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Introduction
to
PDEs

What is a Partial Differential Equation ?

A partial differential equation (PDE) of order m is an equation of
the form

F
(
x , u,D1(u),D2(u), . . . ,Dm(u)

)
= f (x),

for x = (x1, x2, . . . , xN) ∈ O, where O is an open set in RN , D i (u)
the set of all the derivatives of order i , and f is a given function.

A solution is a function u = u(x) whose involved partial derivatives
in are well-defined in O and which satisfies the equation at each
point x of O.

If N = 1, then it is simply an ordinary differential equation of order m.

The mapping

u 7→ F
(
x , u,D1(u),D2(u), . . . ,Dm(u)

)
,

is called a differential operator.
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Introduction
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PDEs

Linear PDEs

The PDE is called linear if F is linear with respect to the unknown
u and all its derivatives.

Then it can be written as∑
|α|≤m

aα(x)∂α(u) = f (x),

where the functions aα = aα(x) (for |α| ≤ m) are called the
coefficients of the differential operator.

For homogeneous linear partial differential equations (f ≡ 0) a linear
combination of its solutions is still a solution of the same equation.
This is known as the principle of superposition.

We will discuss in particular some second order elliptic linear PDEs,
which cover many interesting situations.
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A classical example

The Laplace and Poisson equations.

The homogeneous Laplace equation in a bounded open set Ω ⊂ RN

is:
∆u(x) = 0,

where ∆ is the laplacian operator.

∆ =
∂2

∂x2
1

+ . . .+
∂2

∂x2
N .

The corresponding nonhomogeneous equation

∆u(x) = f ,

where f is a given function, is called Poisson equation.

It models for instance, the stationary thermal diffusion equation in an
homogeneous material.
It also describes the displacements of a tight membrane or appear in
electrical problems, where the potential of an electrostatic field
satisfies the Poisson equation.
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Let us describe the first model, i.e. steady heat conduction in an
isotropic material.

Let γ be the thermal conductivity of a body occupying Ω, which
describes the ability of the body to diffuse heat.
If the body is homogeneous and isotropic, then γ is a scalar.

Suppose that f represents the heat source and let u = u(x) the
temperature at the point x ∈ Ω.

The flux of the temperature is defined by

q(x) = γ∇u(x)

Its divergence represents the flux density which is equal to the heat
source, that is div q = f .

Since γ is constant, this can be rewritten in the form

−γ∆u = f in Ω,

which is exactly the Poisson equation.
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If the body is inhomogeneous and anisotropic, the thermal
conductivity is not described anymore by a constant γ as before, but
by a matrix field

A(x) = (aij(x))1≤i ,j≤N ,

so that the steady heat conduction in the material is described by the
equation (the so-called in the divergence form)

−div (A(x)∇u) = f in Ω.

* This is an important equation here, since it is a model equation

treated by the homogenization theory.
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More classical examples

The heat equation.

If the heat source depends on time, then the energy conservation law
leads to the following heat equation

∂u

∂t
− div (A(x)∇u) = f .

Also, the Black-Scholes equation, well-known in financial
mathematics can be reduced to a simiilar form.

Vibrations: the wave equation. Vibrations or waves in a
inhomogeneous and anisotropic body are described by the equation

∂2u

∂t2
− div (A(x)∇u) = f .
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Introduction
to
PDEs

Boundary and initial conditions

In general, a partial differential equation have more than one or even
an infinite number of solutions.

The uniqueness of a solution of a physical problem in Ω can be
obtained adding some conditions assigned on its boundary ∂Ω, the
so-called boundary conditions.

The most classical boundary conditions are the following:

1 The Dirichlet boundary condition: a given value is imposed for
the solution u on ∂Ω.

2 The Neumann boundary condition: the normal derivative of u,
defined by A∇u · n, where n denotes the outward unit normal to
∂ω has to take given values on ∂Ω.

3 The Robin boundary condition: it involves both u and its normal
derivative in an expression written on ∂Ω.
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These conditions have a physical meaning. For heat diffusion,

Condition (1) signifies that the boundary is maintained at a
given temperature.

Condition (2) means that the flux of the heat through the
boundary is prescribed.

Condition (3) translates to the fact that through the boundary,
there is an exchange of heat with the environment that has a
given temperature.

* This makes an important difference with a ODE, even for N=1.

