(3) PennState

Adventures in Perturbation Theory

Jacob Bourjaily
 Penn State University \& The Niels Bohr Institute

based on work in collaboration with Herrmann, Langer, Trikas
McLeod, von Hippel, Vergu, Volk, Wilhelm; ...

The Niels Bohr
International Academy

Organization \& Outline

-Spiritus Movens: the surprising simplicity of QFT

- Loop Integrands
- generalized unitarity (generally speaking)
- building bases big-enough (for e.g. the Standard Model)
- non-planar power-counting (a modest proposal)
- Loop Integration: what makes an integral easy?
- integration polemics (what constitutes being integrated?)
- direct integration (made easy)
\uparrow Loop Integrals: their generic analytic structure
- a bestiary of Feynman integral Calabi-Yau geometries

Spiritus Movens the Surprising Simplicity of Scattering Amplitudes

Traditional Description of QFT

+Quantum Field Theory: the marriage of (special) relativity with quantum mechanics
+Theories (can be) specified by Lagrangians-or equivalently, by Feynman rules for virtual particles

$$
\mathcal{L} \equiv-\frac{1}{4} \sum_{i}\left(F_{i \mu \nu}^{a}\right)^{2}+\sum_{J} \bar{\psi}_{J}(i \not D) \psi_{J}
$$

+Predicted probability (amplitudes) from path integrals (over virtual 'histories'):

Perturbation Theory and Loops

\uparrow Predictions (often) made perturbatively, according to the loop expansion: $\alpha \approx 1 / 137.036$

$$
\begin{aligned}
& p_{0}=\ggg+ \\
& g_{e}^{\text {thy }}=2+\frac{\alpha}{\pi}(1)+\frac{\alpha^{2}}{\pi^{2}}\left(\frac{3}{2} \zeta_{3}-\pi^{2} \log (2)+\zeta_{2}+\frac{197}{72}\right) \\
& \text { [Dirac (1933)] } \\
& =2.00231930435801 \ldots \\
& g_{e}^{\exp }=2.00231930436146 \ldots \\
& \text { [Feynman; Schwinger; Tomanaga (1947)] } \\
& \text { [Petermann (1957)] } \\
& \text { [Kinoshita (1990)] }
\end{aligned}
$$

- the most precisely tested idea in all of science!

Explosions of Complexity

-While ultimately correct, the Feynman expansion renders all but the most trivial predictionsinvolving the fewest particles, at the
lowest orders of perturbationcomputationally intractable or theoretically inscrutable
LOOPS,
TREES
AND THE
SEARCH
FOR NEW
PHYSICS

Maybe unifying the forces of nature isn't quite as hard as physicists thought it would be By Zvi Bern, Lance J. Dixon and David A. Kosower
[Bern, Dixon, Kosower, Scientific American (2012)]

Needs (Once) Beyond Our Reach

- Background amplitudes crucial for e.g. colliders

Supercollider physics
[Rev.Mod.Phys. 56 (1984)]
E. Eichten
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510
I. Hinchliffe
Lawrence Berkeley Laboratory, Berkeley, California 94720
K. Lane
The Ohio State University, Columbus, Ohio 43210
C. Quigg
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510
Eichten et al. summarize the motivation for exploring the $1-\mathrm{TeV}\left(=10^{12} \mathrm{eV}\right)$ energy scale in elementary particle interactions and explore the capabilities of proton-(anti)proton colliders with beam energies between processes, and discuss their intrinsic physics interest as well as their role as backgrounds to more exotic phenomena. The authors review the theoretical motivation and expected signatures for several new phe phenomena. The authors review the theoretical motivation and expected signatures for several new phemachine parameters and for experiment design.

+ Once considered computationally intractable
For multijet events containing more than three jets, the theoretical situation is considerably more primitive. A specific question of interest concerns the QCD four-jet background to the detection of $W^{+} W^{-}$pairs in their
nonleptonic decays. The cross sections for the elementary two \rightarrow four processes have not been calculated, and their complexity is such that they may not be evaluated in the foreseeable future. It is worthwhile to seek estimates of the four-jet cross sections, even if these are only reliable in restricted regions of phase space.

Needs (Once) Beyond Our Reach

- Background amplitudes crucial for e.g. colliders

+ Once considered computationally intractable

> For multijet events containing more than three jets, the theoretical situation is considerably more primitive. A specific question of interest concerns the QCD four-jet background to the detection of $W^{+} W^{-}$pairs in their
> nonleptonic decays. The cross sections for the elementary two \rightarrow four processes have not been calculated, and their complexity is such that they may not be evaluated in the foreseeable future. It is worthwhile to seek estimates of the four-jet cross sections, even if these are only reliable in restricted regions of phase space.

Needs (Once) Beyond Our Reach

- Background amplitudes crucial for e.g. colliders

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR

Fermi Natıonal Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.
[Nucl.Phys. B269 (1985)]

+ Once considered computationally intractable

> For multijet events containing more than three jets, the theoretical situation is considerably more primitive. A specific question of interest concerns the QCD four-jet background to the detection of $W+W^{-}$pairs in their nonleptonic decays. The cross sections for the elementary two \rightarrow four processes have not been calculated, and their complexity is such that they may not be evaluated in the foreseeable future. It is worthwhile to seek estimates of the four-jet cross sections, even if these are only reliable in restricted regions of phase space.

