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✦Spiritus Movens: the surprising simplicity of QFT
✦Loop Integrands
‣ generalized unitarity (generally speaking)
‣ building bases big-enough (for e.g. the Standard Model)
‣ non-planar power-counting (a modest proposal)

✦Loop Integration: what makes an integral easy?
‣ integration polemics (what constitutes being integrated?)
‣ direct integration (made easy)

✦Loop Integrals: their generic analytic structure
‣ a bestiary of Feynman integral Calabi-Yau geometries
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Spiritus Movens  
 

the Surprising Simplicity 
of Scattering Amplitudes



Traditional Description of QFT
✦Quantum Field Theory: the marriage of (special) 

relativity with quantum mechanics
✦Theories (can be) specified by Lagrangians—or 

equivalently, by Feynman rules for virtual particles

✦Predicted probability (amplitudes) from 
path integrals (over virtual ‘histories’):
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Perturbation Theory and Loops
✦Predictions (often) made perturbatively,  

according to the loop expansion:
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[Feynman; Schwinger; Tomanaga (1947)]
[Petermann (1957)]
[Kinoshita (1990)]

[Dirac (1933)]

✦ the most precisely tested idea in all of science!



Explosions of Complexity
✦While ultimately correct, the Feynman expansion 

renders all but the most trivial predictions—
involving the fewest particles, at the
lowest orders of perturbation—

computationally intractable 
or theoretically inscrutable

634 Scientific American, May 2012 Illustration by Kenn Brown and Chris Wren, Mondolithic Studios

QUA N T U M  P H YS I CS

LOOPS,
TREES 
AND THE 
SEARCH 
FOR NEW 
PHYSICS
Maybe unifying the forces of nature isn’t quite 
as hard as physicists thought it would be 

By Zvi Bern, Lance J. Dixon and David A. Kosower

© 2012 Scientific American[Bern, Dixon, Kosower, Scientific American (2012)]
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derground rider is usually better o! taking a fairly simple route.
Two decades later physicists extended Feynman’s technique to 

the strong subnuclear force. By analogy with QED, the theory of 
the strong force is known as quantum chromodynamics (QCD). 
QCD is also governed by a coupling, but as the word “strong” sug-
gests, its value is higher than that of the electromagnetic cou-
pling. On the face of it, a larger coupling increases the number of 
complicated diagrams that theorists must include in their calcu-

lations—like an Underground rider who is willing to take very cir-
cuitous routes, making it hard to predict what he or she will do. 
Fortunately, at very short distances, including the distances rele-
vant for collisions at the LHC, the coupling diminishes in value 
and, for the very simplest collisions, theorists can again get away 
with considering only uncomplicated Feynman diagrams.

For messy collisions, though, the full complexity of the 
Feynman technique comes rushing in. Feynman diagrams are 

classified by the number of external lines and 
the number of closed loops they have [see box 
at left]. Loops represent one of the quintessen-
tial features of quantum theory: virtual parti-
cles. Though not directly observable, virtual 
particles have a measurable e!ect on the 
strength of forces. They obey all the usual laws 
of nature, such as the conservation of energy 
and of momentum, with one caveat: their 
mass can di!er from that of the corresponding 
“real” (that is, directly observed) particles. 
Loops represent their ephemeral life cycle: 
they pop into existence, move a short distance, 
then vanish again. Their mass determines 
their life expectancy: the heavier they are, the 
shorter they live. 

The simplest Feynman diagrams ignore vir-
tual particles; they have no closed loops and are 
called tree diagrams. In quantum electrody-
namics, the simplest diagram of all shows two 
electrons repelling each other by exchanging a 
photon. Progressively more complicated dia-
grams add loops one by one. Physicists refer to 
this additive procedure as “perturbative,” mean-
ing that we start with some approximate esti-
mate (represented by the tree diagrams) and 
gradually perturb it by adding refinements (the 
loops). For instance, as the photon travels be-
tween the two electrons, it can spontaneously 
split into a virtual electron and virtual antielec-
tron, which live a short while before annihilat-
ing each other, producing a photon. The photon 
resumes the journey the original photon had 
been taking. In the next level of complexity, the 
electron and antielectron might themselves 
split temporarily. With increasing numbers of 
virtual particles, the diagrams describe quan-
tum e!ects with increasing precision.

Even tree diagrams can be challenging. In 
the case of QCD, if you were brave enough to 
consider a collision involving two incoming and 
eight outgoing gluons, you would need to write 
down 10 million tree diagrams and calculate a 
probability for each. An approach called recur-
sion, pioneered in the 1980s by Frits Berends of 
Leiden University in the Nether lands and Wal-
ter Giele, now at Fermilab, tamed the problem 
for tree diagrams but had no obvious extension 
to loops. Worse, closed loops make the workload 
overwhelming. Even a single loop causes an ex-
plosion in both the number of diagrams and the 

W H Y  F E Y N M A N  D I AG R A M S  D R I V E  P H Y S I C I S T S  M A D

Too Many to Keep Track Of 
Each Feynman diagram Çß̧ þ�lxä�D³��³îø�î�þx�ÿDā�î¸�þ�äøD§�ąx�̧ ³x�Ç¸ää�U§x�ÿDā�î�Dî�
ÇDßî�`§xä�­���î��³îxßD`îÍ�5�x�îß̧ øU§x��ä�î�Dî�î�xßx�Dßx�̀ ¸ø³î§xää�̧ î�xß�ÿDāäj�î¸ Í̧� 
A quark-quark interaction might produce more than one gluon or involve more than 
one virtual-particle loop, or both. The calculations quickly become unmanageable.

Zero loops One loop

One 
gluon

Two 
gluons

Three 
gluons

© 2012 Scientific American



✦Once considered computationally intractable

Needs (Once) Beyond Our Reach
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[Rev.Mod.Phys. 56 (1984)]

✦Background amplitudes crucial for e.g. colliders



✦Once considered computationally intractable

Needs (Once) Beyond Our Reach
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220 diagrams—thousands of terms

✦Background amplitudes crucial for e.g. colliders



✦Once considered computationally intractable

Needs (Once) Beyond Our Reach
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✦Background amplitudes crucial for e.g. colliders

[Nucl.Phys. B269 (1985)]



Needs (Once) Beyond Our Reach
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✦Background amplitudes crucial for e.g. colliders



Needs (Once) Beyond Our Reach
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✦Background amplitudes crucial for e.g. colliders



✦Within six months, Parke-Taylor stumbled on a 
simple guess—unquestionably a theorist’s delight:

Discovery of Shocking Simplicity 
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Amplitude for nGluon Scattering

Stephen J. Parke and T. R. Taylor
Fermi Xationa/Accelerator Laboratory, Batavia, Illinois 60510

(Received 17 March 1986)

A nontrivial squared helicity amplitude is given for the scattering of an arbitrary number of
gluons to lowest order in the coupling constant and to leading order in the number of colors.

PACS QUmbcrs: 12.38.8x

Computations of the scattering amplitudes for the
vector gauge bosons of non-Abelian gauge theories,
besides being interesting from a purely quantum-
field-theoretical point of view (determination of the S
matrix), have a wide range of important applications.
In particular, within the framework of quantum chro-
modynamics (QCD), the scattering of vector gauge
bosons (gluons) gives rise to experimentally observ-
able multijet production at high-energy hadron collid-
ers. The knowledge of cross sections for the gluon
scattering is crucial for any reliable phenomenology of
jet physics, which holds great promise for testing QCD
as well as for the discovery of new physics at present
(CERN Spp S and Fermilab Tevatron) and future (Su-
perconducting Super Collider) hadron colliders. '
In this short Letter, we give a nontrivial squared

helicity amplitude for the scattering of an arbitrary
number of gluons to lowest order in the coupling con-
stant and to leading order in the number of colors. To
our knowledge this is the first time in a non-Abelian
gauge theory that a nontrivial, on-mass-shell, squared
Green's function has been written down for an arbi-
trary number of external points. Our result can be

used to improve the existing numerical programs for
the QCD jet production, and in particular for the stud-
ies of the four-jet production for which no analytic
results have been available so far. Before presenting
the helicity amplitude, let us make it clear that this
result is an educated guess which we have compared to
the existing computations and verified by a series of
highly nontrivial and nonlinear consistency checks.
For the n-gluon scattering amplitude, there are

(n+2)/2 independent helicity amplitudes. At the
tree level, the two helicity amplitudes which most
violate the conservation of helicity are zero. This is
easily seen by the embedding of the Yang-Mills theory
in a supersymmetric theory. 2 3 Here we give an ex-
pression for the next helicity amplitude, also at tree
level, to leading order in the number of colors in
SU(N) Yang-Mills theory.
If the helicity amplitude for gluons 1, . . . , n, of mo-

menta pi, . . . , p„and helicities Xi, . . . , A, „, is
A'„(&i, . . . , &„), where the momenta and helicities
are labeled as though all particles are outgoing, then
the three helicity amplitudes of interest, squared and
summed over color, are

I
P'„(+ + + + + ) I2 = c„(g,N) [0+O(g ) ],

I M„(—+ + + + ) I' = c„(g,N) [0+O(g~) ],
I~„(——+++ )I'= c„(q,N)[(pi p2)'

x Xp[(pi p2)(p2 p3)(p3. p4) . (p„pi)] '+O(N )+O(g )], (3)

where c„(g,N) =g2" 4N" 2(N2 —1)/2" 4n. The sum is over all permutations I'of 1, . . . ,
Equation (3) has the correct dimensions and symmetry properties for this n-particle scattering amplitude

squared. Also it agrees with the known results4 for n =4, 5, and 6. The agreement for n =6 is numerical.
More importantly, this set of amplitudes is consistent with the Altarelli and Parisi7 relationship for all n, when two
of the gluons are made parallel. This is trivial for the first two helicity amplitudes but is a highly nontrivial state-
ment for the last amplitude, as shown here:

IM„(——+++ )I'-0,
1[(2

+++ ) I'-2g'N ' —
I ~„,(- -++z(1—z) s

IW„(-—+++ ) I'- 2g'N —I~„(——++ ) I',
3 II 4 z(1—z) s

1986 The American Physical Society 2459

[PRL 56 (1986)]

[van der Waerden (1929)]



✦What about beyond the leading order?

Perturbations of Parke-Taylor
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✦What about beyond the leading order?

Perturbations of Parke-Taylor
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✦What about beyond the leading order?

Perturbations of Parke-Taylor
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[Bern, Dixon, Dunbar, Kosower (1994)]



✦What about beyond the leading order?

Perturbations of Parke-Taylor
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complexity of the computations. It has also been useful to use the results for the cuts

already computed when computing the coefficients of integrals detected by new cuts. In this

way, one can insure the consistency of results from different cuts and reduce the number of

unknowns at the same time.

Let us make a further comment about our computation procedure. The conformal inte-

grals with pentagon loops have numerators containing the loop momenta in combinations

like (k + l)2, where l is the loop momentum and k is an external on-shell momentum. If

the propagator with momentum l is cut then, on that cut, one cannot distinguish between

(k + l)2 and 2k · l. However, it is easy to see that one can choose to cut another propagator

and in that case this ambiguity does not arise and the numerator factor is uniquely defined.

IV. RESULTS

We use dual variable notation (see Ref. [48]) for the integrals. The external dual variables

are listed in clockwise direction. To the left loop we associate the dual variable xp and to

the right loop we associate the dual variable xq. We use the notation xij ≡ xi − xj .

We introduce the following notation which will be useful in the following




a b c · · ·

a′ b′ c′ · · ·



 = x2
aa′x2

bb′x
2
cc′ · · · ± (permutations of {a′, b′, c′, . . .}). (6)

The sign ± above takes into account the signature of the permutation of {a′, b′, c′, . . .}. It

is easy to show that




a b c · · ·

a′ b′ c′ · · ·



 = det
i∈{a,b,c,··· }

j∈{a′,b′,c′,··· }

x2
ij . (7)

For some topologies, the expansion of the
[ ]

symbol yields terms that would cancel

propagators. For those cases we make the convention that all the terms that would cancel

propagators are absent. In fact, as we will see, terms that would cancel propagators of the

double pentagon topologies naturally yield coefficients for some of the topologies with a

smaller number of propagators.
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A. Double box topologies

In the case of the double box topologies the massive legs attached to the vertices incident

with the common edge have to be a sum of at least three massless momenta. The cases

where these massive legs are the sum of two massless momenta are treated separately in the

subsection. IVA7. This distinction only arises for the double box topologies.