Additional conditions, the initial conditions, are imposed when the
time t is a variable in the problem.
As for a ODE, one prescribes a value to u (and to some derivatives of
u with respect to t), at the initial time t = 0 in Ω.

For the heat equation, one only prescribes the value of u.

Physically these conditions describe the initial state of the system.
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Well-
posedness

The concept of well-posed problems

It is clear that the initial and boundary conditions to be prescribed
depend on the physical situation and essentially on the order of the
equation.

* If the number of conditions is insufficient, a solution may not have
any relation with the physical phenomenon under study.

* If too many conditions, the equation may not have solution (this
situation is called overdetermined).
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Well-
posedness

A simple non existence example

* We cannot couple any equation with any boundary conditions.

Consider the 1D problem:{
u′′ + u = 0 in (0, 2π),
u(0) = a, u(2π) = b.

It is known that a solution of the equation has the form

u(x) = c1 sin x + c2 cos x , c1, c2 ∈ R,

hence is a2π-periodic function. The choice of the constants is
determined by the boundary conditions.

• Since u(0) = u(2π), if a 6= b problem above has no solution !!
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Well-
posedness

A simple non uniqueness example

Consider the 1D problem:{
u′′ = f in (a, b),
u′(a) = u′(b) = 0.

Suppose that u is a solution of this problem.

Since the derivative of a constant is zero, then for every c ∈ R the
function u + c is also a solution.

• Hence, this problem admits an infinity of solution !!
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Well-
posedness

* In general, a linear mathematical model is considered satisfactory
if for a given data, if the equation with the given boundary and initial
conditions admits one and only one solution.

* Nevertheless, even that is not sufficient. Indeed the data originate
from measurements are never perfect, which is not important in the
physical description. Then, a small change in the data should results
in a small change in the solution.

This is called the stability of a solution with respect to the data.

* Not all the mathematical problems are stables.

The french mathematician J. Hadamard (1865-1963) gave an
example of a sequence of problems where the data goes to zero and
the solutions goes to infinity.
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Well-
posedness

Well posed problems in the Hadamard sense

Consequently, Hadamard introduced the following concept:

Definition Let U and F two spaces of functions (for instance Banach
spaces) and let us consider a partial differential equation with given
boundary and initial conditions.

Let f a vector function representing the data of the problem.

The problem is called well-posed if one has

1 (Existence) For any element f ∈ F there exists a solution u ∈ U
of the problem.

2 (Uniqueness) The solution is unique.

3 (Stability) The map which to f ∈ F associated the solution
u ∈ U is continuous.
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Existence of explicit solutions

This concern only special case (special types with radial simmetry,
looking for power series... )

* Since in general it is not possible to have the explicit solutions,
even for simple equations.

Then, it is important to prove that the problem is well posed, that is
prove existence, uniqueness and stability theorems.

+ This allows to validate the model (if no solutions, it cannot
represent a physical situation....)

* Also, when no explicit solution, adapted numerical methods (finite
difference method, finite element method,..) provide an approximates
solution. Theorems allow to justify the use of the numerical methods.
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A Classical classification

In analogy with the conics curves, most of equations can be classified
in the following 3 types:

Elliptic equation, the model case being the Poisson equation
(no time).

Parabolic equation, the model case being the heat equation
(1 time-derivative).

Hyperbolic equation, the model case being the wave equation
(2 time-derivatives).

*This depend somehow on the determinant of the second order
coefficient matrix ....

* One can reduce a linear second order equations to a canonical
form.

Patrizia Donato University of Rouen Normandie Motivations of weak solution Bangalore August 2019 17



Motivations
of
weak
so-
lu-
tion

Proving theorems . . .

As already mentioned, one look for theorems stating that a problem
is well posed.

* These theorems are difficult to prove and require an important
functional background and powerfull techniques.

For a given class of problem one need to prove suitable theorems,
according on the assumption on:

the type of equation,

the type of boundary conditions,

the kind of domain,

the regularity of the coefficients.

the regularity of the data.
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For instance, one can prove that the problem is well posed for

a linear elliptic equation,

in a bounded domain Ω of RN ,

with Dirichlet conditions,

BUT

one has to require that

the coefficients and the datum have a strong regularity
(even f ∈ C 0 and Ω a ball are not sufficient, the Hölder
continuous framework is needed).

the domain has a smooth boundary.

