Statistical Mechanics of Granular Solids and Dense Suspensions

Kabir Ramola

Martin Fisher School of Physics, Brandeis University

March 13, 2018

Kabir Ramola

Statistical Mechanics of Granular Solids and Dense Suspensions 1 / 40

Outline

- Statistical Ensembles
- 2 Jamming/Unjamming
- Granular Materials
- 4 Stress Based Descriptions
- **5** Dense Suspensions

Statistical Ensembles

- Jamming/Unjamming
- 3 Granular Materials
- 4 Stress Based Descriptions
- 5 Dense Suspensions

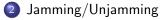
Statistical Ensembles

- The concept of **'ensembles'** plays a key role in equilibrium statistical mechanics.
- At observable timescales: detailed balance and ergodicity.
- This breaks down in several cases:
 - Glass forming liquids
 - Low temperature frustrated magnets
 - Systems composed of macroscopic particulate matter
 - Driven systems out of equilibrium
- The distinction between a liquid at thermal equilibrium and an athermal material is that in a liquid, atoms undergo **thermal motion**.

Athermal Ensembles

- In an athermal medium (in the absence of outside perturbations) the system is trapped in one of many (very many) local potential energy minima.
- Gibbsian statistical mechanics **cannot be used** to describe such a system.
- Athermal systems are **non-ergodic** in the extreme sense, as they stay in a single configuration unless driven externally
- In many cases exploration of configuration space is completely controlled by the **driving protocol**.

1 Statistical Ensembles



3 Granular Materials

4 Stress Based Descriptions

Jamming of Hard Disks

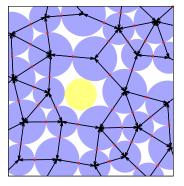
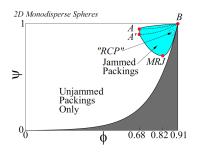


Figure: Jammed packing of hard disks along with the disordered contact network.

- System acquires **global rigidity** with external compression.
- Configurations are **inherently disordered** as the constituent particles arrange themselves into random spatial patterns.
- The jamming transition is a critical phenomenon, with typically irrational critical exponents.
- Occurs at a well-defined density ≈ 0.84 in d = 2 and ≈ 0.64 in d = 3.

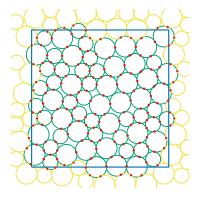
Configuration Space of Jammed Hard Disks



 Schematic order map in the densityorder $(\phi - \psi)$ plane for 2D strictly jammed, frictionless, monodisperse hard-disk packings in the infinite-system limit. The locus of points A-A' corresponds to the lowest-density jammed packings. The point B corresponds to the triangular lattice. The point MRJ represents the **maximally** random jammed state.

Source: S. Atkinson, F. H. Stillinger, S. Torquato, PNAS 111, 18436-18441 (2014).

Unjamming of Soft Disks



- Particles are allowed to overlap, based on an **energy function**.
- Collection of all mechanically stable packings define an ensemble. K. Ramola, B. Chakraborty, J. Stat. Mech. 114002 (2016).
- Critical exponents are rational. Can be understood from a mean-field analysis.

K. Ramola, B. Chakraborty, Phys. Rev. Lett. 118, 138001 (2017).

• Stresses propagate through localized channels. K. Ramola, B.

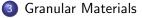
Chakraborty, J. Stat. Phys. 169, 1 (2017).

Global Variables approaching Unjamming

- **Pressure**: $P \rightarrow 0^+$,
- Energy: $E_G \rightarrow 0^+$,
- Packing Fraction: $\phi \rightarrow 0.84...,$
- Coordination number: $\Delta Z = (Z Z_{iso}) \rightarrow 0^+$,

$$Z_{\rm iso} = 2d \qquad \rightarrow \quad \mathbf{4} \ {\rm for} \ d = 2.$$

1 Statistical Ensembles



4 Stress Based Descriptions

Granular Systems

Granular Ensembles

- Granular systems are made up of macroscopic particles and are inherrently **athermal**.
- What is the correct **statistical ensemble** for **static granular systems**?
- Edwards proposed that the collection of **all stable packings of a fixed number of particles in a fixed volume** might also play the role of an 'ensemble'. Ref. S. F. Edwards, R. B. S. Oakeshott, Physica A 157, 180 (1991).
- A statistical-mechanics like formalism would result if one assumed that all such packings were **equally likely to be observed**, once the system had settled into a mechanically stable 'jammed' state.