Needs (Once) Beyond Our Reach

- Background amplitudes crucial for e.g. colliders

$F\left(p_{\mathrm{r}}, p_{j}\right)=\left\{\left(p_{1} p_{4}\right)\left(p_{i} p_{j}\right)+\left(p_{1} p_{i}\right)\left(p_{j} p_{4}\right)-\left(p_{1} p_{j}\right)\left(p_{i} p_{4}\right)\right\} /\left(p_{1} p_{4}\right)$. Note that when evaluating A_{0} and A_{2} at crossed configurations of the momenta, care must be taken with the implicit deadence of the functions E, F and G on the momenta $p_{1}, p_{4}, p_{5}, p_{6}$ The diagrams D_{2}^{G} are listed below: $D_{2}^{\mathrm{G}}(1)=\frac{\delta_{2}}{s_{14} s_{25} s_{36}}\left\{\left[\left(p_{2}-p_{5}\right)\left(p_{3}-p_{6}\right)\right]\left[\left(p_{1}-p_{4}\right)\left(p_{3}+p_{6}\right)\right]-\left[\left(p_{2}-p_{5}\right)\left(p_{3}+p_{6}\right)\right]\right.$ $\left.\times\left[\left(p_{1}-p_{4}\right)\left(p_{3}-p_{6}\right)\right]+\left[\left(p_{2}+p_{5}\right)\left(p_{3}-p_{6}\right)\right]\left[\left(p_{1}-p_{4}\right)\left(p_{2}-p_{5}\right)\right]\right\}$, $D_{2}^{\mathrm{G}}(2)=\frac{1}{s_{25} s_{36}}\left\{2 E\left(p_{2}-p_{5}, p_{3}-p_{6}\right)-2 E\left(p_{3}-p_{6}, p_{2}-p_{5}\right)+\delta_{2}\left[\left(p_{2}-p_{5}\right)\left(p_{3}-p_{6}\right)\right]\right\}$, $D_{2}^{\mathrm{G}}(3)=$ \qquad $\frac{4}{s_{36} t_{125}}\left\{\left[\left(p_{1}+p_{2}-p_{5}\right)\left(p_{4}+p_{3}-p_{6}\right)\right] E\left(p_{2}, p_{3}\right)\right.$ $-\left[\left(p_{1}+p_{2}-p_{5}\right)\left(p_{4}-p_{3}+p_{6}\right)\right] E\left(p_{2}, p_{6}\right)$ $-\left[\left(p_{1}-p_{2}+p_{5}\right)\left(p_{4}+p_{3}-p_{6}\right)\right] E\left(p_{5}, p_{3}\right)$ $+\left[\left(p_{1}-p_{2}+p_{5}\right)\left(p_{4}-p_{3}+p_{6}\right)\right] E\left(p_{5}, p_{6}\right)$ $-\left[p_{1}\left(p_{2}-p_{5}\right)\right] E\left(p_{3}-p_{6}, p_{3}+p_{6}\right)-\left[p_{4}\left(p_{3}-p_{6}\right)\right] E\left(p_{2}+p_{5}, p_{2}-p_{5}\right)$ $\left.+\delta_{2}\left[p_{1}\left(p_{2}-p_{5}\right)\right]\left[p_{4}\left(p_{3}-p_{6}\right)\right]\right\}$, $D_{2}^{G}(4)=\frac{-2}{s_{36} t_{125}}\left\{E\left(p_{3}-p_{6,}, p_{3}+p_{6}\right)-\delta_{2}\left[p_{4}\left(p_{3}-p_{6}\right)\right]\right\}$, $D_{2}^{\mathrm{G}}(5)=\frac{-2}{s_{25} t_{125}}\left\{E\left(p_{2}+p_{s}, p_{2}-p_{s}\right)-\delta_{2}\left[p_{1}\left(p_{2}-p_{s}\right)\right]\right\}$, $D_{2}^{\mathrm{G}}(6)=\frac{\delta_{2}}{t_{125}}$, $D_{2}^{G}(7)=\frac{4}{s_{12} s_{36} t_{125}}\left\{\left[\left(p_{1}+p_{2}-p_{5}\right)\left(p_{4}+p_{3}-p_{6}\right)\right] E\left(p_{2}, p_{3}\right)\right.$ $\left.-\left[\left(p_{1}+p_{2}-p_{5}\right)\left(p_{4}-p_{3}+p_{6}\right)\right] E\left(p_{2}, p_{6}\right)-\left[p_{4}\left(p_{3}-p_{6}\right)\right] E\left(p_{2}, p_{2}-p_{5}\right)\right\}$, $D_{2}^{G}(8)=\frac{4}{s_{34} s_{25} t_{125}}\left\{\left[\left(p_{1}+p_{2}-p_{5}\right)\left(p_{4}+p_{3}-p_{6}\right)\right] E\left(p_{2}, p_{3}\right)\right.$ $\left.-\left[\left(p_{1}-p_{2}+p_{5}\right)\left(p_{4}+p_{3}-p_{6}\right)\right] E\left(p_{5}, p_{3}\right)-\left[p_{1}\left(p_{2}-p_{5}\right)\right] E\left(p_{3}-p_{6}, p_{3}\right)\right\}$,

Needs (Once) Beyond Our Reach

- Background amplitudes crucial for e.g. colliders

Discovery of Shocking Simplicity

+Within six months, Parke-Taylor stumbled on a simple guess-unquestionably a theorist's delight:

$=\frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle \cdots\langle n 1\rangle}$

Amplitude for \boldsymbol{n}-Gluon Scattering [PRL 56 (1986)]
Stephen J. Parke and T. R. Taylor
Fermi National Accelerator Laboratory, Batavia, Illinois 60510
(Received 17 March 1986)
A nontrivial squared helicity amplitude is given for the scattering of an arbitrary number of gluons to lowest order in the coupling constant and to leading order in the number of colors.
$p_{a}^{\mu} \equiv \sigma_{\alpha \dot{\alpha}}^{\mu} \lambda_{a}^{\alpha} \widetilde{\lambda}_{a}^{\dot{\alpha}}$

$$
\begin{aligned}
& \langle a b\rangle \equiv \operatorname{det}\left(\lambda_{a}, \lambda_{b}\right) \\
& {[a b] \equiv \operatorname{det}\left(\widetilde{\lambda}_{a}, \widetilde{\lambda}_{b}\right)}
\end{aligned}
$$

Perturbations of Parke-Taylor

\uparrow What about beyond the leading order?

$$
=\frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle \cdots\langle n 1\rangle}
$$

Perturbations of Parke-Taylor

\star What about beyond the leading order?

$$
=\frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle \cdots\langle n 1\rangle} \times
$$

$$
\{1+\ldots
$$

$$
1
$$

Perturbations of Parke-Taylor

\uparrow What about beyond the leading order?

Perturbations of Parke-Taylor

\star What about beyond the leading order?

9

Perturbations of Parke-Taylor

\uparrow What about beyond the leading order?

Perturbations of Parke-Taylor

\star What about beyond the leading order?

What About After Integration?

+ Integrate the Parke-Taylor 2-to-4 amplitude in sYM
- divergences exponentiate, leaving a finite remainder
\uparrow Heroically computed by Del Duca, Duhr, Smirnov in 2010, in terms of 'Goncharov' polylogarithms

$$
\text { The Two-Loop Hexagon Wilson Loop in } \mathcal{N}=4 \text { SYM }
$$

Vittorio Del Duca

PH Department, TH Unit, CERN CH-1211, Geneva 23, Switzerland
INFN, Laboratori Nazionali Frascati, 00044 Frascati (Roma), Italy
E-mail: vittorio.del.duca@cern.ch

Claude Duhr

Institute for Particle Physics Phenomenology, University of Durham
Durham, DH1 3LE, U.K.
E-mail: claude.duhr@durham.ac.uk

Vladimir A. Smirnov

Nuclear Physics Institute of Moscow State University
Moscow 119992, Russia
E-mail: smirnov@theory.sinp.msu.ru
[Del Duca, Duhr, Smirnov (2010)]

What About After Integration?

+ Integrate the Parke-Taylor 2-to-4 amplitude in sYM
- divergences exponentiate, leaving a finite remainder
\rightarrow Hero

What About After Integration?