* If not, there exist counter-examples of non existence.
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* The solutions obtained in this context are usually called

classical solutions

The related results cover many interesting problems, but

the assumptions are not always satisfied

in many important real situations.

For instance if

f a step function

Ω a polygone or a polyedre

What we can do in these cases, where the experiences suggest that a
solutions shoud exist?
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A model problem

We consider, as model case, the stationary heat equation with, for
instance, a Dirichlet condition on a bounded open set Ω ⊂ RN , that is{

−div (A∇u) = f in Ω,
u = 0 on ∂Ω,

where

−div (A∇) = −
N∑

i ,j=1

∂

∂xi

(
aij

∂

∂xj

)
and (for instance) f ∈ L2(Ω).

• We suppose that A(x) = (aij(x))1≤i ,j≤N is a matrix field in
M(α, β,Ω), with 0 < α < β, i.e.{

(A(y)λ, λ) ≥ α|λ|2,
|A(y)λ| ≤ β|λ|, for any λ ∈ RN .
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Weak solutions

One introduces weak solutions, as follows.

The derivatives are taken in a week sense, the so-called sense of
distributions,

The solutions belongs to a suitable functional space, a Sobolev
space

The solution satisfies a weak version of the above equation,
called the variational formulation.

* Distributions and Sobolev spaces need a more sophisticated
backgroud, and there existe a complete theory about.
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A motivation

Consider the following one-dimensional problem in the interval (0, 1):

(∗)

−u′′(x) + c(x)u(x) = f (x), ∀x ∈ (0, 1),

u(0) = u(1) = 0,

where c ∈ C 0([0, 1]), c ≥ 0, and f ∈ C 0([0, 1]).

Let us introduce the space

V =
{
v ∈ C 1([0, 1])

∣∣ v(0) = v(1) = 0
}
.

• It is known that V is dense in L2(0, 1).
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Define the differential operator

A : C 2([0, 1]) ∩ V → C 0([0, 1]),

given by

(Au)(x) = −u′′(x) + c(x)u(x) for x ∈ [0, 1].

Theorem Let c ∈ C 0([0, 1]), c ≥ 0 and f ∈ C 0([0, 1]). Then a
function u ∈ C 2([0, 1]) ∩ V is a solution of (*) if and only if u is a
solution of the following problem:

(∗∗)
∫ 1

0

(
u′ v ′ + c u v

)
dx =

∫ 1

0
f v dx , ∀v ∈ V .
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Proof. Let u ∈ C 2([0, 1]) ∩ V be a solution of (*). Multiplying the
equation in (*) by v ∈ V and integrating on [0, 1], we obtain∫ 1

0

(
− u′′ + c u

)
v dx =

∫ 1

0
f v dx , ∀v ∈ V .

Integrating by parts and recalling that v ∈ V , we have∫ 1

0
−u′′ v dx =

∫ 1

0
u′ v ′ dx − u′ v

∣∣∣1
0

=

∫ 1

0
u′ v ′ dx .

These two equalities imply that u is a solution of (**).

Conversely, let u ∈ C 2([0, 1]) ∩ V be a solution of (**). Hence,∫ 1

0

(
− u′′ + c u − f

)
v dx = 0, ∀v ∈ V .
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Since V is dense in L2(0, 1), we have∫ 1

0

(
− u′′ + c u − f

)
v dx = 0, ∀v ∈ L2(0, 1).

This means that the function φ = −u′′ + cu − f is an element of
L2(0, 1) satisfying (

φ, v
)

= 0, ∀v ∈ L2(0, 1).

Since the zero function is the only function orthogonal to all elements
of L2(0, 1),

0 = φ = −u′′ + cu − f a.e. in (0, 1).

Since φ ∈ C 0([0, 1]), it follows that φ(x) = 0 for every x in (0, 1).
This implies that u satisfies the equation in (*). Moreover, u ∈ V , so
u also satisfies the boundary conditions.
This completes the proof. �
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The idea of weak solutions.

Problem (**) is called a variational formulation of problem (*). The
fact that u is a solution of (**) means that the equality is satisfied by
every v belonging to the given space V . The function v is called a
test function.

Observe now that (**) makes sense even if f , u, v , u′, and v ′ are only
in L2(0, 1) and not in spaces of continuous functions (in a sense to be
precised).