1. No legs attached

1

2

(

x2
a,a+2

)2
x2

a−1,a+1 (8)

1

4

(

x2
ab

)2
x2

a−1,a+1 (9)

−
1

4
x2

ab

(

x2
a,b−1x

2
a−1,b − x2

abx
2
a−1,b−1

)2
(10)

2. One massless leg attached

1

4

(

x2
a,b+1x

2
a+1,b − x2

abx
2
a+1,b+1

)

x2
a+2,b (11)

1

4

(

−x2
a−1,bx

2
a,a+2x

2
a+1,b + x2

a−1,a+2x
2
abx

2
a+1,b−

− x2
a−1,a+1x

2
abx

2
a+2,b

)

(12)

−
1

4
x2

abx
2
a+1,bx

2
b−1,b+1 (13)

−
1

4
x2

a−3,ax
2
a−2,ax

2
a−1,a+1 (14)
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1

4

(

x2
a−4,a−1x

2
a−3,a − 2x2

a−4,ax
2
a−3,a−1

)

x2
a−2,a (15)

3. Two massless legs attached

1

4

(

x2
a,b+2x

2
a+1,bx

2
b−1,b+1 − x2

a,b+1x
2
a+1,bx

2
b−1,b+2+

+ x2
a,b+1x

2
a+1,b−1x

2
b,b+2

)

(16)

1

4

(

−x2
a−1,b−1x

2
a,b+1x

2
a+1,b + x2

a−1,b−1x
2
abx

2
a+1,b+1−

− x2
a−1,a+1x

2
abx

2
b−1,b+1

)

(17)

1

4

(

x2
a−2,a+3x

2
a−1,a+1x

2
a,a+2 − 2x2

a−2,a+2x
2
a−1,a+1x

2
a,a+3+

+ x2
a−2,a+1x

2
a−1,a+2x

2
a,a+3 − x2

a−2,ax
2
a−1,a+2x

2
a+1,a+3

)

(18)

4. One massive leg attached

1

4
x2

a−2,ax
2
a−1,a+1x

2
a,a+2 (19)

1

4

(

x2
a−1,a+1x

2
a,b−1x

2
a+1,b − x2

a−1,a+1x
2
abx

2
a+1,b−1

)

(20)

0 (21)

1

4

(

x2
acx

2
a+1,bx

2
b,c−1 − x2

abx
2
a+1,cx

2
b,c−1−

− x2
a,c−1x

2
a+1,bx

2
bc + x2

abx
2
a+1,c−1x

2
bc

)

(22)
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0 (23)

0 (24)

5. One massless leg and one massive leg attached

−
1

4
x2

a−2,ax
2
a−1,a+2x

2
a+1,a+3 (25)

0 (26)

1

4
x2

a−2,a

(

x2
a−1,bx

2
a+1,b−1 − x2

a−1,b−1x
2
a+1,b

)

(27)

1

4

(

−x2
acx

2
a+1,bx

2
b+1,c−1 + x2

abx
2
a+1,cx

2
b+1,c−1+

+ x2
a,c−1x

2
a+1,bx

2
b+1,c − x2

abx
2
a+1,c−1x

2
b+1,c

)

(28)

0 (29)

0 (30)

6. Two massive legs attached

0 (31)
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0 (32)

0 (33)

0 (34)

7. Extra double boxes

1

4

(

−x2
a−2,bx

2
a−1,a+2x

2
a+1,b + x2

a−2,a+2x
2
a−1,bx

2
a+1,b+

+ x2
a−2,bx

2
a−1,a+1x

2
a+2,b − x2

a−2,a+1x
2
a−1,bx

2
a+2,b

)

(35)

−
1

4





a + 1 b − 1 b

b b + 1 a − 1



 (36)

0 (37)

−
1

4





a a + 1 a + 2

a + 2 a + 3 a − 2



 (38)

1

4

(

x2
a−3,a+1x

2
a−2,a+2 − x2

a−3,a+2x
2
a−2,a+1

)

x2
a,a+2 (39)

−
1

4





a + 1 b − 1 b

b + 1 b + 2 a − 1



 (40)

0 (41)

15

−
1

4





a a + 1 a + 2

a + 3 a + 4 a − 2



 (42)

1

4

(

x2
a−3,a+3x

2
a−2,a+1 − x2

a−3,a+1x
2
a−2,a+3

)

x2
a,a+2 (43)

−
1

4





a − 1 a a + 1

a + 3 a − 4 a − 3



 (44)

0 (45)

0 (46)

−
1

2





2 3 4

6 7 8



 (47)

0 (48)

−
1

4





a − 2 a − 1 a

a + 2 b − 1 b



 (49)

−
1

4





a − 3 a − 2 a − 1

a + 1 a + 2 a + 3



 (50)

0 (51)

0 (52)
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−
1

4





a a + 1 b − 1

b + 1 c − 1 c



 (53)

B. Kissing double-box topologies

−
1

4





a a + 1 b − 1 b

b b + 1 a − 1 a



 +
1

4





a a + 1

b − 1 b









b b + 1

a − 1 a



 =

1

4

(

x2
a−1,b+1x

2
a+1,b−1

(

x2
ab

)

2 − x2
a−1,b−1x

2
a+1,b+1

(

x2
ab

)

2+

+ x2
a−1,a+1x

2
b−1,b+1

(

x2
ab

)

2 − x2
a−1,bx

2
a,b+1x

2
a+1,b−1x

2
ab−

− x2
a−1,b+1x

2
a,b−1x

2
a+1,bx

2
ab + x2

a−1,b−1x
2
a,b+1x

2
a+1,bx

2
ab+

+ x2
a−1,bx

2
a,b−1x

2
a+1,b+1x

2
ab

)

(54)

−
1

4





a + 1 a + 2 b − 1 b

b b + 1 a − 1 a



 +
1

4





a − 1 a

b b + 1









a + 1 a + 2

b − 1 b





(55)

−
1

4





a + 1 a + 2 b − 1 b

b + 1 b + 2 a − 1 a



 +
1

4





a + 1 a + 2

b − 1 b









b + 1 b + 2

a − 1 a





(56)

−
1

4





a a + 1 b − 1 b

b b + 1 c − 1 c



 +
1

4





a a + 1

b − 1 b









b b + 1

c − 1 c



 (57)

−
1

4





a a + 1 b − 1 b

b + 1 b + 2 c − 1 c



 +
1

4





a a + 1

b − 1 b









b + 1 b + 2

c − 1 c





(58)

−
1

4





a a + 1 b − 1 b

c c + 1 d − 1 d



+
1

4





a a + 1

b − 1 b









c c + 1

d − 1 d



 (59)
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C. Box-Pentagon topologies

1. No legs attached

1

4
x2

abx
2
a+1,q

(

x2
a,b+1x

2
a−1,b − x2

abx
2
a−1,b+1

)

(60)

1

2
x2

a,a+2x
2
a+1,q

(

x2
a−1,a+2x

2
a,a+3 − x2

a−1,a+3x
2
a,a+2

)

(61)

2. One massless leg attached

1

4

(

x2
a−1,b+1x

2
ab − x2

a−1,bx
2
a,b+1

) (

x2
a+1,qx

2
a+2,b − x2

a+1,bx
2
a+2,q

)

(62)

1

4
x2

a−1,b

(

x2
abx

2
a+1,qx

2
b−1,b+1 + x2

a,b+1x
2
a+1,bx

2
b−1,q − x2

abx
2
a+1,b+1x

2
b−1,q

)

(63)

1

4

(

x2
a−4,ax

2
a−3,ax

2
a−2,qx

2
a−1,a+1 − x2

a−4,a+1x
2
a−3,ax

2
a−2,ax

2
a−1,q+

+ 2x2
a−4,ax

2
a−3,a+1x

2
a−2,ax

2
a−1,q − x2

a−4,ax
2
a−3,ax

2
a−2,a+1x

2
a−1,q

)

(64)

3. One massive leg attached

0 (65)

1

4

(

x2
aqx

2
a+1,b − x2

abx
2
a+1,q

) (

x2
bcx

2
b+1,c−1 − x2

b,c−1x
2
b+1,c

)

(66)

1

4
x2

a−1,a+1x
2
aq

(

x2
a+1,b−1x

2
a+2,b − x2

a+1,bx
2
a+2,b−1

)

(67)
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4. One massless, one massive leg attached

0 (68)

−
1

4





a a + 1 b b + 1

b + 2 c − 1 c q



 . (69)

Note that in the previous formula we suppress the terms containing x2
b+1,q which would

otherwise cancel a propagator of the underlying topology. When expanded out, the expres-

sion above has 12 terms.

−
1

4





a − 2 a − 1 a a + 1

a + 2 b − 1 b q



 . (70)

In the previous formula we suppress the terms containing x2
a+1,q which would otherwise

cancel a propagator of the underlying topology.

5. Two massless legs attached

1

4





a a + 1 b − 1 b

b + 1 b + 2 a − 1 q



 (71)

In the previous formula we suppress the terms containing x2
a+1,q which would otherwise

cancel a propagator of the underlying topology.
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1

4





a − 2 a − 1 a a + 1

a + 2 a + 3 a − 3 q



−
1

4





a − 1 a a + 1 a + 2

a + 3 a − 3 a − 2 q



 =

1

4

(

−x2
a−3,a+1x

2
a−2,a+3x

2
a−1,qx

2
a,a+2 + x2

a−3,a−1x
2
a−2,a+3x

2
a+1,qx

2
a,a+2−

− x2
a−3,a+2x

2
a−2,a+1x

2
a−1,qx

2
a,a+3 + 2x2

a−3,a+1x
2
a−2,a+2x

2
a−1,qx

2
a,a+3+

+ x2
a−3,a+1x

2
a−2,a+3x

2
a−1,a+2x

2
aq + x2

a−3,a+2x
2
a−2,a+1x

2
a−1,a+3x

2
aq−

− 2x2
a−3,a+1x

2
a−2,a+2x

2
a−1,a+3x

2
aq + x2

a−3,a+2x
2
a−2,ax

2
a−1,qx

2
a+1,a+3−

− 2x2
a−3,ax

2
a−2,a+2x

2
a−1,qx

2
a+1,a+3 + 2x2

a−3,a−1x
2
a−2,a+2x

2
aqx

2
a+1,a+3−

− x2
a−3,ax

2
a−2,a+3x

2
a−1,a+2x

2
a+1,q − x2

a−3,a+2x
2
a−2,ax

2
a−1,a+3x

2
a+1,q+

+2x2
a−3,ax

2
a−2,a+2x

2
a−1,a+3x

2
a+1,q−2x2

a−3,a−1x
2
a−2,a+2x

2
a,a+3x

2
a+1,q

)

.

(72)
We have written down this formula to emphasize how nontrivial it is. We suppress

the terms containing x2
a−2,q and x2

a+2,q, respectively. These terms would otherwise cancel a

propagator of the underlying topology. We will see below that the box-pentagon topologies

with massless legs attached to the vertices of the edge common to both loops can in fact be

seen to originate in double-pentagon topologies, by cancelling some propagators.

D. Double pentagon topologies

1. No legs attached

−
1

4





a a + 1 b − 1 b p

b b + 1 a − 1 a q



 (73)

In the expansion of the above formula we drop terms that would cancel propagators (in

this case, the terms containing x2
ap, x2

aq, x2
bp, x2

bq, or x2
pq). This expression has 6 terms when

expanded.
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2. One massless leg attached

−
1

4





a + 1 a + 2 b − 1 b p

b b + 1 a − 1 a q



 (74)

In the formula above we drop terms that would cancel propagators (in this case, the

terms are x2
bp, x2

bq and x2
pq). This expression has 15 terms when expanded.

