends on temperature
# diffusive growth of shearband width; depends on imposed shear-rate;
# fluidisation timescales diverge with decreasing shear-rate
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Transient heterogeneities: quantifying fluctuations
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measuring spatial variance in 
local MSD across layers parallel 
to direction of external drive

fluctuations non-
monotonic with strain 
duration; maximal at 
emergence of shear-
band; peak-height 
increases with age, 
decreasing shear-rate.
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Transient fluctuations: age, temperature.. 

occurrence of shearbands: prominent with low temperature, low shear-rate, longer ages.



Conclusion

# onset of flow in glass studied for different imposed shear rates.
# occurrence of transient flow heterogeneities
# yielding associated with a percolation of active sites: directed percolation ?
# shearbands emerge, for small shear-rates, after percolation
# transient heterogeneities related to aging, external drive, temperature.
# similar to dynamical heterogeneities in quiescent supercooled liquids 
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future work: extend to other shear protocols (with S. Sastry); micro-meso modeling (with K. Martens)