Numerical Simulations: Energy Functions

• We use a soft potential around a hard core

$$U(r) = \begin{cases} \infty & r \leq r_{\text{HS}}, \\ 4\epsilon \left[\left(\frac{\sigma(r_{\text{HS}})}{r^2 - r_{\text{HS}}^2} \right)^{12} - \left(\frac{\sigma(r_{\text{HS}})}{r^2 - r_{\text{HS}}^2} \right)^6 \right] + \epsilon & r_{\text{HS}} < r < r_{\text{SS}}, \end{cases}$$
(1)
$$r \geq r_{\text{SS}}$$

 For short distances r → r_{SS} this becomes a soft linear spring repulsion potential of the form:

$$U(r) = \begin{cases} c_0(r - r_{SS})^2 & r_{HS} < r < r_{SS}, \\ 0 & r \ge r_{SS} \end{cases}$$
(2)

• We simulate bidispersed configurations (two different sizes of disks).

Jammed Packings: Energy Landscape

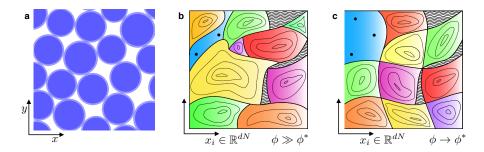


Figure: (a) Snapshot of a jammed packing of disks with a hard core (dark shaded regions) plus soft repulsive corona (light shaded regions). (b)-(c) Illustration of configurational space for jammed packings.

Testing the Edwards Conjecture

• Direct test of the Edwards conjecture, by numerically computing basin volumes of distinct jammed states (energy minima) of N = 64, frictionless disks held at a constant packing fraction ϕ .

S. Martiniani, K. J. Schrenk, K. Ramola, B. Chakraborty and D. Frenkel, Nature Physics (2017).

- We computed Ω, the number of distinct jammed states, and the individual probabilities p_{i∈{1,...,Ω}} of each observed packing to occur.
- The energy minimization procedure finds individual stable packings with a **probability** p_i **proportional to the volume** v_i of their basin of attraction.
- We computed v_i using a **stochastic sampling scheme**, and compute the average basin volume $\langle v \rangle(\phi)$.

Phase Space Volumes

• The number of jammed states is, explicitly,

$$\Omega(\phi) = V_J(\phi) / \langle v \rangle(\phi), \qquad (3)$$

where $V_J(\phi)$ is the total available phase space volume at a given ϕ .

• A convenient way to check equiprobability is to compare the Boltzmann entropy

$$S_B = \ln \Omega - \ln N! \tag{4}$$

which counts all packings with the same weight, and

• The Gibbs entropy

$$S_G = -\sum_i^{\Omega} p_i \ln p_i - \ln N!$$
(5)

• The Gibbs entropy satisfies $S_G \leq S_B$, saturating the bound when all p_i are equal: $p_{i \in \{1,...,\Omega\}} = 1/\Omega$.

Characterizing Basin Volume Distributions

- We analyse the statistics of v_i along with the pressure P_i of each packing.
- It is convenient to study $F_i \equiv -\ln v_i$ as a function of $\Lambda_i \equiv \ln P_i$.
- This yields a linear relationship Ref: S. Martiniani, K. J. Schrenk, J. D. Stevenson, D. J. Wales, D. Frenkel, Phys. Rev. E 93, 012906 (2016).

$$\langle f \rangle_{\mathcal{B}}(\phi; \Lambda) = \lambda(\phi)\Lambda + c(\phi) = \lambda(\phi)\Delta\Lambda + \langle f \rangle_{\mathcal{B}}(\phi) ,$$
(6)

where f = F/N, and $\Delta \Lambda = \Lambda - \langle \Lambda \rangle_{\mathcal{B}}(\phi)$.

• The slope $\lambda(\phi)$ characterizes the approach to equiprobability.

Basin Volume Distributions

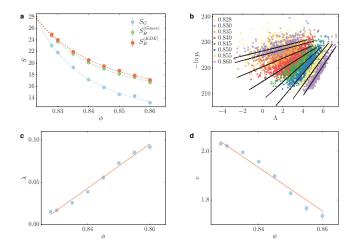


Figure: (a) Gibbs entropy S_G and Boltzmann entropy S_B . (b) Scatter plot of the negative log-probability of observing a packing, $-\ln p_i = F_i + \ln V_J(\phi)$.