3. One massive leg attached

−
1

4





a a + 1 b − 1 b p

b b + 1 c − 1 c q



 (75)

In the formula above we drop terms that would cancel propagators (in this case, the

terms containing x2
bp, x2

bq or x2
pq). This expression has 16 terms when expanded.

4. Two massless legs attached

−
1

4





a + 1 a + 2 b − 1 b p

b + 1 b + 2 a − 1 a q



 (76)

In the formula we drop terms that would cancel propagators (in this case, the terms

containing x2
pq). This expression has 64 terms when expanded.

5. One massless, one massive leg attached

−
1

4





a a + 1 b − 1 b p

b + 1 b + 2 c − 1 c q



 (77)
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In the formula above we drop terms that would cancel propagators (in this case, the

terms containing x2
pq). This expression has 78 terms when expanded.

6. Two massive legs attached

−
1

4





a a + 1 b − 1 b p

c c + 1 d − 1 d q



 (78)

In the formula above we drop terms that would cancel propagators (in this case, the terms

containing x2
pq). When expanded, the above expression contains 96 terms. The number of

conformal dressings is 160 (the number of coefficients unrelated by symmetries is lower).

E. Assembly of the result

As explained in Sec. II, for the MHV amplitudes the ratio between the !-loop amplitude

and the tree-level amplitude can be written as a sum between parity even and parity odd

contributions

M (!)
n = M (!),even

n + M (!),odd
n . (79)

Then, the even part can be written

M (2),even
n = −π−De2γε

∫

dDxpd
Dxq

∑

σ

∑

i∈Topologies

siciIi, (80)

where the first sum runs over cyclic and anti-cyclic permutations of the external legs, the

second sum runs over all the topologies, si is a symmetry factor associated to topology i,

ci is the numerator of the topology i, as listed in Sec. IV and Ii is the denominator or the

product of propagators in the topology i.

Apart from the parity odd part which we have not computed, there is also a contribution

which is not detectable from four-dimensional cuts, denoted by M (2),µ. This part of the

result is such that its integrand vanishes in four dimensions, but the integral itself can give

contributions to the divergent and finite parts. In Ref. [32], for n = 6 case, this part of the

result was found to be closely related to O(ε) contributions at one loop, M (1),µ.

Based on previous computations we expect that the odd part and the µ integrals will

not be needed in order to compare with the Wilson loop results. The odd parts could be
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G
(

0,
1

1− u1
, v123; 1

)

H (0;u2)−
1

4
G
(

0,
1

1− u1
, v132; 1

)

H (0;u2) +

1

4
G
(

0,
1

1− u2
, v213; 1

)

H (0;u2) +
1

4
G
(

0,
1

1− u2
, v231; 1

)

H (0;u2)−

1

4
G
(

0,
1

1− u3
, v312; 1

)

H (0;u2) +
1

4
G
(

0,
1

1− u3
, v321; 1

)

H (0;u2) +

1

4
G
(

0, u123,
1

1− u1
; 1

)

H (0;u2)−
1

4
G
(

0, u123,
u2 − 1

u1 + u2 − 1
; 1

)

H (0;u2)−

1

4
G
(

0, u312,
1

u2
; 1

)

H (0;u2)−
1

4
G
(

0, u312,
1

1− u3
; 1

)

H (0;u2) +

1

2
G
(

0, v123,
1

1− u1
; 1

)

H (0;u2) +
1

4
G
(

0, v213,
1

1− u2
; 1

)

H (0;u2) +

1

4
G
(

0, v231,
1

1− u2
; 1

)

H (0;u2)−
1

2
G
(

0, v312,
1

1− u3
; 1

)

H (0;u2) +

1

4
G
(

1

1− u1
, 0, v123; 1

)

H (0;u2)−
1

4
G
(

1

1− u1
, 0, v132; 1

)

H (0;u2) +

1

2
G
(

1

1− u1
,

1

1− u1
, v123; 1

)

H (0;u2)−
1

2
G
(

1

1− u1
,

1

1− u1
, v132; 1

)

H (0;u2)−

1

4
G
(

1

1− u1
, u123, 0; 1

)

H (0;u2)−
1

4
G
(

1

1− u1
, u123,

1

1− u1
; 1

)

H (0;u2) +

1

4
G
(

1

1− u1
, u123,

u2 − 1

u1 + u2 − 1
; 1

)

H (0;u2) +
1

4
G
(

1

1− u1
, v123, 0; 1

)

H (0;u2) +

1

2
G
(

1

1− u1
, v123,

1

1− u1
; 1

)

H (0;u2)−
1

4
G
(

1

1− u1
, v132, 0; 1

)

H (0;u2)−

1

2
G
(

1

1− u1
, v132,

1

1− u1
; 1

)

H (0;u2) +
1

4
G
(

1

1− u2
, 0, v213; 1

)

H (0;u2) +

1

4
G
(

1

1− u2
, 0, v231; 1

)

H (0;u2) +
1

2
G
(

1

1− u2
,

1

1− u2
, v213; 1

)

H (0;u2) +

1

2
G
(

1

1− u2
,

1

1− u2
, v231; 1

)

H (0;u2) +
1

4
G
(

1

1− u2
, v213, 1; 1

)

H (0;u2) +

1

4
G
(

1

1− u2
, v213,

1

1− u2
; 1

)

H (0;u2) +
1

4
G
(

1

1− u2
, v231, 1; 1

)

H (0;u2) +

1

4
G
(

1

1− u2
, v231,

1

1− u2
; 1

)

H (0;u2)−
1

4
G
(

1

1− u3
, 0, v312; 1

)

H (0;u2) +

1

4
G
(

1

1− u3
, 0, v321; 1

)

H (0;u2)−
1

2
G
(

1

1− u3
,

1

1− u3
, v312; 1

)

H (0;u2) +

1

2
G
(

1

1− u3
,

1

1− u3
, v321; 1

)

H (0;u2)−
1

4
G
(

1

1− u3
, u312, 1; 1

)

H (0;u2) +

1

4
G
(

1

1− u3
, u312,

1

u2
; 1

)

H (0;u2) +
1

4
G
(

1

1− u3
, u312,

1

1− u3
; 1

)

H (0;u2)−

1

4
G
(

1

1− u3
, v312, 0; 1

)

H (0;u2)−
1

2
G
(

1

1− u3
, v312,

1

1− u3
; 1

)

H (0;u2) +

1

4
G
(

1

1− u3
, v321, 0; 1

)

H (0;u2) +
1

2
G
(

1

1− u3
, v321,

1

1− u3
; 1

)

H (0;u2) +

3

4
G
(

v123, 1,
1

1− u1
; 1

)

H (0;u2) +
3

4
G
(

v123,
1

1− u1
, 1; 1

)

H (0;u2)−

– 108 –

1

4
G
(

v132, 1,
1

1− u1
; 1

)

H (0;u2)−
1

4
G
(

v132,
1

1− u1
, 1; 1

)

H (0;u2) +

1

4
G
(

v213, 1,
1

1− u2
; 1

)

H (0;u2) +
1

4
G
(

v213,
1

1− u2
, 1; 1

)

H (0;u2) +

1

4
G
(

v231, 1,
1

1− u2
; 1

)

H (0;u2) +
1

4
G
(

v231,
1

1− u2
, 1; 1

)

H (0;u2)−

3

4
G
(

v312, 1,
1

1− u3
; 1

)

H (0;u2)−
3

4
G
(

v312,
1

1− u3
, 1; 1

)

H (0;u2) +

1

4
G
(

v321, 1,
1

1− u3
; 1

)

H (0;u2) +
1

4
G
(

v321,
1

1− u3
, 1; 1

)

H (0;u2) +

1

4
G

(
1

u1
,

1

u1 + u2
; 1

)

H (0;u1)H (0;u2) +
1

4
G

(
1

u2
,

1

u1 + u2
; 1

)

H (0;u1)H (0;u2) +

1

4
G

(
1

1− u3
,

u1 − 1

u1 + u3 − 1
; 1

)

H (0;u1)H (0;u2)−

1

4
G
(

1

1− u3
, u312; 1

)

H (0;u1)H (0;u2)−
1

4
G
(

1

1− u3
, v312; 1

)

H (0;u1)H (0;u2)−

1

4
G
(

1

1− u3
, v321; 1

)

H (0;u1)H (0;u2) +
5

24
π2H (0;u1)H (0;u2)−

1

4
G

(

0,
1

u1
,

1

u1 + u3
; 1

)

H (0;u3)−
1

4
G

(

0,
1

u2
,

1

u2 + u3
; 1

)

H (0;u3) +

1

4
G

(

0,
u2 − 1

u1 + u2 − 1
,

1

1− u1
; 1

)

H (0;u3)−
3

4
G

(

0,
1

u3
,

1

u1 + u3
; 1

)

H (0;u3)−

3

4
G

(

0,
1

u3
,

1

u2 + u3
; 1

)

H (0;u3)−
1

4
G

(

0,
u3 − 1

u2 + u3 − 1
,

1

1− u2
; 1

)

H (0;u3)−

1

4
G

(
1

1− u1
, 1,

1

u3
; 1

)

H (0;u3) +
1

4
G

(
1

1− u1
,

u2 − 1

u1 + u2 − 1
, 1; 1

)

H (0;u3)−

1

4
G

(
1

1− u1
,

u2 − 1

u1 + u2 − 1
,

1

1− u1
; 1

)

H (0;u3) +
1

2
G

(
1

u1
, 0,

1

u3
; 1

)

H (0;u3)−

1

4
G

(
1

u1
, 0,

1

u1 + u3
; 1

)

H (0;u3) +
1

4
G

(
1

u1
,
1

u3
,

1

u1 + u3
; 1

)

H (0;u3) +

1

4
G

(
1

1− u2
,

u3 − 1

u2 + u3 − 1
, 0; 1

)

H (0;u3)+
1

4
G

(
1

1− u2
,

u3 − 1

u2 + u3 − 1
,

1

1− u2
; 1

)

H (0;u3)−

1

4
G

(
1

1− u2
,

u3 − 1

u2 + u3 − 1
,

u3 − 1

u2 + u3 − 1
; 1

)

H (0;u3) +
1

2
G

(
1

u2
, 0,

1

u3
; 1

)

H (0;u3)−

1

4
G

(
1

u2
, 0,

1

u2 + u3
; 1

)

H (0;u3) +
1

4
G

(
1

u2
,
1

u3
,

1

u2 + u3
; 1

)

H (0;u3)−

3

4
G

(
1

u3
, 0,

1

u1 + u3
; 1

)

H (0;u3)−
3

4
G

(
1

u3
, 0,

1

u2 + u3
; 1

)

H (0;u3) +

1

4
G

(
1

u3
,
1

u1
,

1

u1 + u3
; 1

)

H (0;u3) +
1

4
G

(
1

u3
,
1

u2
,

1

u2 + u3
; 1

)

H (0;u3) +

1

2
G

(
1

u3
,
1

u3
,

1

u1 + u3
; 1

)

H (0;u3) +
1

2
G

(
1

u3
,
1

u3
,

1

u2 + u3
; 1

)

H (0;u3)−

1

4
G
(

0,
1

1− u1
, v123; 1

)

H (0;u3) +
1

4
G
(

0,
1

1− u1
, v132; 1

)

H (0;u3)−

1

4
G
(

0,
1

1− u2
, v213; 1

)

H (0;u3) +
1

4
G
(

0,
1

1− u2
, v231; 1

)

H (0;u3) +
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1

4
G
(

0,
1

1− u3
, v312; 1

)

H (0;u3) +
1

4
G
(

0,
1

1− u3
, v321; 1

)

H (0;u3)−

1

4
G
(

0, u123,
1

1− u1
; 1

)