Therefore one can try to find a function in H, a bigger space than
C 2([0, 1]) ∩ V , satisfying (**) for any test in H. In this case, u is
called the weak solution of (*) and (**) is called the variational
formulation of (*).

Then, one has to prove that if the solutions and the data are smooth,
then u is a solution in the usual (classical) sense.

* Sobolev spaces are the suitable spaces for that. To define them,
one need to introduce distributions.
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Distributions

Distributions

* A fundamental set of functions:

Let O an open set of RN . We define D(O) as the set of the infinitely
differentiable functions v on O such taht supp v is a compact set in
RN contained in O.

Definition A sequence {ϕn} in D(O) is said to converge to an
element ϕ in D(O) if the following are satisfied:

(1) there exists a compact set K ⊂ O such that supp ϕ ⊂ K and for
any n ∈ N, supp ϕn ⊂ K ,

(2) for any α ∈ NN , ∂αϕn converges uniformly to ∂αϕ on K .

* The space D(O) is not a metric space and the above definition
does not induce a topology, but a suitable (complicated and not
neede here) topology may be defined such that the convergence of
sequences is exactly that one.
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Distributions

Definition

A distribution on O is a map T : D(O)→ R such that

(1) T is linear,

(2) if ϕn → ϕ in D(O), then T (ϕn)→ T (ϕ) in R.

We denote by D′(O) the set of distributions on O.
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Distributions

Exercise

1 Let x0 ∈ RN . The mapping defined by

δx0(ϕ) = ϕ(x0), ∀ϕ ∈ D(RN),

is a distribution (the so-called Dirac mass).

2 Let f ∈ L1
loc(O) and define the mapping Tf on D(O) by

〈Tf , ϕ〉D′(O),D(O) =

∫
O
f ϕ dx .

Then Tf is a distribution on O. Moreover, the linear map

L : f ∈ L1
loc(O) 7−→ Tf ∈ D′(O),

is one-to-one.
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Distributions

As a consequence L1
loc(O) (in particular Lp(O)) can be regarded as a

subspace of D′(O) by identifying f with Tf . With this identification
done in this remark, we have the following definition:

Definition A distribution T is in L1
loc(O) (respectively in Lp(O)), if

there exists f ∈ L1
loc(O) (respectively in Lp(O)), such that T = Tf ).

In this case, T is called a regular distribution.

* There exist distributions which are not regular, for instance the
Dirac function at a point x0 ∈ R (Exercice !).
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Distributions

Definition Let T ∈ D′(O). The derivative of T with respect to xi

for any i = 1, . . . ,N, denoted
∂T

∂xi
, is defined as

〈∂T
∂xi

, ϕ
〉
D′(O),D(O)

= −
〈
T ,

∂ϕ

∂xi

〉
D′(O),D(O)

,

for all ϕ ∈ D(O).

Exercices

Show that if T ∈ D′(O), then

∂T

∂xi
∈ D′(O) for i = 1, . . . ,N.

That is, the derivative of a distribution is also a distribution.

The derivative of the Dirac function δx0 is given by〈∂δx0

∂xi
, ϕ
〉
D′(RN),D(RN)

= − ∂ϕ
∂xi

(x0), ∀ϕ ∈ D(RN).
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Distributions

Remark
Let us suppose that f and its derivatives in the sense of
distributions are in L1

loc(O) for i = 1, . . . ,N, then∫
O

∂f

∂xi
ϕ dx = −

∫
O

f
∂ϕ

∂xi
dx , ∀ϕ ∈ D(O).

If f ∈ C 1(O), its derivatives in the sense of distributions coincide
with the usual partial derivatives since by Green’s formula,∫

O
f
∂ϕ

∂xi
dx = −

∫
O
fxi ϕ dx ,

where fxi denotes the usual derivative. Hence,

fxi =
∂f

∂xi
for every i = 1, . . . ,N.

* This is not true if f is differentiable only a.e. (Exercice !).
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The Sobolev Space W 1,p(O)

Definition Let 1 ≤ p ≤ +∞. We define the Sobolev space W 1,p(O)
as

W 1,p(O) =

{
u ∈ Lp(O)

∣∣∣ ∂u
∂xi
∈ Lp(O), i = 1, . . . ,N

}
,

where the derivatives are taken in the sense of distributions, together
with the associated norm

‖u‖W 1,p(O) = ‖u‖Lp(O) +
N∑
i=1

∥∥∥ ∂u
∂xi

∥∥∥
Lp(O)

.