- Integrate the Parke-Taylor 2-to-4 amplitude in sYM
- divergences exponentiate, leaving a finite remainder
\rightarrow Heroically computed by Del Duca, Duhr, Smirnov in 2010, in terms of 'Goncharov' polylogarithms

Classical Polylogarithms for Amplitudes and Wilson Loops
A. B. Goncharov, ${ }^{1}$ M. Spradlin, ${ }^{2}$ C. Vergu, ${ }^{2}$ and A. Volovich ${ }^{2}$
${ }^{1}$ Department of Mathematics, Brown University, Box 1917, Providence, Rhode Island 02912, USA ${ }^{2}$ Department of Physics, Brown University, Box 1843, Providence, Rhode Island 02912, USA

We present a compact analytic formula for the two-loop six-particle maximally helicity violating remainder function (equivalently, the two-loop lightlike hexagon Wilson loop) in $\mathcal{N}=4$ supersymmetric Yang-Mills theory in terms of the classical polylogarithm functions Li_{k} with cross-ratios of momentum twistor invariants as their arguments. In deriving our formula we rely on results from the theory of motives. [Goncharov, Spradlin, Vergu, Volovich (2010)]

$$
\begin{aligned}
R\left(u_{1}, u_{2}, u_{3}\right)= & \sum_{i=1}^{3}\left(L_{4}\left(x_{i}^{+}, x_{i}^{-}\right)-\frac{1}{2} \mathrm{Li}_{4}\left(1-1 / u_{i}\right)\right) \\
& -\frac{1}{8}\left(\sum_{i=1}^{3} \operatorname{Li}_{2}\left(1-1 / u_{i}\right)\right)^{2}+\frac{J^{4}}{24}+\frac{1}{2} \zeta_{2}\left(J^{2}+\zeta_{2}\right)
\end{aligned}
$$

Amplitudes: a Virtuous Cycle

Exploit Simplicity to build more powerful computational technology study, understand, explain it, \& explore its consequences

Constructing Integrands for Loop Amplitudes (constructively)

Novel Representations of Integrands

- Powerful new tools now exist for understanding and computing integrands in perturbation theory

Recursion Relations

Q-cuts and Forward Limits

Prescriptive Unitarity

Novel Representations of Integrands

- Powerful new tools now exist for understanding and computing integrands in perturbation theory

Prescriptive Unitarity

The Cuts of Loop Amplitudes

+ On-Shell Functions: scattering amplitudes, and functions built thereof-as networks of amplitudes

+ Locality: amplitudes independent, so multiplied
+ Unitarity: internal particles unseen, so summed

$$
f_{\Gamma} \equiv \prod_{i \in I}\left(\sum_{h_{i}, c_{i}} \int d^{d-1} \operatorname{LIPS}_{i}\right) \prod_{v \in V} \mathcal{A}_{v}
$$

The Cuts of Loop Amplitudes

+ On-Shell Functions: scattering amplitudes, and functions built thereof-as networks of amplitudes

- defined for all all quantum field theoriesexclusively in terms of physical (observable) states
+ can be used to reconstruct all loop amplitudes

$$
f_{\Gamma} \equiv \prod_{i \in I}\left(\sum_{h_{i}, c_{i}} \int d^{d-1} \operatorname{LIPS}_{i}\right) \prod_{v \in V} \mathcal{A}_{v}
$$

General, Generalized Unitarity

[Bern, Dixon, Kosower; Dunbar; ...]

+ Integrands are rational functions-so may be expanded into an arbitrary (but complete) basis:

$$
\mathcal{A}^{L}=\sum a_{i} \mathcal{I}_{i}^{L} \quad \mathcal{I}_{i} \in \mathfrak{B}
$$

General, Generalized Unitarity

[Bern, Dixon, Kosower; Dunbar; ...]

- Integrands are rational functions-so may be expanded into an arbitrary (but complete) basis:

$$
\mathcal{A}^{L}=\sum a_{i} \mathcal{I}_{i}^{L} \quad \mathcal{I}_{i} \in \mathfrak{B}
$$

\star Once an independent basis is chosen, coefficients are determined by (evaluations / cuts on) cuts

General, Generalized Unitarity

[Bern, Dixon, Kosower; Dunbar; ...]
\rightarrow Integrands are rational functions-so may be expanded into an arbitrary (but complete) basis:

$$
\mathcal{A}^{L}=\sum a_{i} \mathcal{I}_{i}^{L} \quad \mathcal{I}_{i} \in \mathfrak{B}
$$

\uparrow Once an independent basis is chosen, coefficients are determined by (evaluations / cuts on) cuts

General, Generalized Unitarity

[Bern, Dixon, Kosower; Dunbar; ...]
\downarrow Integrands are rational functions-so may be expanded into an arbitrary (but complete) basis:

$$
\mathcal{A}^{L}=\sum a_{i} \mathcal{I}_{i}^{L} \quad \mathcal{I}_{i} \in \mathfrak{B}
$$

\uparrow Once an independent basis is chosen, coefficients are determined by (evaluations / cuts on) cuts

つ

General, Generalized Unitarity

[Bern, Dixon, Kosower; Dunbar; ...]
\uparrow Integrands are rational functions-so may be expanded into an arbitrary (but complete) basis:

$$
\mathcal{A}^{L}=\sum a_{i} \mathcal{I}_{i}^{L} \quad \mathcal{I}_{i} \in \mathfrak{B}
$$

\uparrow Once an independent basis is chosen, coefficients are determined by (evaluations / cuts on) cuts

General, Generalized Unitarity

[Bern, Dixon, Kosower; Dunbar; ...]
\uparrow Integrands are rational functions-so may be expanded into an arbitrary (but complete) basis:

$$
\mathcal{A}^{L}=\sum a_{i} \mathcal{I}_{i}^{L} \quad \mathcal{I}_{i} \in \mathfrak{B}
$$

\star Once an independent basis is chosen, coefficients are determined by (evaluations / cuts on) cuts

General, Generalized Unitarity

[Bern, Dixon, Kosower; Dunbar; ...]
\uparrow Integrands are rational functions-so may be expanded into an arbitrary (but complete) basis:

$$
\mathcal{A}^{L}=\sum a_{i} \mathcal{I}_{i}^{L} \quad \mathcal{I}_{i} \in \mathfrak{B}
$$

\star Once an independent basis is chosen, coefficients are determined by (evaluations / cuts on) cuts

General, Generalized Unitarity

[Bern, Dixon, Kosower; Dunbar; ...]
\uparrow Integrands are rational functions-so may be expanded into an arbitrary (but complete) basis:

$$
\mathcal{A}^{L}=\sum a_{i} \mathcal{I}_{i}^{L} \quad \mathcal{I}_{i} \in \mathfrak{B}
$$

\star Once an independent basis is chosen, coefficients are determined by (evaluations / cuts on) cuts
¿What makes a basis a good basis?