H (0;u3)−
1

4
G
(

0, u123,
1

u3
; 1

)

H (0;u3) +

1

4
G
(

0, u231,
1

1− u2
; 1

)

H (0;u3)−
1

4
G
(

0, u231,
u3 − 1

u2 + u3 − 1
; 1

)

H (0;u3)−

1

2
G
(

0, v123,
1

1− u1
; 1

)

H (0;u3) +
1

2
G
(

0, v231,
1

1− u2
; 1

)

H (0;u3) +

1

4
G
(

0, v312,
1

1− u3
; 1

)

H (0;u3) +
1

4
G
(

0, v321,
1

1− u3
; 1

)

H (0;u3)−

1

4
G
(

1

1− u1
, 0, v123; 1

)

H (0;u3) +
1

4
G
(

1

1− u1
, 0, v132; 1

)

H (0;u3)−

1

2
G
(

1

1− u1
,

1

1− u1
, v123; 1

)

H (0;u3) +
1

2
G
(

1

1− u1
,

1

1− u1
, v132; 1

)

H (0;u3)−

1

4
G
(

1

1− u1
, u123, 1; 1

)

H (0;u3) +
1

4
G
(

1

1− u1
, u123,

1

1− u1
; 1

)

H (0;u3) +

1

4
G
(

1

1− u1
, u123,

1

u3
; 1

)

H (0;u3)−
1

4
G
(

1

1− u1
, v123, 0; 1

)

H (0;u3)−

1

2
G
(

1

1− u1
, v123,

1

1− u1
; 1

)

H (0;u3) +
1

4
G
(

1

1− u1
, v132, 0; 1

)

H (0;u3) +

1

2
G
(

1

1− u1
, v132,

1

1− u1
; 1

)

H (0;u3)−
1

4
G
(

1

1− u2
, 0, v213; 1

)

H (0;u3) +

1

4
G
(

1

1− u2
, 0, v231; 1

)

H (0;u3)−
1

2
G
(

1

1− u2
,

1

1− u2
, v213; 1

)

H (0;u3) +

1

2
G
(

1

1− u2
,

1

1− u2
, v231; 1

)

H (0;u3)−
1

4
G
(

1

1− u2
, u231, 0; 1

)

H (0;u3)−

1

4
G
(

1

1− u2
, u231,

1

1− u2
; 1

)

H (0;u3) +
1

4
G
(

1

1− u2
, u231,

u3 − 1

u2 + u3 − 1
; 1

)

H (0;u3)−

1

4
G
(

1

1− u2
, v213, 0; 1

)

H (0;u3)−
1

2
G
(

1

1− u2
, v213,

1

1− u2
; 1

)

H (0;u3) +

1

4
G
(

1

1− u2
, v231, 0; 1

)

H (0;u3) +
1

2
G
(

1

1− u2
, v231,

1

1− u2
; 1

)

H (0;u3) +

1

4
G
(

1

1− u3
, 0, v312; 1

)

H (0;u3) +
1

4
G
(

1

1− u3
, 0, v321; 1

)

H (0;u3) +

1

2
G
(

1

1− u3
,

1

1− u3
, v312; 1

)

H (0;u3) +
1

2
G
(

1

1− u3
,

1

1− u3
, v321; 1

)

H (0;u3) +

1

4
G
(

1

1− u3
, v312, 1; 1

)

H (0;u3) +
1

4
G
(

1

1− u3
, v312,

1

1− u3
; 1

)

H (0;u3) +

1

4
G
(

1

1− u3
, v321, 1; 1

)

H (0;u3) +
1

4
G
(

1

1− u3
, v321,

1

1− u3
; 1

)

H (0;u3)−

3

4
G
(

v123, 1,
1

1− u1
; 1

)

H (0;u3)−
3

4
G
(

v123,
1

1− u1
, 1; 1

)

H (0;u3) +

1

4
G
(

v132, 1,
1

1− u1
; 1

)

H (0;u3) +
1

4
G
(

v132,
1

1− u1
, 1; 1

)

H (0;u3)−

1

4
G
(

v213, 1,
1

1− u2
; 1

)

H (0;u3)−
1

4
G
(

v213,
1

1− u2
, 1; 1

)

H (0;u3) +
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3

4
G
(

v231, 1,
1

1− u2
; 1

)

H (0;u3) +
3

4
G
(

v231,
1

1− u2
, 1; 1

)

H (0;u3) +

1

4
G
(

v312, 1,
1

1− u3
; 1

)

H (0;u3) +
1

4
G
(

v312,
1

1− u3
, 1; 1

)

H (0;u3) +

1

4
G
(

v321, 1,
1

1− u3
; 1

)

H (0;u3) +
1

4
G
(

v321,
1

1− u3
, 1; 1

)

H (0;u3) +

1

4
G

(
1

u1
,

1

u1 + u3
; 1

)

H (0;u1)H (0;u3) +

1

4
G

(
1

1− u2
,

u3 − 1

u2 + u3 − 1
; 1

)

H (0;u1)H (0;u3) +

1

4
G

(
1

u3
,

1

u1 + u3
; 1

)

H (0;u1)H (0;u3)−
1

4
G
(

1

1− u2
, u231; 1

)

H (0;u1)H (0;u3)−

1

4
G
(

1

1− u2
, v213; 1

)

H (0;u1)H (0;u3)−
1

4
G
(

1

1− u2
, v231; 1

)

H (0;u1)H (0;u3) +

5

24
π2H (0;u1)H (0;u3) +

1

4
G

(
1

1− u1
,

u2 − 1

u1 + u2 − 1
; 1

)

H (0;u2)H (0;u3) +

1

4
G

(
1

u2
,

1

u2 + u3
; 1

)

H (0;u2)H (0;u3) +
1

4
G

(
1

u3
,

1

u2 + u3
; 1

)

H (0;u2)H (0;u3)−

1

4
G
(

1

1− u1
, u123; 1

)

H (0;u2)H (0;u3)−
1

4
G
(

1

1− u1
, v123; 1

)

H (0;u2)H (0;u3)−

1

4
G
(

1

1− u1
, v132; 1

)

H (0;u2)H (0;u3) +
5

24
π2H (0;u2)H (0;u3) +

3H (0;u2)H (0, 0;u1)H (0;u3) + 3H (0;u1)H (0, 0;u2)H (0;u3) +
1

4
H (0;u2)H

(

0, 1;
u1 + u2 − 1

u2 − 1

)

H (0;u3) +
1

2
H (0;u1)H (0, 1; (u1 + u3))H (0;u3) +

1

4
H (0;u1)H

(

0, 1;
u2 + u3 − 1

u3 − 1

)

H (0;u3) +
1

2
H (0;u2)H (0, 1; (u2 + u3))H (0;u3) +

3

4
H (0;u2)H (1, 0;u1)H (0;u3) +

3

4
H (0;u1)H (1, 0;u2)H (0;u3) +

1

4
G
(

1

1− u2
, v213; 1

)

H (0, 0;u1) +
1

4
G
(

1

1− u2
, v231; 1

)

H (0, 0;u1) +

1

4
G
(

1

1− u3
, v312; 1

)

H (0, 0;u1) +
1

4
G
(

1

1− u3
, v321; 1

)

H (0, 0;u1)−
23

24
π2H (0, 0;u1) +

1

4
G
(

1

1− u1
, v123; 1

)

H (0, 0;u2) +
1

4
G
(

1

1− u1
, v132; 1

)

H (0, 0;u2) +

1

4
G
(

1

1− u3
, v312; 1

)

H (0, 0;u2) +
1

4
G
(

1

1− u3
, v321; 1

)

H (0, 0;u2)−

25

4
H (0, 0;u1)H (0, 0;u2)−

23

24
π2H (0, 0;u2) +

1

4
G
(

1

1− u1
, v123; 1

)

H (0, 0;u3) +

1

4
G
(

1

1− u1
, v132; 1

)

H (0, 0;u3) +
1

4
G
(

1

1− u2
, v213; 1

)

H (0, 0;u3) +

1

4
G
(

1

1− u2
, v231; 1

)

H (0, 0;u3) + 3H (0;u1)H (0;u2)H (0, 0;u3)−
25

4
H (0, 0;u1)H (0, 0;u3)−

25

4
H (0, 0;u2)H (0, 0;u3)−

23

24
π2H (0, 0;u3)+

1

12
π2H (0, 1;u1)+

1

12
π2H (0, 1;u2)−

1

24
π2H

(

0, 1;
u1 + u2 − 1

u2 − 1

)

+
1

2
H (0;u1)H (0;u2)H (0, 1; (u1 + u2)) +
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1

12
π2H (0, 1; (u1 + u2)) +

1

12
π2H (0, 1;u3) +

1

4
H (0;u1)H (0;u2)H

(

0, 1;
u1 + u3 − 1

u1 − 1

)

−

1

24
π2H

(

0, 1;
u1 + u3 − 1

u1 − 1

)

+
1

12
π2H (0, 1; (u1 + u3))−

1

24
π2H

(

0, 1;
u2 + u3 − 1

u3 − 1

)

+

1

12
π2H (0, 1; (u2 + u3))−

1

2
G

(

0,
1

u1 + u2
; 1

)

H (1, 0;u1)−

1

2
G

(

0,
1

u1 + u3
; 1

)

H (1, 0;u1) +
1

4
G

(
1

u1
,

1

u1 + u2
; 1

)

H (1, 0;u1) +

1

4
G

(
1

u1
,

1

u1 + u3
; 1

)

H (1, 0;u1) +
1

4
G

(
1

u2
,

1

u1 + u2
; 1

)

H (1, 0;u1) +

1

4
G

(
1

1− u3
,

u1 − 1

u1 + u3 − 1
; 1

)

H (1, 0;u1) +
1

4
G

(
1

u3
,

1

u1 + u3
; 1

)

H (1, 0;u1)−

1

4
G
(

1

1− u3
, u312; 1

)

H (1, 0;u1)−
3

4
H (0, 0;u2)H (1, 0;u1)−

3

4
H (0, 0;u3)H (1, 0;u1) +

1

4
H

(

0, 1;
u1 + u3 − 1

u1 − 1

)

H (1, 0;u1)−
1

3
π2H (1, 0;u1)−

1

2
G

(

0,
1

u1 + u2
; 1

)

H (1, 0;u2)−

1

2
G

(

0,
1

u2 + u3
; 1

)

H (1, 0;u2) +
1

4
G

(
1

1− u1
,

u2 − 1

u1 + u2 − 1
; 1

)

H (1, 0;u2) +

1

4
G

(
1

u1
,

1

u1 + u2
; 1

)

H (1, 0;u2) +
1

4
G

(
1

u2
,

1

u1 + u2
; 1

)

H (1, 0;u2) +

1

4
G

(
1

u2
,

1

u2 + u3
; 1

)

H (1, 0;u2) +
1

4
G

(
1

u3
,

1

u2 + u3
; 1

)

H (1, 0;u2)−

1

4
G
(

1

1− u1
, u123; 1

)

H (1, 0;u2)−
3

4
H (0, 0;u1)H (1, 0;u2)−

3

4
H (0, 0;u3)H (1, 0;u2) +

1

4
H

(

0, 1;
u1 + u2 − 1

u2 − 1

)

H (1, 0;u2)−
1

4
H (1, 0;u1)H (1, 0;u2)−

1

3
π2H (1, 0;u2)−

1

2
G

(

0,
1

u1 + u3
; 1

)

H (1, 0;u3)−
1

2
G

(

0,
1

u2 + u3
; 1

)

H (1, 0;u3) +

1

4
G

(
1

u1
,

1

u1 + u3
; 1

)

H (1, 0;u3) +
1

4
G

(
1

1− u2
,

u3 − 1

u2 + u3 − 1
; 1

)

H (1, 0;u3) +

1

4
G

(
1

u2
,

1

u2 + u3
; 1

)

H (1, 0;u3)−
1

3
π2H (1, 0;u3) +

1

4
G

(
1

u3
,

1

u1 + u3
; 1

)