1 Statistical Ensembles

- 2 Jamming/Unjamming
- 3 Granular Materials
- 4 Stress Based Descriptions
 - 5 Dense Suspensions

Frictional Materials

• Each packing needs to satisfy force balance constraints

$$\sum_{c}\vec{f}_{g,c}=0,$$

where $\vec{f}_{g,c}$ represents the force acting on the grain g, through the contact c.

• The torque balance constraint

$$\sum_{c} \vec{r}_{g,c} \times \vec{f}_{g,c} = 0.$$

Along with Coulomb constraints

$$|\vec{r}_{g,c} \times \vec{f}_{g,c}| \leq \mu_f |\vec{r}_{g,c} \cdot \vec{f}_{g,c}|.$$

Solution Space of Forces

- The configuration space can be characterized by convex regions
 - J. N. Nampoothiri, K. Ramola, B. Chakraborty, (in preparation).

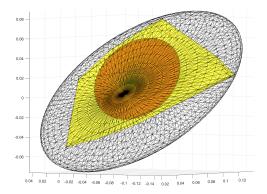


Figure: Solution space of force and torque balanced configurations of soft disks.

Statistical Mechanics for Stresses

• In the absence of an energy function, we can build a statistical mechanics **purely based on all allowed forces between particles**.

Edwards, S. F. Granular matter: an interdisciplinary approach (1994).

- Introduce a volume function W({r_i, t̂_i}), as a function of the N particles' positions {r_i} and orientations {t̂_i}, as a replacement for the Hamiltonian in equilibrium ensembles.
- The granular entropy S(V) is

$$S(V) = \lambda \log \Omega(V), \tag{7}$$

$$\Omega(V) = \int d\mathbf{q} \,\delta(V - \mathcal{W}(\mathbf{q}))\Theta_{jam}. \tag{8}$$

• where $\mathbf{q} = \{\mathbf{r}_i, \mathbf{\hat{t}}_i\}$ and $\int \mathrm{d}\mathbf{q} = \prod_{i=1}^N \int \mathrm{d}\mathbf{r}_i \oint \mathrm{d}\mathbf{\hat{t}}_i$.

Statistical Mechanics for Stresses (continued)

$$\begin{split} \Theta_{jam} &= \prod_{i,j=1}^{N} \theta \Big(|\mathbf{r}_{i} - \mathbf{r}_{j}| - 2R \Big) & \text{hard-core (spherical)} \\ &\times \prod_{i=1}^{N} \delta \left(\sum_{a \in \partial i} \mathbf{f}_{a}^{i} \right) & \text{force balance} \\ &\times \prod_{i=1}^{N} \delta \left(\sum_{a \in \partial i} \mathbf{r}_{a}^{i} \times \mathbf{f}_{a}^{i} \right) & \text{torque balance} \\ &\times \prod_{i=1}^{N} \prod_{a \in \partial i} \theta \left(\mu f_{a,n}^{i} - |\mathbf{f}_{a,\tau}^{i}| \right) & \text{Coulomb friction} \\ &\times \prod_{i=1}^{N} \prod_{a \in \partial i} \theta \left(-\mathbf{r}_{a}^{i} \cdot \mathbf{f}_{a}^{i} \right) & \text{repulsive forces} \\ &\times \prod_{all \text{ contacts } a} \delta(\mathbf{f}_{a}^{i} + \mathbf{f}_{a}^{j}) & \text{Newton 3^{rd} law }. \end{split}$$

Statistical Mechanics of Granular Solids and Dense Suspensions 24 / 40

(9)

1 Statistical Ensembles

- 2 Jamming/Unjamming
- 3 Granular Materials
- 4 Stress Based Descriptions

5 Dense Suspensions

Discontinuous Shear Thickening

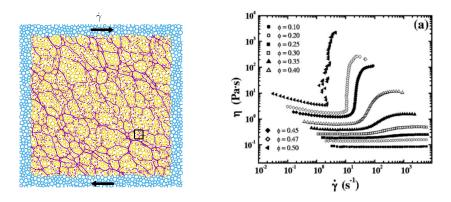
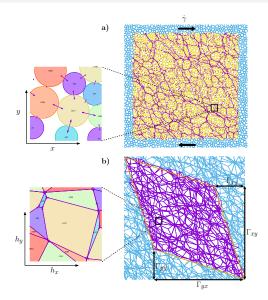


Figure: (Left) A snapshot of a suspension of 2000 soft frictional disks sheared at a variable rate $\dot{\gamma}$, with the shear stress $\sigma \equiv \sigma_{xy}$ held fixed. (**Right**) Viscosity vs Shear rate for 500nm calcium carbonate + polymer brush in PEG 200 R. G. Egres and Norman J. Wagner Journal of Rheology 49, 719 (2005).