A Basis "Big Enough" for Integrands in the Standard Model

Building a Basis 'Big Enough'

-WLOG: write loop-dependent numerators as sums of products of (translates of) inverse propagators:

$$
(\ell \mid Q)_{m}:=(\ell+Q)^{2}-m^{2}+i \epsilon \quad(\ell \mid Q):=(\ell \mid Q)_{m=0}
$$

$[\ell]:=\operatorname{span}_{Q}\{(\ell \mid Q)\} \quad \operatorname{rank}([\ell])=(d+2)$
$=\operatorname{span}\left\{\ell^{2}, \ell \cdot k_{i}, 1\right\} \operatorname{rank}\left([\ell]^{k}\right)=\binom{d+k}{d}+\binom{d+k-1}{d}$ $[\ell]^{k}:=\operatorname{span}_{Q_{i}}\left\{\prod_{i=1}^{k}\left(\ell \mid Q_{i}\right)\right\} \quad[\ell]^{0} \subset[\ell]^{1} \subset[\ell]^{2} \subset \cdots \subset[\ell]^{q}$
$\widehat{[\ell]^{q}}:=[\ell]^{q} \backslash[\ell]^{q-1} \quad[\ell]^{q}=1 \oplus \widehat{\ell \ell]^{1}} \oplus \widehat{[\ell]^{2}} \oplus \cdots \oplus \widehat{[\ell]^{q}}$

Building a Basis 'Big Enough'

-WLOG: write loop-dependent numerators as sums of products of (translates of) inverse propagators:

$$
(\ell \mid Q)_{m}:=(\ell+Q)^{2}-m^{2}+i \epsilon \quad(\ell \mid Q):=(\ell \mid Q)_{m=0}
$$

$[\ell]:=\operatorname{span}_{Q}\{(\ell \mid Q)\}$

$$
=\operatorname{span}\left\{\ell^{2}, \ell \cdot k_{i}, 1\right\}
$$

$$
\begin{array}{rr}
\ell^{2}=\widehat{\ell}^{2}-\mu^{2} & \ell^{i} \ell^{j} \notin[\ell] \\
\ell^{2}\left(=\widehat{\ell^{2}}-\mu^{2}\right) \in[\ell]
\end{array}
$$

$$
[\ell]^{k}:=\operatorname{span}_{Q_{i}}\left\{\prod_{i=1}^{k}\left(\ell \mid Q_{i}\right)\right\} \quad[\ell]^{0} \subset[\ell]^{1} \subset[\ell]^{2} \subset \cdots \subset[\ell]^{q}
$$

$$
\widehat{[\ell]^{q}}:=[\ell]^{q} \backslash[\ell]^{q-1} \quad[\ell]^{q}=1 \oplus \widehat{\ell \ell]^{1}} \oplus \widehat{[\ell]^{2}} \oplus \cdots \oplus \widehat{[\ell]^{q}}
$$

Building a Basis 'Big Enough'

\rightarrow In terms of these, define a generalized propagator:

$$
\underset{\vec{\ell}}{-\mathbf{O}}:=\frac{[\ell]}{\ell^{2}} \supset\left\{\sim \underset{\vec{\ell}}{\sim}, \frac{}{\vec{\ell}},-\underset{\vec{\ell}}{--}, 1\right\}
$$

$-\underset{\vec{\ell}}{-\infty}:=\frac{[\ell]^{2}}{\ell^{2}} \quad$ (would include gravitons)

Building a Basis 'Big Enough'

\star In terms of these, define a generalized propagator:

$$
\underset{\vec{\ell}}{-\longrightarrow}:=\frac{[\ell]}{\ell^{2}} \supset\left\{\sim \underset{\vec{\ell}}{\sim}, \frac{}{\vec{\ell}}, \cdots \underset{\vec{\ell}}{\overrightarrow{-}}, 1\right\}
$$

$-_{\vec{\ell}}^{-\infty}:=\frac{[\ell]^{2}}{\ell^{2}}$ (would include gravitons)

Building a Basis 'Big Enough'

\star In terms of these, define a generalized propagator:

$$
{\underset{\vec{\ell}}{ }}_{\mathbf{O}}^{\text {Ln }}:=\frac{[\ell]}{\ell^{2}} \supset\left\{\sim \underset{\vec{\ell}}{\sim}, \frac{}{\vec{\ell}},-\cdots \vec{\ell}, 1\right\}
$$

$$
-\underset{\ell}{-\mathrm{O}}:=\frac{[\ell]^{2}}{\ell^{2}} \quad \text { (would include gravitons) }
$$

\uparrow The loop-dependent part of any SM integrand will be spanned by the basis of "0-gons"-at L loops(!) $\mathfrak{B}_{0}=\{1,0,\{$, ,

$$
\mathfrak{B}_{0} \supset\{1, \ldots,-\underset{\sim}{0}, \ldots, \ldots,
$$

[Fang, Huang (2012)]

Reducibility and Completeness

[Ossola, Papadopoulos, Pittau; Vermaseren, van Nerveen; Forde, Kosower]
\leftrightarrow In any dimension, the 0 -gons reduce to finite size:

$$
\begin{aligned}
& \mathcal{I}_{p}^{q}:=\operatorname{span}\left\{\frac{[\ell]^{q}}{\left(\ell \mid P_{1}\right) \cdots\left(\ell \mid P_{p}\right)}\right\}
\end{aligned}
$$

Reducibility and Completeness

[Ossola, Papadopoulos, Pittau; Vermaseren, van Nerveen; Forde, Kosower]
\leftrightarrow In any dimension, the 0 -gons reduce to finite size:

$$
\begin{aligned}
\mathfrak{B}_{0}:=\{1, Q,\{,
\end{aligned}
$$

Reducibility and Completeness

[Ossola, Papadopoulos, Pittau; Vermaseren, van Nerveen; Forde, Kosower]
\uparrow In any dimension, the 0 -gons reduce to finite size:

$$
\begin{aligned}
& \mathfrak{B}_{0}:=\{1, Q\}, \\
& \mathcal{I}_{p}^{q}:= \operatorname{span}\left\{\frac{[\ell]^{q}}{\left(\ell \mid P_{1}\right) \cdots\left(\ell \mid P_{p}\right)}\right\} \\
& \mathfrak{B}_{0}:= \mathcal{I}_{0}^{0} \cup \mathcal{I}_{1}^{1} \cup \mathcal{I}_{2}^{2} \cup \mathcal{I}_{3}^{3} \cup \mathcal{I}_{4}^{4} \cup \mathcal{I}_{5}^{5} \cup \mathcal{I}_{6}^{6} \cup \mathcal{I}_{7}^{7} \cup \cdots \\
& \mathcal{I}_{0}^{0} \subset \mathcal{I}_{1}^{1} \subset \mathcal{I}_{2}^{2} \subset \mathcal{I}_{3}^{3} \subset \mathcal{I}_{4}^{4} \subset \mathcal{I}_{5}^{5} \subset \mathcal{I}_{6}^{6} \subset \mathcal{I}_{7}^{7} \subset \cdots \\
& \widehat{\mathcal{I}_{p}^{p}}=\mathcal{I}_{p}^{p} \backslash \mathcal{I}_{p-1}^{p-1}
\end{aligned}
$$