H (1, 0;u3) +

1

4
G

(
1

u3
,

1

u2 + u3
; 1

)

H (1, 0;u3)−
1

4
G
(

1

1− u2
, u231; 1

)

H (1, 0;u3) +

3

4
H (0;u1)H (0;u2)H (1, 0;u3)−

3

4
H (0, 0;u1)H (1, 0;u3)−

3

4
H (0, 0;u2)H (1, 0;u3) +

1

4
H

(

0, 1;
u2 + u3 − 1

u3 − 1

)

H (1, 0;u3)−
1

4
H (1, 0;u1)H (1, 0;u3)−

1

4
H (1, 0;u2)H (1, 0;u3) +

1

24
π2H (1, 1;u1) +

1

24
π2H (1, 1;u2) +

1

24
π2H (1, 1;u3) +

1

2
H (0;u2)H (0, 0, 0;u1) +

1

2
H (0;u3)H (0, 0, 0;u2) +

1

2
H (0;u1)H (0, 0, 0;u3)−

1

2
H (0;u2)H

(

0, 0, 1;
u1 + u2 − 1

u2 − 1

)

−

1

2
H (0;u3)H

(

0, 0, 1;
u1 + u2 − 1

u2 − 1

)

−H (0;u1)H (0, 0, 1; (u1 + u2))−

H (0;u2)H (0, 0, 1; (u1 + u2))−
1

2
H (0;u1)H

(

0, 0, 1;
u1 + u3 − 1

u1 − 1

)

−
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1

2
H (0;u2)H

(

0, 0, 1;
u1 + u3 − 1

u1 − 1

)

−H (0;u1)H (0, 0, 1; (u1 + u3))−

H (0;u3)H (0, 0, 1; (u1 + u3))−
1

2
H (0;u1)H

(

0, 0, 1;
u2 + u3 − 1

u3 − 1

)

−

1

2
H (0;u3)H

(

0, 0, 1;
u2 + u3 − 1

u3 − 1

)

−H (0;u2)H (0, 0, 1; (u2 + u3))−

H (0;u3)H (0, 0, 1; (u2 + u3))−
1

2
H (0;u2)H (0, 1, 0;u1)−

1

2
H (0;u3)H (0, 1, 0;u2)−

1

2
H (0;u1)H (0, 1, 0;u3) +

1

4
H (0;u2)H

(

0, 1, 1;
u1 + u2 − 1

u2 − 1

)

−

1

4
H (0;u3)H

(

0, 1, 1;
u1 + u2 − 1

u2 − 1

)

+
1

4
H (0;u1)H

(

0, 1, 1;
u1 + u3 − 1

u1 − 1

)

−

1

4
H (0;u2)H

(

0, 1, 1;
u1 + u3 − 1

u1 − 1

)

− 1

4
H (0;u1)H

(

0, 1, 1;
u2 + u3 − 1

u3 − 1

)

+

1

4
H (0;u3)H

(

0, 1, 1;
u2 + u3 − 1

u3 − 1

)

+
1

2
H (0;u2)H (1, 0, 0;u1)−

1

2
H (0;u3)H (1, 0, 0;u1)−

1

2
H (0;u1)H (1, 0, 0;u2) +

1

2
H (0;u3)H (1, 0, 0;u2) +

1

2
H (0;u1)H (1, 0, 0;u3)−

1

2
H (0;u2)H (1, 0, 0;u3)−

1

4
H (0;u3)H

(

1, 0, 1;
u1 + u2 − 1

u2 − 1

)

−

1

4
H (0;u2)H

(

1, 0, 1;
u1 + u3 − 1

u1 − 1

)

− 1

4
H (0;u1)H

(

1, 0, 1;
u2 + u3 − 1

u3 − 1

)

−

7H (0, 0, 0, 0;u1)− 7H (0, 0, 0, 0;u2)− 7H (0, 0, 0, 0;u3) +
3

2
H

(

0, 0, 0, 1;
u1 + u2 − 1

u2 − 1

)

+

3H (0, 0, 0, 1; (u1 + u2)) +
3

2
H

(

0, 0, 0, 1;
u1 + u3 − 1

u1 − 1

)

+ 3H (0, 0, 0, 1; (u1 + u3)) +

3

2
H

(

0, 0, 0, 1;
u2 + u3 − 1

u3 − 1

)

+ 3H (0, 0, 0, 1; (u2 + u3)) +
9

4
H (0, 0, 1, 0;u1) +

9

4
H (0, 0, 1, 0;u2) +

9

4
H (0, 0, 1, 0;u3)−

1

2
H (0, 1, 0, 0;u1)−

1

2
H (0, 1, 0, 0;u2)−

1

2
H (0, 1, 0, 0;u3) +

1

2
H

(

0, 1, 0, 1;
u1 + u2 − 1

u2 − 1

)

+
1

2
H

(

0, 1, 0, 1;
u1 + u3 − 1

u1 − 1

)

+

1

2
H

(

0, 1, 0, 1;
u2 + u3 − 1

u3 − 1

)

+H (0, 1, 1, 0;u1) +H (0, 1, 1, 0;u2) +H (0, 1, 1, 0;u3)−

1

4
H

(

0, 1, 1, 1;
u1 + u2 − 1

u2 − 1

)

− 1

4
H

(

0, 1, 1, 1;
u1 + u3 − 1

u1 − 1

)

−

1

4
H

(

0, 1, 1, 1;
u2 + u3 − 1

u3 − 1

)

+H

(

1, 0, 0, 1;
u1 + u2 − 1

u2 − 1

)

+H

(

1, 0, 0, 1;
u1 + u3 − 1

u1 − 1

)

+

H

(

1, 0, 0, 1;
u2 + u3 − 1

u3 − 1

)

+ 2H (1, 0, 1, 0;u1) + 2H (1, 0, 1, 0;u2) + 2H (1, 0, 1, 0;u3) +

1

4
H

(

1, 1, 0, 1;
u1 + u2 − 1

u2 − 1

)

+
1

4
H

(

1, 1, 0, 1;
u1 + u3 − 1

u1 − 1

)

+

1

4
H

(

1, 1, 0, 1;
u2 + u3 − 1

u3 − 1

)

+
1

2
H (1, 1, 1, 0;u1) +

1

2
H (1, 1, 1, 0;u2) +

1

2
H (1, 1, 1, 0;u3)−

1

24
π2H (0;u3)H

(

1;
1

u123

)

− 1

24
π2H (0;u1)H

(

1;
1

u231

)

− 1

24
π2H (0;u2)H

(

1;
1

u312

)

+

1

8
π2H (0;u2)H

(

1;
1

v123

)

− 1

8
π2H (0;u3)H

(

1;
1

v123

)

+
1

24
π2H (0;u2)H

(

1;
1

v132

)

−
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1

24
π2H (0;u3)H

(

1;
1

v132

)

− 1

24
π2H (0;u1)H

(

1;
1

v213

)

+
1

24
π2H (0;u3)H

(

1;
1

v213

)

−

1

8
π2H (0;u1)H

(

1;
1

v231

)

+
1

8
π2H (0;u3)H

(

1;
1

v231

)

+
1

8
π2H (0;u1)H

(

1;
1

v312

)

−

1

8
π2H (0;u2)H

(

1;
1

v312

)

+
1

24
π2H (0;u1)H

(

1;
1

v321

)

− 1

24
π2H (0;u2)H

(

1;
1

v321

)

−

1

4
H (0;u2)H (0;u3)H

(

0, 1;
1

u123

)

− 1

4
H (1, 0;u2)H

(

0, 1;
1

u123

)

+
1

24
π2H

(

0, 1;
1

u123

)

+

1

24
π2H

(

0, 1;
1

u231

)

− 1

4
H (0;u1)H (0;u3)H

(

0, 1;
1

u231

)

− 1

4
H (1, 0;u3)H

(

0, 1;
1

u231

)

−

1

4
H (0;u1)H (0;u2)H

(

0, 1;
1

u312

)

− 1

4
H (1, 0;u1)H

(

0, 1;
1

u312

)

+
1

24
π2H

(

0, 1;
1

u312

)

−

1

4
H (0;u2)H (0;u3)H

(

0, 1;
1

v123

)

+
1

4
H (0, 0;u2)H

(

0, 1;
1

v123

)

+

1

4
H (0, 0;u3)H

(

0, 1;
1

v123

)

+
1

6
π2H

(

0, 1;
1

v123

)

− 1

4
H (0;u2)H (0;u3)H

(

0, 1;
1

v132

)

+

1

4
H (0, 0;u2)H

(

0, 1;
1

v132

)

+
1

4
H (0, 0;u3)H

(

0, 1;
1

v132

)

+
1

6
π2H

(

0, 1;
1

v132

)

−

1

4
H (0;u1)H (0;u3)H

(

0, 1;
1

v213

)

+
1

4
H (0, 0;u1)H

(

0, 1;
1

v213

)

+

1

4
H (0, 0;u3)H

(

0, 1;
1

v213

)

+
1

6
π2H

(

0, 1;
1

v213

)

− 1

4
H (0;u1)H (0;u3)H

(

0, 1;
1

v231

)

+

1

4
H (0, 0;u1)H

(

0, 1;
1

v231

)

+
1

4
H (0, 0;u3)H

(

0, 1;
1

v231

)

+
1

6
π2H

(

0, 1;
1

v231

)

−

1

4
H (0;u1)H (0;u2)H

(

0, 1;
1

v312

)

+
1

4
H (0, 0;u1)H

(

0, 1;
1

v312

)

+

1

4
H (0, 0;u2)H

(

0, 1;
1

v312

)

+
1

6
π2H

(

0, 1;
1

v312

)

− 1

4
H (0;u1)H (0;u2)H

(

0, 1;
1

v321

)

+

1

4
H (0, 0;u1)H

(

0, 1;
1

v321

)

+
1

4
H (0, 0;u2)H

(

0, 1;
1

v321

)

+
1

6
π2H

(

0, 1;
1

v321

)

−

1

2
H (0;u2)H (0;u3)H

(

1, 1;
1

v123

)

+
1

2
H (0, 0;u2)H

(

1, 1;
1

v123

)

+

1

2
H (0, 0;u3)H

(

1, 1;
1

v123

)

+
11

24
π2H

(

1, 1;
1

v123

)

− 1

24
π2H

(

1, 1;
1

v132

)

−

1

24
π2H

(

1, 1;
1

v213

)

− 1

2
H (0;u1)H (0;u3)H

(

1, 1;
1

v231

)

+
1

2
H (0, 0;u1)H

(

1, 1;
1

v231

)

+

1

2
H (0, 0;u3)H

(

1, 1;
1

v231

)

+
11

24
π2H

(

1, 1;
1

v231

)

− 1

2
H (0;u1)H (0;u2)H

(

1, 1;
1

v312

)

+

1

2
H (0, 0;u1)H

(

1, 1;
1

v312

)

+
1

2
H (0, 0;u2)H

(

1, 1;
1

v312

)

+
11

24
π2H

(

1, 1;
1

v312

)

−

1

24
π2H

(

1, 1;
1

v321

)

+
1

2
H (0;u2)H

(

0, 0, 1;
1

u123

)

+
1

2
H (0;u3)H

(

0, 0, 1;
1

u123

)

+

1

2
H (0;u1)H

(

0, 0, 1;
1

u231

)

+
1

2
H (0;u3)H

(

0, 0, 1;
1

u231

)

+
1

2
H (0;u1)H

(

0, 0, 1;
1

u312

)

+

1

2
H (0;u2)H

(

0, 0, 1;
1

u312

)

+
1

4
H (0;u3)H

(

0, 1, 1;
1

u123

)

+
1

4
H (0;u1)H

(

0, 1, 1;
1

u231

)

+
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1

4
H (0;u2)H

(

0, 1, 1;
1

u312

)

+
1

4
H (0;u2)H

(

0, 1, 1;
1

v123

)

− 1

4
H (0;u3)H

(

0, 1, 1;
1

v123

)