Height Space Representation



Macroscopic Stress Tensor

• In the continuum, the local stress tensor is $\hat{\sigma} = \nabla \times \vec{h}$:

$$\hat{\sigma} = \begin{pmatrix} \partial_{y}h_{x} & \partial_{y}h_{y} \\ -\partial_{x}h_{x} & -\partial_{x}h_{y} \end{pmatrix}; \quad \hat{\Sigma} = \begin{pmatrix} L_{y}\Gamma_{yx} & L_{y}\Gamma_{yy} \\ -L_{x}\Gamma_{xx} & -L_{x}\Gamma_{xy} \end{pmatrix}, \quad (10)$$

where $\hat{\boldsymbol{\Sigma}}$ is the virial or the global force moment tensor.

• The shear stress is held fixed with

$$\Gamma_{\rm yy} = -\Gamma_{\rm xx} = \sigma \tag{11}$$

The pressure and the normal stress are

$$P = \lambda_{+} + \lambda_{-} = \Gamma_{yx} - \Gamma_{xy}; \quad N_{1} = \Sigma_{xx} - \Sigma_{yy} = \Gamma_{yx} + \Gamma_{xy}. \quad (12)$$

• The stress anisotropy μ is

$$\mu = \frac{\tau}{P} = \frac{\sqrt{\left(N_1\right)^2 + 4\sigma^2}}{P} \approx \frac{\sigma}{P}.$$
(13)

Statistical Mechanics of Granular Solids and Dense Suspensions 28 / 40

Constitutive Laws: $\mu(I)$ Rheology

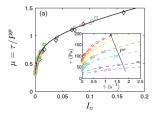


Figure: Observed $\mu = \tau/P$ from several experiments of dense suspensions. F. Boyer, E. Guazzelli, and O. Pouliquen, Physical Review Letters 107, 188301 (2011).

- μ depends on the viscous number $I_{\rm v}\equiv \frac{\eta\dot{\gamma}}{P}$
- I_{ν} depends on the packing fraction ϕ : $I_{\nu}(\phi) \propto (\phi_J \phi)^2$.
- In the limit of small I_v is: $\mu \mu_c \simeq I_v^{1/2}$, (μ_c depends weakly on the properties of the grains J. Dong and M. Trulsson, Physical Review Fluids 2, 081301 (2017).).

Observed Stress Anisotropy

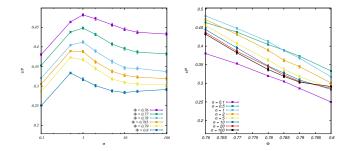


Figure: Observed $\mu = \tau/P$ from simulations of suspensions J. E. Thomas, K. Ramola, A. Singh, R. Mari, J. Morris, B. Chakraborty, (in preparation).

Observed Pair Correlations

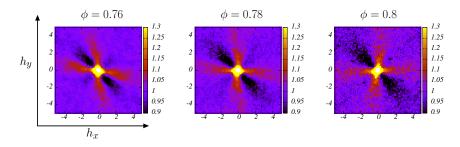


Figure: Observed pair correlation functions at $\sigma_{xy} = 2$, at packing fractions $\phi = 0.76, 0.78$ and 0.8. The forces (and consequently the heights) have been scaled by the imposed shear stress σ . The change in symmetry of $g_2(\vec{h})$ is clearly visible as the packing fraction is increased.

Constructing a Thermal Ensemble

Using the pair correlations we can construct a potential

$$V_2(\vec{h}) = -\log\left(rac{g_2(\vec{h})}{g_2(|\vec{h}|)}
ight),$$
 (14)

that induces an **anisotropy in the interactions** based on the observed correlation functions.

• The ensemble of configurations that are sampled in the non-equilibrium dynamics are assumed to obey a **statistical mechanical description**, with each configuration C occurring with a **probability** $p(C) \propto \exp(-V(C))$. J. E. Thomas, K. Ramola, A. Singh, R. Mari, J. Morris, B.