Reducibility and Completeness

[Ossola, Papadopoulos, Pittau; Vermaseren, van Nerveen; Forde, Kosower]
\leftrightarrow In any dimension, the 0 -gons reduce to finite size:

$$
\begin{aligned}
& \begin{aligned}
\mathfrak{B}_{0}:=\{1, Q,\{, C,
\end{aligned} \\
& \mathfrak{B}_{0}:=\widehat{\mathcal{I}_{0}^{0}} \oplus \widehat{\mathcal{I}_{1}^{1}} \oplus \widehat{\mathcal{I}_{2}^{2}} \oplus \widehat{\mathcal{I}_{3}^{3}} \oplus \widehat{\mathcal{I}_{4}^{4}} \oplus \widehat{\mathcal{I}_{5}^{5}} \oplus \widehat{\mathcal{I}_{6}^{6}} \oplus \widehat{\mathcal{I}_{7}^{7}} \oplus \cdots \\
& \mathcal{I}_{0}^{0} \subset \mathcal{I}_{1}^{1} \subset \mathcal{I}_{2}^{2} \subset \mathcal{I}_{3}^{3} \subset \mathcal{I}_{4}^{4} \subset \mathcal{I}_{5}^{5} \subset \mathcal{I}_{6}^{6} \subset \mathcal{I}_{7}^{7} \subset \cdots \\
& \widehat{\mathcal{I}_{p}^{p}}:=\mathcal{I}_{p}^{p} \backslash \mathcal{I}_{p-1}^{p-1}
\end{aligned}
$$

Reducibility and Completeness

[Ossola, Papadopoulos, Pittau; Vermaseren, van Nerveen; Forde, Kosower]
\uparrow In any dimension, the 0 -gons reduce to finite size:

$$
\begin{gathered}
\mathfrak{B}_{0}:=\left\{1,0,\{ \}, \widehat{\mathcal{I}_{p}^{q}}=\operatorname{span}\left\{\frac{[\ell]^{q}}{\left(\ell \mid P_{1}\right) \cdots\left(\ell \mid P_{p}\right)}\right\}\right. \\
\mathfrak{B}_{0}:=\widehat{\mathcal{I}_{0}^{0}} \oplus \widehat{\mathcal{I}_{1}^{1}} \oplus \widehat{\mathcal{I}_{2}^{2}} \oplus \widehat{\mathcal{I}_{3}^{3}} \oplus \widehat{\mathcal{I}_{4}^{4}} \oplus \widehat{\mathcal{I}_{5}^{5}} \oplus \widehat{\mathcal{I}_{6}^{6}} \oplus \widehat{\mathcal{I}_{7}^{7}} \oplus \cdots \\
\mathfrak{o}_{d}[p]:=\operatorname{rank}\left([\ell]_{d}^{p}\right)=\binom{d+p}{d}+\binom{d+p-1}{d}
\end{gathered}
$$

Reducibility and Completeness

[Ossola, Papadopoulos, Pittau; Vermaseren, van Nerveen; Forde, Kosower]
\leftrightarrow In any dimension, the 0 -gons reduce to finite size:

$$
\begin{aligned}
& =\{0.0 \Delta x+\theta+6\} \\
& \begin{array}{lllllllll}
d=3 & 1 & 5 & 14 & 30 & 55 & 91 & 140 & 204 \\
d=4 & 1 & 6 & 20 & 50 & 105 & 196 & 336 & 540
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\mathfrak{d}_{d}[p] & :=\operatorname{rank}\left([\ell]_{d}^{p}\right)=\binom{d+p}{d}+\binom{d+p-1}{d} \\
& =: \widehat{\mathfrak{d}}_{d}[p]+\sum_{j=1}^{p}\binom{p}{j} \widehat{\mathfrak{d}}_{d}[p-j]
\end{aligned}
$$

total rank $=$ top rank + contact terms

Reducibility and Completeness

[Ossola, Papadopoulos, Pittau; Vermaseren, van Nerveen; Forde, Kosower]
\leftrightarrow In any dimension, the 0 -gons reduce to finite size:

$$
\begin{aligned}
\mathfrak{d}_{d}[p] & :=\operatorname{rank}\left([\ell]_{d}^{p}\right)=\binom{d+p}{d}+\binom{d+p-1}{d} \\
& =: \widehat{\mathfrak{d}}_{d}[p]+\sum_{j=1}^{p}\binom{p}{j} \widehat{\mathfrak{d}}_{d}[p-j]
\end{aligned}
$$

total rank=top rank+contact terms

Reducibility and Completeness

 [Ossola, Papadopoulos, Pittau; Vermaseren, van Nerveen; Forde, Kosower] \leftrightarrow In any dimension, the 0 -gons reduce to finite size:$$
\begin{aligned}
& \mathfrak{J}_{d}[p]:=\operatorname{rank}\left([\ell]_{d}^{p}\right)=\binom{d+p}{d}+\binom{d+p-1}{d} \\
& =: \widehat{\mathfrak{d}}_{d}[p]+\sum_{j=1}^{p}\binom{p}{j} \widehat{\mathfrak{d}}_{d}[p-j]
\end{aligned}
$$

total rank=top rank+contact terms

Integrand Reduction at 1 Loop

- Re-considering one-loop bases in four dimensions
[Ossola, Papadopoulos, Pittau; Vermaseren, van Nerveen; Forde, Kosower]

	1	\bigcirc	-			
$\mathfrak{B}_{0}^{(4)}\{$	$[\ell]^{0}=\widehat{\mathfrak{b}}_{0}^{0}$	$[\ell]^{1}=\widehat{\mathfrak{b}}_{1}^{0} \oplus \cdots$	$[\ell]^{2}=\widehat{\mathfrak{b}}_{2}^{0} \oplus \cdots$	$[\ell]^{3}=\widehat{\mathfrak{b}}_{3}^{0} \oplus \cdots$	$[\ell]^{4}=\widehat{\mathfrak{b}}_{4}^{0} \oplus \cdot \cdots$	$[\ell]^{5}=\widehat{\mathfrak{b}}_{5}^{0} \oplus \cdots$
	$1=1$	$6=5+1$	$20=9+11$	$50=7+41$	$105=\mathbf{2}+103$	$196=0+196$
$\mathfrak{B}_{1}^{(4)}\{$		$[\ell]^{0}=\widehat{\mathfrak{b}}_{1}^{1}$	$[\ell]^{1}=\widehat{\mathfrak{b}}_{2}^{1} \oplus \cdots$	$[\ell]^{2}=\widehat{\mathfrak{b}}_{3}^{1} \oplus \cdots$	$[\ell]^{3}=\widehat{\mathfrak{b}}_{4}^{1} \oplus \cdots$	$[\ell]^{4}=\widehat{\mathfrak{b}}_{5}^{1} \oplus \cdots$
		$1=1$	$6=4+2$	$20=5+15$	$50=\mathbf{2}+48$	$105=0+105$
$\mathfrak{B}_{2}^{(4)}$			$[\ell]^{0}=\widehat{\mathfrak{b}}_{2}^{2}$	$[\ell]^{1}=\widehat{\mathfrak{b}}_{3}^{2} \oplus \cdots$	$[\ell]^{2}=\widehat{\mathfrak{b}}_{4}^{2} \oplus \cdots$	$[\ell]^{3}=\widehat{\mathfrak{b}}_{5}^{2} \oplus \cdot \cdot$
			$1=1$	$6=\mathbf{3}+3$	$20=\mathbf{2}+18$	$50=0+50$
$\mathfrak{B}_{3}^{(4)}\{$				$[\ell]^{0}=\widehat{\mathfrak{b}}_{3}^{3}$	$[\ell]^{1}=\widehat{\mathfrak{b}}_{4}^{3} \oplus$.	$[\ell]^{2}=\widehat{\mathfrak{b}}_{5}^{3} \oplus \cdot$
				$1=1$	$6=\mathbf{2}+4$	$20=0+20$
$\mathfrak{B}_{4}^{(4)}\{$					$[\ell]^{0}=\widehat{\mathfrak{b}}_{4}^{4}$	$[\ell]^{1}=\widehat{\mathfrak{b}}_{5}^{4}$
					$1=1$	$6=1+5$