−

1

4
H (0;u2)H

(

0, 1, 1;
1

v132

)

+
1

4
H (0;u3)H

(

0, 1, 1;
1

v132

)

+
1

4
H (0;u1)H

(

0, 1, 1;
1

v213

)

−

1

4
H (0;u3)H

(

0, 1, 1;
1

v213

)

− 1

4
H (0;u1)H

(

0, 1, 1;
1

v231

)

+
1

4
H (0;u3)H

(

0, 1, 1;
1

v231

)

+

1

4
H (0;u1)H

(

0, 1, 1;
1

v312

)

− 1

4
H (0;u2)H

(

0, 1, 1;
1

v312

)

− 1

4
H (0;u1)H

(

0, 1, 1;
1

v321

)

+

1

4
H (0;u2)H

(

0, 1, 1;
1

v321

)

+
1

4
H (0;u3)H

(

1, 0, 1;
1

u123

)

+
1

4
H (0;u1)H

(

1, 0, 1;
1

u231

)

+

1

4
H (0;u2)H

(

1, 0, 1;
1

u312

)

+
1

4
H (0;u2)H

(

1, 0, 1;
1

v123

)

− 1

4
H (0;u3)H

(

1, 0, 1;
1

v123

)

−

1

4
H (0;u2)H

(

1, 0, 1;
1

v132

)

+
1

4
H (0;u3)H

(

1, 0, 1;
1

v132

)

+
1

4
H (0;u1)H

(

1, 0, 1;
1

v213

)

−

1

4
H (0;u3)H

(

1, 0, 1;
1

v213

)

− 1

4
H (0;u1)H

(

1, 0, 1;
1

v231

)

+
1

4
H (0;u3)H

(

1, 0, 1;
1

v231

)

+

1

4
H (0;u1)H

(

1, 0, 1;
1

v312

)

− 1

4
H (0;u2)H

(

1, 0, 1;
1

v312

)

− 1

4
H (0;u1)H

(

1, 0, 1;
1

v321

)

+

1

4
H (0;u2)H

(

1, 0, 1;
1

v321

)

+H (0;u2)H
(

1, 1, 1;
1

v123

)

−H (0;u3)H
(

1, 1, 1;
1

v123

)

−

H (0;u1)H
(

1, 1, 1;
1

v231

)

+H (0;u3)H
(

1, 1, 1;
1

v231

)

+H (0;u1)H
(

1, 1, 1;
1

v312

)

−

H (0;u2)H
(

1, 1, 1;
1

v312

)

− 3

2
H
(

0, 0, 0, 1;
1

u123

)

− 3

2
H
(

0, 0, 0, 1;
1

u231

)

−

3

2
H
(

0, 0, 0, 1;
1

u312

)

− 3H
(

0, 0, 0, 1;
1

v132

)

− 3H
(

0, 0, 0, 1;
1

v213

)

− 3H
(

0, 0, 0, 1;
1

v321

)

−

1

2
H
(

0, 0, 1, 1;
1

u123

)

− 1

2
H
(

0, 0, 1, 1;
1

u231

)

− 1
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Classical Polylogarithms for Amplitudes and Wilson Loops
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We present a compact analytic formula for the two-loop six-particle maximally helicity violating
remainder function (equivalently, the two-loop lightlike hexagon Wilson loop) in N = 4 supersym-
metric Yang-Mills theory in terms of the classical polylogarithm functions Lik with cross-ratios of
momentum twistor invariants as their arguments. In deriving our formula we rely on results from
the theory of motives.

INTRODUCTION

The past few years have witnessed revolutionary ad-
vances in our understanding of the structure of scattering
amplitudes, especially in N = 4 supersymmetric Yang-
Mills theory (SYM). It is easy to argue that the seeds
of modern progress were sown already in the 1980s with
the discovery of the Parke-Taylor formula for the sim-
plest nontrivial amplitudes: tree-level maximally helicity
violating (MHV) gluon scattering. The mere existence
of such a simple formula for a quantity which otherwise
would have been prohibitively difficult to calculate us-
ing traditional Feynman diagram methods signalled the
tantalizing possibility that a great vista of unanticipated
structure in scattering amplitudes awaited exploration.

In contrast to the situation at tree level, it is fair to
say that recent progress at loop level has mostly been
evolutionary rather than revolutionary, driven primarily
by faster computers, improved algorithms (both analytic
and numeric), and software for multiloop calculations
which has been made publicly available. Yet we hope
that a great new vista of unexplored structure awaits us
also at loop level in SYM theory.

This paper is concerned with the planar two-loop six-
particle MHV amplitude [1, 2], which in a sense is the
simplest nontrivial SYM loop amplitude. The known in-
frared and collinear behavior of general amplitudes, con-
veniently encapsulated in the ABDK/BDS ansatz [3, 4],
determines the n-particle MHV amplitude at each loop
order L ≥ 2 up to an additive finite function of kinematic

invariants called the remainder function R(L)
n . Given the

presumption of dual conformal invariance [5, 6] for SYM
amplitudes (not yet proven, but supported by all avail-

able evidence [1, 3, 4, 7, 8]), R(L)
n can depend on confor-

mal cross-ratios only. Since there are no cross-ratios for

n = 4, 5, the first nontrivial remainder function is R(2)
6 .

The same function R(2)
6 is also believed [9–12] to arise

as the expectation value of the two-loop lightlike hexagon
Wilson loop in SYM theory [13, 14] (after appropriate
subtraction of ultraviolet divergences, e.g. [15]). Numer-
ical agreement between the two remainder functions was
established in [1, 14]. In a heroic effort, Del Duca, Duhr,
and Smirnov (DDS) explicitly evaluated the appropriate

Wilson loop diagrams to obtain an analytic expression

for R(2)
6 as a 17-page linear combination of generalized

polylogarithm functions [16, 17] (see also [18]).
The motivation for the present work is the belief that

if SYM theory is really as beautiful and rich as recent
developments indicate, then there must exist a more en-

lightening way of expressing the remainder function R(2)
6 .

Ideally, like the Parke-Taylor formula at tree level, the ex-
pression should provide encouragement and guidance as
we seek deeper understanding of SYM at loop level.

We present our new formula for R(2)
6 in the next sec-

tion and then describe the algorithm by which it was
obtained.

THE REMAINDER FUNCTION R
(2)
6

The remainder function R(2)
6 is usually presented as a

function of the three dual conformal cross-ratios

u1 =
s12s45
s123s345

, u2 =
s23s56
s234s123

, u3 =
s34s61
s345s234

, (1)

of the momentum invariants si···j = (ki + · · · + kj)2,
though we will see shortly that cross-ratios of momen-
tum twistor invariants are more natural variables. In
terms of

x±
i = uix

±, x± =
u1 + u2 + u3 − 1±

√
∆

2u1u2u3
, (2)

where ∆ = (u1 + u2 + u3 − 1)2 − 4u1u2u3, we find

R(2)
6 (u1, u2, u3) =

3
∑

i=1

(

L4(x
+
i , x

−
i )−

1

2
Li4(1− 1/ui)

)

− 1

8

(
3∑

i=1

Li2(1 − 1/ui)

)2

+
1

24
J4 +

π2

12
J2 +

π4

72
. (3)

Here we use the functions

L4(x
+, x−) =

1

8!!
log(x+x−)4

+
3
∑

m=0

(−1)m

(2m)!!
log(x+x−)m("4−m(x+) + "4−m(x−)) (4)

[Goncharov, Spradlin, Vergu, Volovich (2010)]
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and computing integrands in perturbation theory

Prescriptive Unitarity



✦Locality: amplitudes independent, so multiplied
✦Unitarity: internal particles unseen, so summed 

The Cuts of Loop Amplitudes
✦On-Shell Functions: scattering amplitudes, and 

functions built thereof—as networks of amplitudes
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✦defined for all all quantum field theories— 
exclusively in terms of physical (observable) states

✦ can be used to reconstruct all loop amplitudes

The Cuts of Loop Amplitudes
✦On-Shell Functions: scattering amplitudes, and 

functions built thereof—as networks of amplitudes
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✦ Integrands are rational functions—so may be 
expanded into an arbitrary (but complete) basis:
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AL=2

n =

X

L

fL (2.27)

where the ‘ladder’ integrands are chosen from our basis (2.19), constructed in the

way described above, and each coe�cient fL is a a single on-shell function:

2

8
><

>:
, ,

9
>=

>;

fL 2

8
>>>><

>>>>:

, ,

9
>>>>=

>>>>;

(2.28)

Readers familiar with the earlier work in ref. [119] will notice that the repre-

sentation of two loop amplitudes described here is considerably more compact (and

arguably more straightforward). There are several reasons for this.

The primary distinction between the representation of two loop amplitudes in

(2.27) and that described in ref. [119] is that here we have made no use of com-

posite residues such as (2.16). Because these residues are entirely responsible for

the infrared divergences of scattering amplitudes which are known to exponentiate

according to the BDS ansatz described in ref. [152], it is well-motivated to make this

exponentiation manifest in an integrand-level representation. This was achieved in

the formulation described in ref. [119], but at the cost of distinguishing the terms

in (2.27) according to the possible masslessness of the external leg ranges of the

integrals, and using di↵erent cuts/coe�cients for the di↵erent cases—namely, using

composite residues for the massless cases, and those similar to what we described

above whenever composite residues would not exist.

Our choice here to not make such distinctions is primarily pedagogical: breaking

the basis of integrals into more cases requires a degree of unessential complication

and a longer discussion. At three loops, choosing not to exploit composite residues

leads to a considerably more compact formulation, but it is worth mentioning that

we have been unable to make the exponentiation of infrared divergences manifest

at three loops even if these distinctions had been made. As such, it is not merely

the interest of brevity that motivates our choice to ignore any possible composite

residues that may exist. Refining our representation of three loops to make the

exponentiation of infrared divergences manifest would be an interesting exercise, but

must be left for future research.
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✦Once an independent basis is chosen, coefficients 
are determined by (evaluations/cuts on) cuts

[Bern, Dixon, Kosower; Dunbar; …]

3 Prescriptive Representation of All Three Loop Amplitudes

Let us now apply the prescriptive approach to construct a closed-form representation

of all n-point NkMHV amplitudes in planar SYM at three loops. Until now, the only

cases known (for arbitrary multiplicity) were the three loop MHV integrands found

in [9, 119]. In this section, we construct representations valid for all amplitudes,

AL=3

n =

X

W

fW +
X

L

fL , (3.1)

where the integrals span all contact-term topologies of those drawn above, and the

non-contact terms of each are fully determined to match specific field theory cuts fW
and fL. As indicated in (3.1), the possible integrands come in two principle topologies

which we will call ‘wheels’ and ‘ladders’, respectively. In the next subsection, we will

demonstrate that this corresponds to a complete basis for three loop integrands, and

we give a complete enumeration of the contact-term topologies (relative to what is

drawn in (3.1)) that appear in our basis. In the following subsection we illustrate

the cuts which define our basis (and the field theory coe�cients); complete details

are provided in Appendix A. General aspects of (3.1) are discussed in section 3.3.

3.1 Constructing a Diagonal Integrand Basis for Three Loop Integrals

As outlined in section 2.4, the first step in applying prescriptive unitarity is to con-

struct a complete basis of integrals (relevant to a particular quantum field theory).

At two loops, we saw that all integrals (with the correct power counting for SYM)

could be expanded into those involving at most four external propagators—generally,

double-pentagon integrals and contact terms thereof.

At three loops, the same rule applies: any integral involving more than four ex-

ternal propagators is expandable into those with fewer. For (single-loop-momentum)

factors of integrands involving a single internal propagator, the argument is the same

at two loops. New at three loops is the possibility that one loop involves two internal

propagators. The fact that a heptagon involving five external and two internal prop-

agators (with numerators spanning a 50-dimensional space according to (2.11)) can

be decomposed into those involving at most four external propagators is similarly

obvious (in terms of counting), and easy to verify by counting. See Table 2 for more

general counting. This fact demonstrates that general integrands with the wheel

topology (the first terms in (3.1)) can involve at most four external propagators per

loop, and that the ladder integrals drawn in (3.1) are actually reducible into:

⇢

8
>>>><

>>>>:

,

9
>>>>=

>>>>;

. (3.2)
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¿What makes a basis a good basis?