Chakraborty, (in preparation).

Statistical Mechanics

- Shear stress sets the **pressure scale** (and Area): we control this by a **Lagrange multiplier** $f_p^*(\sigma)$.
- The partition function of the system is given by

$$Z_{\phi,\sigma} = \frac{1}{N_{\nu}!} \int_{0}^{\infty} dA \exp\left(-N_{\nu}f_{p}^{*}A\right) \times \underbrace{\int_{A} \prod_{i=1}^{N_{\nu}} d\vec{h}_{i} \exp\left(-\sum_{i,j} V_{\phi,\sigma}(\vec{h}_{i} - \vec{h}_{j})\right)}_{A^{N_{\nu}} \exp\left(-\epsilon_{\phi,\sigma}(A, N_{\nu})\right)} = \int_{0}^{\infty} dA \exp\left(-\mathcal{F}_{A;\phi,\sigma}\right).$$
(15)

where the positions \vec{h}_i are confined to be within the box defined by $A \equiv (\vec{\Gamma}_x, \vec{\Gamma}_y)$.

Testing the Potentials

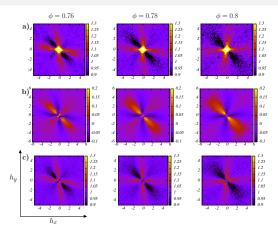


Figure: a) Observed pair correlation functions at $\sigma_{xy} = 2$, at packing fractions $\phi = 0.76, 0.78$ and 0.8. b) Potentials constructed using these pair correlation functions. c) A comparison with pair correlations obtained from direct Monte Carlo simulations of particles interacting via these potentials.

Sampling the Energy Function

• We perform a Monte Carlo sampling of the energy function

$$A^{N_{v}} \exp(-\mathcal{F}_{A;\phi,\sigma}) = \int_{A} \prod_{i=1}^{N} d\vec{h}_{i} \exp\left(-\sum_{i,j} V_{2}^{\phi}(\vec{h}_{i}-\vec{h}_{j})\right); \quad A = \sigma^{2}\left(\frac{1}{\mu^{2}}-1\right).$$
(16)

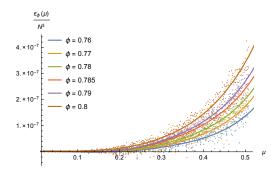


Figure: Sampled Energy Function for N = 512.

Free Energy Function

• The free energy of the system is then given by

$$\mathcal{F}_{\sigma,\phi} = -\log Z_{\sigma,\phi}.$$
 (17)

• The free energy per particle is given by

$$f(\mu) = f_{\rho}^{*}(\sigma)\sigma^{2}\left(\frac{1}{\mu^{2}} - 1\right) - \log\left[\sigma^{2}\left(\frac{1}{\mu^{2}} - 1\right)\right] + \epsilon_{\phi}\left(\mu\right)/N.$$
(18)

Free Energy Function

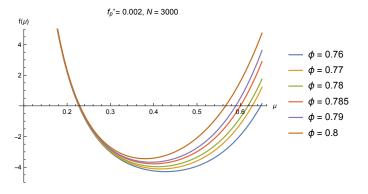


Figure: Free Energy per particle, N = 3000, $f_p^* = 0.002$.

Rheology from μ

• We can use μ to predict the **viscosity**

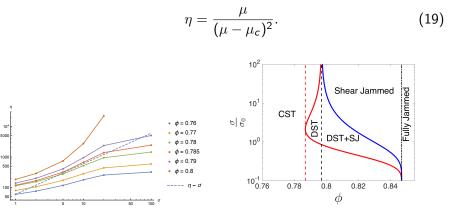


Figure: (Left) Predicted viscosity at different packing fractions ϕ . With $\mu_c \approx 0.385$. (Right) Phase diagram in the shear stress-packing fraction (σ, ϕ) plane.

Outlook

- It would be interesting to explore the analogies and differences between jamming in various systems for which the configuration space can break up into many distinct basins.
- Developing a microscopic theory for Discontinuous Shear Thickening that takes into account both real space constraints and forces remains an outstanding problem.
- **Constructing an Edwards-like approach for other athermal** and non-equilibrium systems where a large number of microscopic constraints 'randomize' the system is an interesting direction for future research.

Thank You.