Integrand Reduction at 2 Loops

- At two loops, all loop integrands can be labeled by:
[Gluza, Kajda, Kosower]
 [JB, Herrmann, Langer, Trnka (2020)]

Integrand Reduction at 2 Loops

- At two loops, all loop integrands can be labeled by:
[Gluza, Kajda, Kosower]

$$
\mathfrak{N}[a, b, c]:=\left[\ell_{1}\right]^{a}\left[\ell_{1}-\ell_{2}\right]^{b}\left[\ell_{2}\right]^{c}
$$

$\Gamma_{[1,1,1]} \Leftrightarrow \emptyset$

$$
\mathfrak{B}_{0} \supset\{1, \ldots, \cdots \text { مी, }, \ldots,
$$

Integrand Reduction at 2 Loops

- At two loops, all loop integrands can be labeled by:
[Gluza, Kajda, Kosower]

$$
\begin{aligned}
\Gamma_{[a, b, c]} \Leftrightarrow & \Leftrightarrow a\left\{\begin{array}{l}
\ell_{1} \\
\vdots
\end{array} b\left\{\begin{array}{cc}
\ell_{1} & \ell_{2} \\
\vdots & \\
\vdots & \vdots \\
0
\end{array}\right) c c \quad \mathfrak{N}[a, b, c]:=\left[\ell_{1}\right]^{a}\left[\ell_{1}-\ell_{2}\right]^{b}\left[\ell_{2}\right]^{c}\right. \\
\mathfrak{o}_{d}[a, b, c]:= & \operatorname{rank}(\mathfrak{N}[a, b, c])=\operatorname{rank}\left(\left[\ell_{1}\right]_{d}^{a}\left[\ell_{1}-\ell_{2}\right]_{d}^{b}\left[\ell_{2}\right]_{d}^{c}\right) \\
& =\widehat{\mathfrak{d}}_{d}[a, b, c]+\sum_{(i, j, k)>(0,0,0)}^{(a, b, c)}\binom{a}{i}\binom{b}{j}\binom{c}{k} \widehat{\mathfrak{d}}_{d}[a-i, b-j, c-k]
\end{aligned}
$$

total rank=top rank+contact terms

Integrand Reduction at 2 Loops

- At two loops, all loop integrands can be labeled by:
[Gluza, Kajda, Kosower]

[JB, Herrmann, Langer, Trnka (2020)]

$$
\mathfrak{N}[a, b, c]:=\left[\ell_{1}\right]^{a}\left[\ell_{1}-\ell_{2}\right]^{b}\left[\ell_{2}\right]^{c}
$$

$$
\mathfrak{N}_{p}\left(\Gamma_{[a, b, c]}\right)=\underbrace{\widehat{\mathfrak{N}}_{p}\left(\Gamma_{a, b, c]}\right)}_{\text {top-level numerators }}
$$

$$
\underbrace{\left.\left.\bigoplus_{\substack{ \\(i, j, k)>\overrightarrow{0}}} \ell_{A} \mid Q_{a_{1}}\right) \cdots\left(\ell_{A} \mid Q_{a_{i}}\right)\right]\left[\left(\ell_{B} \mid Q_{b_{1}}\right) \cdots\left(\ell_{B} \mid Q_{b_{j}}\right)\right]\left[\left(\ell_{C} \mid S_{c_{1}}\right) \cdots\left(\ell_{C} \mid S_{c_{k}}\right)\right] \widehat{\mathfrak{N}}_{p}\left(\Gamma_{[a-i, b-j, c-k]}\right)}_{\text {contact-term numerators }}
$$

Integrand Reduction at 3 Loops

[JB, Herrmann, Langer, Trnka (2020)] \uparrow We can obviously continue this to higher loops e.g. at 3 loops, we have the integrand topologies:

$$
\begin{aligned}
\mathfrak{w}_{d}^{0}\left(a_{1}, \ldots, b_{3}\right) & =\operatorname{rank}\left(\left[\ell_{1}\right]^{a_{1}}\left[\ell_{2}\right]^{a_{2}}\left[\ell_{3}\right]^{a_{3}}\left[\ell_{3}-\ell_{2}\right]^{b_{1}}\left[\ell_{1}-\ell_{3}\right]^{b_{2}}\left[\ell_{2}-\ell_{1}\right]^{b_{3}}\right) \\
\mathfrak{l}_{d}^{0}\left(a_{1}, \ldots, c_{2}\right) & =\operatorname{rank}\left(\left[\ell_{1}\right]^{a_{1}}\left[\ell_{1}-\ell_{2}\right]^{a_{2}}\left[\ell_{2}\right]^{c_{1}+c_{2}}\left[\ell_{3}\right]^{b_{1}}\left[\ell_{3}-\ell_{2}\right]^{b_{2}}\right)
\end{aligned}
$$

¿Can someone derive these formulae?

A (modest) Proposal for non-Planar Porver-Counting

Stratifying Theories by Unitarity
 [JB, Herrmann, Langer, Trnka (2020)]

\star QFTs can be (partially) ordered by the scope of the integrands needed to represent amplitudes

$$
\mathcal{A}^{L}=\sum a_{i} \mathcal{I}_{i}^{L} \quad \mathcal{I}_{i} \in \mathfrak{B}
$$

(Standard Model) $) \succ(\mathrm{SM} \backslash$ Higgs $) \succ(\mathrm{QCD}) \succ$ (Yang-Mills) $\succ(\mathcal{N}=2 \mathrm{sYM}) \succ(\mathcal{N}=4 \mathrm{sYM}) \succ($ planar $\mathcal{N}=4 \mathrm{sYM})$
$\succ($ fishnet theory $) \succ \cdots$

$$
\mathfrak{B}^{S M} \supset \mathfrak{B}^{\mathcal{N}=2} \supset \mathfrak{B}^{\mathcal{N}=4}
$$

This reflects UV behavior ("power-counting") of theories; can be used to stratify integrand bases ¿Can we define $\mathfrak{B}^{\mathcal{N}=4}$?
—a basis of just the best UV-behaved amplitudes?

Power-Counting when Planar

+For a planar graph, there is a natural routing of the loop momenta associated with its dual graph.

