Velocity Distribution of Driven Granular Gases

V. V. Prasad (Institute of Mathematical Sciences, Chennai)

Dibyendu Das (IIT Bombay, Mumbai)

Sanjib Sabhapandit (RRI, Bangalore)

R. Rajesh (Institute of Mathematical Sciences, Chennai)

ArXiv:1701.03600

Inelastic particles e.g., steel balls

Is the steady state velocity distribution universal?

If yes, what is the distribution?

Some experiments

$$P(v) \sim e^{-a|v|^{\beta}}, \ v \gg v_{rms}$$

Aranson et al, PRE (2002)

Rouyer et al, PRL (2000)

Universal, non-Maxwellian, β=3/2

Other experiments

$$P(v) \sim e^{-a|v|^{\beta}}, \ v \gg v_{rms}$$

Non-universal, non-Maxwellian, varying β

Modelling

Driving
$$\longrightarrow v \rightarrow v + \eta$$

Collision rate ∝ Iv₁-v₂I : Hard sphere model

Collision rate = const : Maxwell model

Numerical

 $-\ln(-\ln(\widetilde{f}_{(MD)}^{\widetilde{s}}(c)))$ + const

-4<u>-</u> 0 0.5 In(c) Moon et al, PRE (2001)

e = 0.7

-0.5

e = 0.1

e = 0.5

e = 0.3

e = 0.9

1.5

van Zon et al, PRE (2005)

Gaussian versus non-Gaussian

Two approaches

1. Boltzmann equation for inelastic gas

$$P(v) \propto e^{-a|v|^{3/2}}$$

2. Simple models like Maxwell model

$$P(v) \propto e^{-a|v|}$$

Universal

But

If driving
$$\longrightarrow v \rightarrow v + \eta$$

Then V_{CM} does a random walk $\Rightarrow \langle v^2 \rangle \sim t$

⇒ no steady state

Assume wall much heavier than particle

$$v \rightarrow -r_w v + \eta$$

Now steady state is reached

Prasad et al, EPL (2013), PRE (2014)

Question: What is P(v)?

Results

- One component Maxwell gas
 - ★ P(v) highly non-universal
 - * Tail of $P(v) \sim tail of P(\eta)$
 - ★ Exact equation for moments: look at ratios
 - ★ Intuitively, tails populated by driven particles
 - ★ Valid for more components with uniform driving

Results (tentative)

- Two-component Maxwell gas
 - ★ Driving only in x-direction
 - Universal in y-direction for distribution faster than Gaussian (see fig)

Outlook

Including hard sphere interactions within the kinetic theory approach