A Basis “Big Enough” 
for Integrands in the 

Standard Model



✦WLOG: write loop-dependent numerators as sums  
of products of (translates of) inverse propagators: 
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✦ In terms of these, define a generalized propagator:
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✦ In terms of these, define a generalized propagator:
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Building a Basis ‘Big Enough’

:=
[ ]

2

:=
[ ]2

2

✦The loop-dependent part of any SM integrand will 
be spanned by the basis of ”0-gons”—at L loops(!)

B0⊃ 1, . . . , , . . . , , . . . [Feng, Huang (2012)]

(would include gravitons)
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✦ In any dimension, the 0-gons reduce to finite size:

20

Reducibility and Completeness

total rank=top rank+contact terms

1+0 5+1 9+11 7+41 2+103 0+196 0+336 0+540
1 6 20 50 105 196 336 540

1 5 14 30 55 91 140 204
1+0 4+1 5+9 2+28 0+55 0+91 0+140 0+204

1 4 9 16 25 36 49 64
1+0 3+1 2+7 0+16 0+25 0+36 0+49 0+64

d=2

d=3

d=4

[Ossola, Papadopoulos, Pittau; Vermaseren, van Nerveen; Forde, Kosower]



21

Integrand Reduction at 1 Loop
✦Re-considering one-loop bases in four dimensions

[Ossola, Papadopoulos, Pittau; Vermaseren, van Nerveen; Forde, Kosower]



✦At two loops, all loop integrands can be labeled by:

22

Integrand Reduction at 2 Loops
[Gluza, Kajda, Kosower]

�[1,1,1] , �[4,0,4] , �[4,1,3] , (2.2)

which have been called elsewhere ‘sunrise’, ‘kissing-boxes’, and ‘penta-box’ inte-

grands, respectively.

In order to write a rational expression for �[a,b,c], we would require either (modest)

redundancy or some (ephemeral) choice of loop momentum routing. Redundantly,

we could choose to write

�[a,b,c] ,
1

(̀ A|Q1) · · · (̀ A|Qa)(̀ B|R1) · · · (̀ B|Rb)(̀ C|S1) · · · (̀ C|Sc)
(2.3)

subject to the constraint that `A + `B + `C 2Rd; or we may solve this condition of

momentum conservation and eliminate one of the three classes of loop momenta.

When required in the following, we choose to solve momentum conservation and

associate `A = `1 with a-type propagators, `C = `2 with c-type propagators, and

`B = `1�`2 with b-type propagators. Furthermore, unless otherwise specified, we

assume all Qi, Rj and Sk in eq. (2.3) to be distinct; in a later discussion, however,

we will drop this requirement and also allow for ‘doubled-propagator’ graphs which

can be relevant for two-loop amplitudes—depending on renormalization scheme (see

e.g. [99] for the absence of certain residues for integrals with doubled-propagators in

the on-shell scheme).

In d spacetime dimensions, it should be clear from our one-loop discussion that

we mostly need to consider integrand topologies with d+1 propagators of either a, b,

or c type, as any topology with more propagators can be trivially reduced by one-

loop methods (at the cost of worsening the power-counting). As we will see shortly,

for p<d-gon power-counting we can reduce the number of topologies relevant for

two-loop integrands even further. In order to make this discussion more transparent,

let us first mention the relevant building blocks for the numerator structures.

2.1.2 Loop-Dependent Numerators: Notation and Biases for Bases

In order to discuss the general structure of two-loop numerators, we generalize our

initial discussion of the fundamental one-loop numerator objects from section 1.1.2.

We have argued that it is most natural to express loop-dependent numerators in

terms of generalized inverse propagators

[`]d =spanQ {(`|Q)} , Q2Rd (2.4)

with loop-momentum independent coe�cients. Following our discussion of the two-

loop propagator structure in the previous subsection, it is natural to define the

associated two-loop numerator building blocks

[`A]d := spanQ{(`A|Q)}(' span{1,`A ·be1, . . . ,`A ·bed,`2A}) ,
[`B]d := spanR {(`B|R)}(' span{1,`B ·be1, . . . ,`B ·bed,`2B}) ,
[`C ]d := spanS {(`C |S)}(' span{1,`C ·be1, . . . ,`C ·bed,`2C}) .

(2.5)

– 27 –

[JB, Herrmann, Langer, Trnka (2020)]
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total rank=top rank+contact terms

[JB, Herrmann, Langer, Trnka (2020)]



✦At two loops, all loop integrands can be labeled by:
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As we will see, this boundary data is provided by our definition of ‘scalar’ p-gon

power-counting integrands discussed in the following subsection.

The recursive rank formula (2.15) can be interpreted directly as giving us a rule

for constructing the corresponding vector-spaces of numerators

Np

�
�[a,b,c]

�
=: bNp

�
�[a,b,c]

�
| {z }

top-level numerators

(2.16)

M

(i,j,k)>~0

⇥
(̀ A|Qa1) · · · (̀ A|Qai)

⇤⇥
(̀ B|Qb1) · · · (̀ B|Qbj)

⇤⇥
(̀ C|Sc1) · · · (̀ C|Sck)

⇤bNp

�
�[a�i,b�j,c�k]

�

| {z }
contact-term numerators

This makes it clear that (2.15) requires that the vector-spaces appearing in (2.16)

are all mutually independent. This will be true whenever p<d.

In order to stratify the relevant loop-dependent numerators for all two-loop inte-

grand topologies, we propose a bottom-up strategy: first identify graphs with ‘scalar’

numerators—those with the fewest propagators for a given p—and work our way up-

wards. In doing so, we have full control over the relevant numerator spaces of all

contact-terms of more complicated graphs. Together with our general counting for-

mulae in eq. (2.13) it is then easy to compute the top-level degrees of freedom of

a given graph. Alternatively, one can also compute the top-level rank of a given

numerator by evaluating the span of numerators on the maximal cut [83] surface

of a given topology. In d4, we have pursued both strategies and independently

confirmed the various numerator ranks, which also serves as a nontrivial cross-check

of our closed form expressions (2.13).

After these general considerations, it is perhaps instructive to return to 0-gon

power-counting and demonstrate how integrand decomposition works for a few con-

crete examples. Recall that for our definition of 0-gon power-counting, the basic

integrand topology has no propagator and is solely given by a loop-momentum inde-

pendent normalization. (Of course, in dimensional regularization all these topologies

correspond to power-divergent integrals that integrate to zero and therefore are usu-

ally not considered. However, for building bases of integrands, these topologies are

relevant.) Therefore, we assign

�[0,0,0], • with N0

�
�[0,0,0]

�
:= 1 (2.17)

a single degree of freedom to this topology. Going up in the number of propagators,

the next topology to consider is a tadpole, where one loop is completely pinched

and the other loop has a single propagator. In this case, we write down a single

numerator factor

�[1,0,0] , with N0

�
�[1,0,0]

�
:= [`A]

1 . (2.18)
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✦We can obviously continue this to higher loops—
e.g. at 3 loops, we have the integrand topologies: 
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Integrand Reduction at 3 Loops

L(a1,a2)(b1,b2)
(c1,c2) ⇔ .W (a1,a2,a3)

(b1,b2,b3)⇔

wheel integral vanish. For example, one can easily see that W
(a,b,c)
(d,e,0) 'L

(a,e)(d,b)
(0,c) is a

graph isomorphism. Because of this, we choose to identify all degenerate wheels as

instances of (degenerate) ladders.

In addition to the overlap in name-space for the degenerate wheels and ladders,

there are additional redundancies among the labels associated with standard graph

isomorphisms. These are the analogues of the permutation-invariance among the

indices {a, b, c} labeling the two-loop graphs �[a,b,c]. When no indices vanish, the

wheel integrands enjoy 24 symmetric relabelings, and the ladders enjoy 16 relabelings

corresponding to the sizes of the automorphism groups of the graphs drawn in (3.1),

respectively. (There are more symmetries for certain degenerate configurations; for

example: L
(a,b)(c,d)
(0,0) is permutation-invariant in its four non-zero labels.) As before,

we could in principle solve the momentum conservation constraints and write all

topologies in terms of three independent loop momenta, e.g.

`1

`2

`3

`
2 �
`
1

1̀
�

3̀

`3�`2 and `1

`2

`3

` 1
�
` 2

`
3
�
`
2
. (3.2)

Often, we will only make use of graph theoretic notions of the relevant numerator

spaces; however, when we actually compute the ranks of various numerator spaces,

we do solve momentum conservation explicitly as indicated above.

3.1.2 Loop-Dependent Numerators: Open Problems

By dressing each of the propagators of each type (3.1) with the corresponding space

of generalized inverse-propagators, and specifying the dimension of spacetime, one

may construct a complete basis of loop integrands su�cient to reproduce scattering

amplitudes (to arbitrary multiplicity) in many theories. The total ranks of these

spaces of numerators, however, grow very large; and we have not found a closed

formula for them as we did at two loops (for dimensions less than five) in eq. (2.13).

Analogous three-loop formulae would involve six indices and could be written

w0

d(a1, . . . , b3)= rank
⇣
[`1]

a1 [`2]
a2 [`3]

a3 [`3�`2]
b1 [`1�`3]

b2 [`2�`1]
b3
⌘
,

l0d(a1, . . . , c2)= rank
⇣
[`1]

a1 [`1�`2]
a2 [`2]

c1+c2 [`3]
b1 [`3�`2]

b2
⌘
.

(3.3)

Again, it would be desirable to find a group-theoretic expression for the relevant

numerator ranks similar to the simple one-loop expression in (1.16).
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[Gluza, Kajda, Kosower]

[JB, Herrmann, Langer, Trnka (2020)]

¿Can someone derive these formulae?



A (modest) Proposal for 
non-Planar Power-Counting 



✦QFTs can be (partially) ordered by the scope of  
the integrands needed to represent amplitudes

25

Stratifying Theories by Unitarity

This reflects UV behavior (“power-counting”) of 
theories; can be used to stratify integrand bases

(Standard Model) (SM\Higgs) (QCD) (Yang-Mills)

                  ¿Can we define            ? 
—a basis of just the best UV-behaved amplitudes?

[JB, Herrmann, Langer, Trnka (2020)]



✦For a planar graph, there is a natural routing of the 
loop momenta associated with its dual graph. 

26

Power-Counting when Planar

✦Let       denote the complete basis of integrands 
with p-gon power-counting.

✦A planar integrand  has “p-gon power-counting” if



✦For a planar graph, there is a natural routing of the 
loop momenta associated with its dual graph. 
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Power-Counting when Planar

✦Let       denote the complete basis of integrands 
with p-gon power-counting.

✦A planar integrand  has “p-gon power-counting” if

✦An amplitude is “p-gon constructible” if



✦For planar  sYM, we know that amplitude 
integrands are dual-conformally invariant 

27

(Optimality of Dual-Conformality?)

[Drummond, Henn, Smirnov, Sokatchev;  
Drummond, Korchemsky, Henn;  

Alday, Maldacena;…]



✦For planar  sYM, we know that amplitude 
integrands are dual-conformally invariant 

27

(Optimality of Dual-Conformality?)

But even DCI is far from strong enough!

✦ it forces a topological over-completeness and  
non-triangularity of bases

✦doesn’t ensure maximal transcendentality

✦doesn’t ensure UV finiteness

[Drummond, Henn, Smirnov, Sokatchev;  
Drummond, Korchemsky, Henn;  

Alday, Maldacena;…]
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Power-Counting Strata at 1-Loop
✦Recall how “0-gon” integrands could be defined:

[JB, Herrmann, Langer, Trnka (2020)]
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Power-Counting Strata at 1-Loop
✦Recall how “0-gon” integrands could be defined:

1+0 5+1 9+11 7+41 2+103 0+196 0+336 0+540

1+0 4+2 5+15 2+48 0+105 0+196 0+336

1+0 3+3 2+18 0+50 0+105 0+196

1+0 2+4 0+20 0+50 0+105

1+0 1+5 0+20 0+50

[JB, Herrmann, Langer, Trnka (2020)]



✦With no preferred routing of loop momenta, the 
earlier notion of “power-counting” is ill-defined

29

Power-Counting Beyond Planar?