- A planar integrand \mathcal{I} has " p-gon power-counting" if

$$
\lim _{\ell_{i} \rightarrow \infty}(\mathcal{I})=\frac{1}{\left(\ell_{i}^{2}\right)^{q \geq p}}\left(1+\mathcal{O}\left(1 / \ell_{i}^{2}\right)\right) \text { for all } \ell_{i}
$$

\star Let \mathfrak{B}_{p} denote the complete basis of integrands with p-gon power-counting.

Power-Counting when Planar

- For a planar graph, there is a natural routing of the loop momenta associated with its dual graph.
+ A planar integrand \mathcal{I} has "p-gon power-counting" if

$$
\lim _{\ell_{i} \rightarrow \infty}(\mathcal{I})=\frac{1}{\left(\ell_{i}^{2}\right)^{q \geq p}}\left(1+\mathcal{O}\left(1 / \ell_{i}^{2}\right)\right) \text { for all } \ell_{i}
$$

\uparrow Let \mathfrak{B}_{p} denote the complete basis of integrands with p-gon power-counting.

$$
\begin{gathered}
\mathfrak{B}_{0} \supset \mathfrak{B}_{1} \supset \mathfrak{B}_{2} \supset \mathfrak{B}_{3} \supset \mathfrak{B}_{4} \supset \mathfrak{B}_{5} \supset \cdots \\
\widehat{\mathfrak{B}_{p}}:=\mathfrak{B}_{p} \backslash \mathfrak{B}_{p+1} \quad \mathfrak{B}_{p}=\widehat{\mathfrak{B}}_{p} \oplus \widehat{\mathfrak{B}}_{p+1} \oplus \cdots
\end{gathered}
$$

\downarrow An amplitude is " p-gon constructible" if $\mathcal{A} \subset \mathfrak{B}_{p}$

$$
\mathcal{A}_{p}:=\mathcal{A} \cap \widehat{\mathfrak{B}_{p}} \quad \mathcal{A}=\mathcal{A}_{d} \oplus \mathcal{A}_{d-1} \oplus \cdots
$$

(Optimality of Dual-Conformality?)

+ For planar $\mathcal{N}=4 \mathrm{sYM}$, we know that amplitude integrands are dual-conformally invariant
[Drummond, Henn, Smirnov, Sokatchev;
Drummond, Korchemsky, Henn;
Alday, Maldacena;...]

(Optimality of Dual-Conformality?)

\downarrow For planar $\mathcal{N}=4$ sYM, we know that amplitude integrands are dual-conformally invariant

$$
\mathfrak{B}_{4} \supset \mathfrak{B}^{\mathrm{DCI}} \supset \mathfrak{B}^{\mathcal{N}=4} \quad \begin{array}{r}
\text { [Drummond, Henn, Smirnov, Sokatchev; } \\
\text { Drummond, Korchemsky, Henn; }
\end{array}
$$

But even DCI is far from strong enough! Alday, Maldacena;...]

- doesn't ensure UV finiteness

\downarrow doesn't ensure maximal transcendentality
\star it forces a topological over-completeness and non-triangularity of bases

Power-Counting Strata at 1-Loop

[JB, Herrmann, Langer, Trnka (2020)]

- Recall how "0-gon" integrands could be defined:

$$
\mathcal{I}_{p}^{q}:=\operatorname{span}\left\{\frac{[\ell]^{q}}{\left(\ell \mid P_{1}\right) \cdots\left(\ell \mid P_{p}\right)}\right\} \in \mathfrak{B}_{p-q}
$$

Power－Counting Strata at 1－Loop

［JB，Herrmann，Langer，Trnka（2020）］
－Recall how＂ 0 －gon＂integrands could be defined：

$$
\begin{aligned}
& x_{1}=\{\rho \cdot \phi \Delta \Delta \theta\} \\
& x_{2}=\left\{\phi \Delta \Delta x+x^{\circ}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& x_{0}\{\text { 口娄 }
\end{aligned}
$$

Power-Counting Strata at 1-Loop

[JB, Herrmann, Langer, Trnka (2020)]

- Recall how "0-gon" integrands could be defined:

$$
\mathfrak{d}_{d}^{q}[p]:=\operatorname{rank}\left(\left[\lceil \rceil_{d}^{p-q}\right)\right.
$$

$$
=: \widehat{\mathfrak{d}}_{d}^{q}[p]+\sum_{j=1}^{q}\binom{p}{j} \widehat{\mathfrak{d}}_{d}^{q}[p-j]
$$

total rank=top rank+contact terms

Power-Counting Strata at 1-Loop

[JB, Herrmann, Langer, Trnka (2020)]

- Recall how "0-gon" integrands could be defined:

$$
\begin{aligned}
& 1+0 \begin{array}{ccccccc}
5+1 & 9+11 & 7+41 & 2+103 & 0+196 & 0+336 & 0+540
\end{array} \\
& \mathfrak{B}_{1}:=\{0,\}, \\
& 1+0 \quad 4+2 \quad 5+15 \\
& \mathfrak{B}_{2}:=\left\{0_{1+0}^{\infty},\right. \\
& \mathfrak{B}_{3}:=\{ \\
& \mathfrak{B}_{4}:=\{\underbrace{1+0}_{1+0}
\end{aligned}
$$

Power-Counting Beyond Planar?

\uparrow With no preferred routing of loop momenta, the earlier notion of "power-counting" is ill-defined

Recall: planar integrand \mathcal{I} has p-gon power-counting if

$$
\lim _{\ell_{i} \rightarrow \infty}(\mathcal{I})=\frac{1}{\left(\ell_{i}^{2}\right)^{q \geq p}}\left(1+\mathcal{O}\left(1 / \ell_{i}^{2}\right)\right) \text { for all } \ell_{i}
$$

Power-Counting Beyond Planar?

- With no preferred routing of loop momenta, the earlier notion of "power-counting" is ill-defined

Recall: planar integrand \mathcal{I} has p-gon power-counting if

$$
\lim _{\ell_{i} \rightarrow \infty}(\mathcal{I})=\frac{1}{\left(\ell_{i}^{2}\right)^{q \geq p}}\left(1+\mathcal{O}\left(1 / \ell_{i}^{2}\right)\right) \text { for all } \ell_{i}
$$

Proposal: Graph Power-Counting
\rightarrow What would make sense independent of routing would be: to define the power-counting relative to some

[JB, Herrmann, Langer, Trnka (2020)] graph (or graphs)

Proposal: Graph Power-Counting
\rightarrow What would make sense independent of routing would be: to define the power-counting relative to some

[JB, Herrmann, Langer, Trnka (2020)] graph (or graphs)

Proposal: Graph Power-Counting
+What would make sense independent of routing would be: to define the power-counting relative to some graph (or graphs)

Proposal: Graph Power-Counting

+ What would make sense independent of routing would be: to define the power-counting relative to some graph (or graphs)

Proposal: Graph Power-Counting
+What would make sense independent of routing would be: to define the power-counting relative to some graph (or graphs)

Proposal: Graph Power-Counting
+What would make sense independent of routing would be: to define the power-counting relative to some graph (or graphs)

Proposal: Graph Power-Counting
+What would make sense independent of routing would be: to define the power-counting relative to some graph (or graphs)

[JB, Herrmann, Langer, Trnka (2020)]

$[1-2] \oplus[1][2]$

[1]

$$
[1]^{3} \oplus[1]^{2}[2] \oplus[1]^{2}[1-2] \stackrel{[1-2]^{2} \oplus[1]^{2}[2]}{\oplus[1][2]^{2} \oplus[1][1-2][2]}
$$

$[1]^{2}[2] \oplus[1][1-2]$

Proposal: Graph Power-Counting
+What would make sense independent of routing would be: to define the power-counting relative to some graph (or graphs)

[JB, Herrmann, Langer, Trnka (2020)]

$6=3+3$

$$
55=10+45
$$

$164=4+160$

$20=\mathbf{2}+18$

 $36=8+28$

$1=1+0$

$6=\mathbf{2}+4$

Proposal: Graph Power-Counting
+What would make sense independent of routing would be: to define
[JB, Herrmann, Langer, Trnka (2020)] the power-counting
> relative to some graph (or graphs)

Definition

a scalar p-gon is

a graph of girth
p such that all its edge contractions have girth $<p$

Proposal: Graph Power-Counting

\rightarrow What would make sense independent of routing would be: to define $\mathfrak{B}_{0} \supset\{$ [JB, Herrmann, Langer, Trnka (2020)] the power-counting

$$
\begin{aligned}
& \operatorname{mos} \text { 侤 }
\end{aligned}
$$

Proposal: Graph Power-Counting

\rightarrow What would make sense independent of routing would be: to define $\left\{\right.$ [${ }^{\text {[JP }}$, Hermann, Langer, Troat (2020)] the power-counting $\left.\begin{array}{l}\text { relative to some } \\ \text { graph (or graphs) }\end{array}\right\}\left\{\begin{array}{l}\text { Brand }\end{array}\right.$

$$
\mathfrak{d}_{d}^{p}[a, b, c]:=\operatorname{rank}\left(\mathfrak{N}_{p}[a, b, c]\right)
$$

$$
=: \widehat{\mathfrak{d}}_{d}^{p}[a, b, c]+\sum_{(i, j, k)>(0,0,0)}\binom{a}{i}\binom{b}{j}\binom{c}{k} \widehat{\mathfrak{d}}_{d}^{p}[a-i, b-j, c-k]
$$

Graph Power-Counting @ L=3

[JB, Herrmann, Langer, Trnka (2020)]

- At 3 loops, the 3-gon power-counting scalars are:

\star What would be the numerator for $\mathcal{L}_{(1,2)}^{(3,1) 2,2)}=\beth, ?$

Graph Power-Counting @ L=3

[JB, Herrmann, Langer, Trnka (2020)]

- At 3 loops, the 3-gon power-counting scalars are:

+ What would be the numerator for $\mathcal{L}_{(1,2)}^{(3,1), 2)}=\, \downarrow$?

$\mathfrak{N}_{3}\left(\mathcal{L}_{(1,2)}^{(3,1)(2,2)}\right)=[1-2][2][2-3] \oplus[1-2][2][3] \oplus[1-2][2]^{2} \oplus[1][2]^{2}[2-3] \oplus[1][2]^{2}[3] \oplus[1][2]^{3}$
$\left|\mathfrak{N}_{3}\left(\mathcal{L}_{(1,1,2)}^{(3,2)}\right)\right|=\underset{d=4}{\operatorname{rank}}\left([1-2][2][2-3] \oplus[1-2][2][3] \oplus[1-2][2]^{2} \oplus[1][2]^{2}[2-3] \oplus[1][2]^{2}[3] \oplus[1][2]^{3}\right)$

$$
\begin{equation*}
=984=32+952 \text {. } \tag{3.7}
\end{equation*}
$$

What Goes Wrong at Five Loops?

[JB, Herman, Langer, Trnka (2020)]

- Unfortunately, the " p-gon power-counting" basis proposed for non-planar is not compatible with planar power-counting (at high loops): $\mathfrak{B}_{p}^{\mathrm{Pl}} \not \subset \mathfrak{B}_{p}^{\mathrm{NP}}$

$$
\mathfrak{B}^{\mathcal{N}=4} \subset \mathfrak{B}^{\mathrm{DCI}} \subset \mathfrak{B}_{4}^{\mathrm{Pl}} \not \subset \mathfrak{B}_{4}^{\mathrm{NP}}
$$

¿Can someone propose a better definition?

Room for Improvement: Building Better (Wiser) Bases

Normalizing Integrands Wisely

+ It is often a good idea to normalize as much of the basis as possible on places in loop-momentum space where many amplitudes vanish
+This works well for nice amplitudes: those with low multiplicity, low loops, or low N^{k} MHV-degree (i.e. where polylogs abound)

For example, two-loop MHV amplitudes in sYM:
[JB, Herrmann, Langer, McLeod, Trnka (2019)]

What is 'Purity' Beyond Polylogs?

-When the basis is dlog and all 'evaluations' are (residues) on poles, then diagonalization ensures each basis integrand is in canonical form (UT/etc.)
¿What about when no dlog form exists?

What is 'Purity' Beyond Polylogs?

-When the basis is dlog and all 'evaluations' are (residues) on poles, then diagonalization ensures each basis integrand is in canonical form (UT/ etc.)
¿What about when no dlog form exists?

[JB, McLeod, von Hippel, Wilhelm (2018)]
[JB, He, McLeod, von Hippel, Wilhelm (2018)]
[JB, McLeod, Spradlin, von Hippel, Wilhelm (2018)]
[JB, McLeod, von Hippel, Vergu, Volk, Wilhelm (2019)]

What is 'Purity' Beyond Polylogs?

-When the basis is dlog and all 'evaluations' are (residues) on poles, then diagonalization ensures each basis integrand is in canonical form (UT/ etc.) ¿What about when no dlog form exists?

[Bloch, Kerr, Vanhove; Broadhurst;...]
[JB, McLeod, von Hippel, Wilhelm (2018)]
[JB, He, McLeod, von Hippel, Wilhelm (2018)]
[JB, McLeod, Spradlin, von Hippel, Wilhelm (2018)]
[JB, McLeod, von Hippel, Vergu, Volk, Wilhelm (2019)]

Great Room for Improvement

\star Prescriptive unitarity has made great progress, but the results raise (or sharpen) bigger questions

$$
\mathcal{A}=\mathcal{A}_{d} \oplus \mathcal{A}_{d-1} \oplus \cdots \quad \mathfrak{B}_{p}=\widehat{\mathfrak{B}}_{p} \oplus \widehat{\mathfrak{B}}_{p+1} \oplus \cdots
$$

Better integrand bases would:

- trade evaluations for periods on all topologies (does this ensure "purity"?)
+ stratify integrands by more refined criteria-e.g. - actual UV behavior (do finite bases exist?)
- transcendental weight (what does this mean?)
- dim-reg partitioning of numerator monomials