Recall: planar integrand  has p-gon power-counting if



✦With no preferred routing of loop momenta, the 
earlier notion of “power-counting” is ill-defined

29

Power-Counting Beyond Planar?

Recall: planar integrand  has p-gon power-counting if
3



✦What would make sense independent of routing 
would be: to define  
the power-counting 
 relative to some  
graph (or graphs)

30

Proposal: Graph Power-Counting
[JB, Herrmann, Langer, Trnka (2020)]



✦What would make sense independent of routing 
would be: to define  
the power-counting 
 relative to some  
graph (or graphs)

30

Proposal: Graph Power-Counting
[JB, Herrmann, Langer, Trnka (2020)]



✦What would make sense independent of routing 
would be: to define  
the power-counting 
 relative to some  
graph (or graphs)

30

Proposal: Graph Power-Counting
[JB, Herrmann, Langer, Trnka (2020)]



✦What would make sense independent of routing 
would be: to define  
the power-counting 
 relative to some  
graph (or graphs)

30

Proposal: Graph Power-Counting
[JB, Herrmann, Langer, Trnka (2020)]



✦What would make sense independent of routing 
would be: to define  
the power-counting 
 relative to some  
graph (or graphs)

30

Proposal: Graph Power-Counting
[JB, Herrmann, Langer, Trnka (2020)]



✦What would make sense independent of routing 
would be: to define  
the power-counting 
 relative to some  
graph (or graphs)

30

Proposal: Graph Power-Counting
[JB, Herrmann, Langer, Trnka (2020)]



✦What would make sense independent of routing 
would be: to define  
the power-counting 
 relative to some  
graph (or graphs)

30

Proposal: Graph Power-Counting
[JB, Herrmann, Langer, Trnka (2020)]



✦What would make sense independent of routing 
would be: to define  
the power-counting 
 relative to some  
graph (or graphs)

30

Proposal: Graph Power-Counting

12=6+6 6=3+3 1=1+0

1=1+0

36=8+2855=10+45 20=2+18

120=4+116229=8+221164=4+160 36 =4+32
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Proposal: Graph Power-Counting

Definition  
a scalar p-gon is 
a graph of girth 
p such that all its  
edge contractions 
have girth <p

[JB, Herrmann, Langer, Trnka (2020)]
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✦At 3 loops, the 3-gon power-counting scalars are:
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✦What would be the numerator for                          ?      

Although the construction of p-gon power-counting numerator spaces follows

directly from our discussion at two loops, it may be helpful to illustrate the non-

triviality of this construction with a couple examples. Consider the ladder and wheel

integrands,

L
(3,1)(2,2)
(1,2) = , W

(3,2,1)
(2,1,1) = . (3.5)

For each of these topologies, the numerator space is defined as the product of trans-

lated inverse propagators for all sets of edges that, upon their collapse, would lead to

an element of S3

3
in (3.4). From these spaces, the total rank may be computed (by

brute force) in any number of dimensions, and the breakdown into top-level degrees

of freedom and contact-terms follows recursively by analogy with (2.15) at two loops.

For the ladder example in (3.5), we would find the total numerator vector-space

to be given by

[1�2][2][2�3] � [1�2][2][3] �| {z }

�
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2
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2
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resulting in a loop-dependent numerator of

N3

⇣
L

(3,1)(2,2)
(1,2)

⌘
:= [1�2][2][2�3]�[1�2][2][3]�[1�2][2]2�[1][2]2[2�3]�[1][2]2[3]�[1][2]3. (3.6)

This vector-space is the same in any number of dimensions, but its size and break-

down into contact-terms depends strongly on d. In four dimensions, it can readily

be confirmed that���N3

⇣
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⌘���=rank
d=4
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⌘

=984=32+952 . (3.7)

Thus, even though the total rank of the numerator space is 984, the number of

degrees of freedom that are honestly associated to the L
(3,1)(2,2)
(1,2) topology is 32 and

therefore relatively small.

For the wheel example in (3.5), we would find its numerator constructed accord-

ing to the scalar contact-term topologies,

[1]
2
[2][2�3]�

| {z }

�

[1�2][1�3] �
| {z }

�

[1][1�2][2�3]� [1][2][1�3] � [1][2][1�2] � [1][2][3] � [1][2]
2 � [1]

2
[3] �

| {z }

�

[1][3][1�2]
| {z }

�

– 44 –

3.2 The Three-Loop Triangle Power-Counting Basis for Four Dimensions

Despite lacking a general rank count at three loops, however, it seems like a

good idea to tackle this general problem in stages, starting with an integrand basis

suitable for a theory with ‘good’ power-counting, such as sYM. In four dimensions,

the best-case would probably correspond to ‘box’ power-counting p=4. But as with

lower loops, there are good reasons to consider instead the space of integrands with

next-to-optimal power-counting. In four dimensions, this corresponds to triangles.

Why should we be interested in three loop integrands with triangle power-

counting? After all, we expect that the best quantum field theories (in terms of

ultraviolet behavior) should be expressible in terms of boxes. The answer is the

same as at lower loops: insisting on integrands with box power-counting forces us to

include topologies with more than 4L propagators, and such integrands generically

satisfy relations that must be eliminated. In the best case scenario, these redundan-

cies can be excluded by throwing out entire topological classes of integrands—as was

(accidentally) the case for two loops in the planar limit. We suspect that such a strat-

egy is doomed in general; but as with the concrete examples provided in refs. [79, 80],

we suspect that nice integrand formulae exist for sYM beyond the planar limit even

if we use a basis of integrands with next-to-optimal (namely, p=3) power-counting.

Recall that our definition of p-gon power-counting (in any number dimensions,

and any loop-order) starts with a definition of scalar integrands SL
p . Recall that this

consists of all vacuum graphs with girth p, such that all single-edge quotients have

lower girth.

At three loops and 3-gon power-counting, the set of scalars S3

3
is given by

8
>>><

>>>:
W

(1,1,1)
(1,1,1)

,

L
(3,0)(0,3)
(1,2)

,

L
(3,0)(0,3)
(0,3)

,

L
(3,0)(1,2)
(1,1)

,
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(3,0)(2,2)
(0,1)

,

L
(2,1)(1,2)
(0,1)

,

L
(2,1)(2,2)
(0,0)

9
>>>=

>>>;
. (3.4)

Notice that all but the first, sixth, and seventh of these are product-topologies. As

always, there are multiple ways to label each of these graphs; the labeling we have

chosen should be viewed as representative.

Having defined our basic scalar 3-gon power-counting topologies, we proceed

to construct the numerator spaces for integrands with more propagators. The basic

setup is almost identical to our more detailed two-loop discussion, which is why we are

going to be relatively brief here. We need not dwell on the numerator decomposition

of any product topologies, as their decomposition will follow trivially from our one-

and two-loop discussions above. As before, we find that all (generic) integrands

with more than 12=3⇥4 propagators are entirely decomposable; the ranks for these

numerator spaces quoted below were obtained mostly from direct construction.
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L(a1,a2)(b1,b2)
(c1,c2) ⇔ .W (a1,a2,a3)

(b1,b2,b3)⇔

[JB, Herrmann, Langer, Trnka (2020)]
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Thus, even though the total rank of the numerator space is 984, the number of
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therefore relatively small.
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suitable for a theory with ‘good’ power-counting, such as sYM. In four dimensions,

the best-case would probably correspond to ‘box’ power-counting p=4. But as with

lower loops, there are good reasons to consider instead the space of integrands with

next-to-optimal power-counting. In four dimensions, this corresponds to triangles.

Why should we be interested in three loop integrands with triangle power-
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Although the construction of p-gon power-counting numerator spaces follows

directly from our discussion at two loops, it may be helpful to illustrate the non-

triviality of this construction with a couple examples. Consider the ladder and wheel

integrands,

L
(3,1)(2,2)
(1,2) = , W

(3,2,1)
(2,1,1) = . (3.5)

For each of these topologies, the numerator space is defined as the product of trans-

lated inverse propagators for all sets of edges that, upon their collapse, would lead to

an element of S3

3
in (3.4). From these spaces, the total rank may be computed (by

brute force) in any number of dimensions, and the breakdown into top-level degrees

of freedom and contact-terms follows recursively by analogy with (2.15) at two loops.

For the ladder example in (3.5), we would find the total numerator vector-space

to be given by
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This vector-space is the same in any number of dimensions, but its size and break-

down into contact-terms depends strongly on d. In four dimensions, it can readily

be confirmed that���N3
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=984=32+952 . (3.7)

Thus, even though the total rank of the numerator space is 984, the number of

degrees of freedom that are honestly associated to the L
(3,1)(2,2)
(1,2) topology is 32 and

therefore relatively small.

For the wheel example in (3.5), we would find its numerator constructed accord-

ing to the scalar contact-term topologies,
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[JB, Herrmann, Langer, Trnka (2020)]



✦Unfortunately, the “p-gon power-counting” basis 
proposed for non-planar is not compatible with 
planar power-counting (at high loops):

32

What Goes Wrong at Five Loops?

¿Can someone propose a better definition?

[JB, Herrmann, Langer, Trnka (2020)]



Room for Improvement:
Building Better (Wiser) Bases 



✦ It is often a good idea to normalize as much of the 
basis as possible on places in loop-momentum 
space where many amplitudes vanish

34

Normalizing Integrands Wisely

For example, two-loop MHV amplitudes in sYM:

✦This works well for nice amplitudes: those with 
low multiplicity, low loops, or low NkMHV-degree 
(i.e. where polylogs abound)

[JB, Herrmann, Langer, McLeod, Trnka (2019)]



✦When the basis is dlog and all ‘evaluations’ are 
(residues) on poles, then diagonalization ensures 
each basis integrand is in canonical form (UT/etc.)

35

What is ‘Purity’ Beyond Polylogs?

¿What about when no dlog form exists?



✦When the basis is dlog and all ‘evaluations’ are 
(residues) on poles, then diagonalization ensures 
each basis integrand is in canonical form (UT/etc.)

35

What is ‘Purity’ Beyond Polylogs?

[JB, McLeod, von Hippel, Vergu, Volk, Wilhelm (2019)]

[JB, He, McLeod, von Hippel, Wilhelm (2018)]
[JB, McLeod, Spradlin, von Hippel, Wilhelm (2018)]

[JB, McLeod, von Hippel, Wilhelm (2018)]

¿What about when no dlog form exists?

CY1 CY2 CY3 CY4



✦When the basis is dlog and all ‘evaluations’ are 
(residues) on poles, then diagonalization ensures 
each basis integrand is in canonical form (UT/etc.)

35

What is ‘Purity’ Beyond Polylogs?

[JB, McLeod, von Hippel, Vergu, Volk, Wilhelm (2019)]

[JB, He, McLeod, von Hippel, Wilhelm (2018)]
[JB, McLeod, Spradlin, von Hippel, Wilhelm (2018)]

[JB, McLeod, von Hippel, Wilhelm (2018)]

¿What about when no dlog form exists?

CY1 CY2 CY3 CY4

[Bloch, Kerr, Vanhove; Broadhurst;…]



✦Prescriptive unitarity has made great progress,  
but the results raise (or sharpen) bigger questions

36

Great Room for Improvement

Better integrand bases would:
✦ trade evaluations for periods on all topologies 

(does this ensure “purity”?)
✦ stratify integrands by more refined criteria—e.g.
‣ actual UV behavior (do finite bases exist?)
‣ transcendental weight (what does this mean?)
‣ dim-reg partitioning of numerator monomials
‣ …