In particular, for p = 2, we denote W 1,2(O) by H1(O).
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Proposition

The norm in W 1,p(O) is equivalent to

‖u‖ =
(
‖u‖pLp(O) + ‖∇u‖pLp(O)

) 1
p
,

where, we set

‖∇u‖Lp(O) =
( N∑

i=1

∥∥∥ ∂u
∂xi

∥∥∥p
Lp(O)

) 1
p
.

* This is very useful for proving estimates by taking the square of
the norm.
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Main properties

For 1 ≤ p ≤ +∞, the space W 1,p(O) is a Banach space and
H1(O) is a Hilbert space for the scalar product defined by

(v ,w)H1(O) = (v ,w)L2(O) +
N∑
i=1

( ∂v
∂xi

,
∂w

∂xi

)
L2(O)

,

for all v ,w ∈ H1(O).

W 1,p(O) is separable if 1 ≤ p < +∞, reflexive if 1 < p < +∞.

Let 1 ≤ p < +∞. Then D(RN) is dense in W 1,p(RN).

Let Ω a bounded open set with a Lipschitz continuous boundary.
Then the set D

(
Ω
)

of the restrictions to Ω of functions in
D(RN)is dense in W 1,p(Ω).
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0 (Ω)

The space H1
0 and its properties

The space H1
0 (O) is well adapted to treat variational elliptic problems

with homogeneous boundary Dirichlet conditions.

Definition Let 1 ≤ p ≤ +∞. The Sobolev space W 1,p
0 (O) is the

closure of D(O) with respect to the norm of W 1,p(O). In particular,
we set

H1
0 (O) = W 1,2

0 (O).

We give now two important properties of this space.

We recall that if u is a function defined on a open set O ⊂ RN , then
its zero extension to RN , denoted ũ, is defined by

ũ(x) =

{
u(x) for x ∈ O,
0 otherwise.
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Proposition. Let 1 ≤ p ≤ +∞. If u is a function in W 1,p
0 (O), then

its zero extension ũ defined by

ũ(x) =

{
u(x) for x ∈ O,
0 otherwise,

belongs to W 1,p
0 (O1) for every open subset O1 containing O.

Moreover,
‖u‖

W 1,p
0 (O)

=
∥∥ũ∥∥

W 1,p
0 (O1)

.

Proof. The delicate point is to prove that:

∂ũ

∂xi
=
∂̃u

∂xi
for i = 1, . . . ,N,

in the distribution sense. Then, the equality is immediate. �
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The Poincaré Inequality

Theorem. Let Ω be a bounded open set in RN . Then there exists a
constant CΩ, such that

‖u‖L2(Ω) ≤ CΩ ‖∇u‖L2(Ω), ∀u ∈ H1
0 (Ω),

and CΩ depends only on the diameter of Ω.

* As a consequence,

‖u‖H1
0 (Ω) = ‖∇u‖L2(Ω),

defines a norm on H1
0 (Ω) equivalent to the norm of H1(Ω).
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Weak solutions for Dirichlet boundary conditions

Let us come back to our model problem{
−div (A∇u) = f in Ω,
u = 0 on ∂Ω,

We look for a solution that satisfies a weak version of the above
equation, called the variational formulation. This is formally
obtained multiplying the equation by a smooth function ϕ which
satisfies the Dirichlet boundary condition and then integrating by
parts.

It has to be satisfied by any such function ϕ and by density by
any function v ∈ H1

0 (Ω) (called a test function).
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For our model problem, the variational formulation is :

Find u ∈ H1
0 (Ω) such that∫

Ω
A∇u∇v dx =

∫
Ω
f v dx ∀v ∈ H1

0 (Ω).

The (weak) sense of the Dirichlet boundary condition is
contained in the condition u ∈ H1

0 (Ω). When u is continuous in
Ω̄, this implies the Dirichlet boundary condition in every point.

* Justification of this framework: One has to prove that if all the
data are smooth, a weak solution is a classical one, i.e. a function of
class C 2(Ω̄) verifying pointwise the equation.
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Existence and uniqueness of a weak solution

We make use of an important abstract result, the Lax-Milgram
Theorem.

Theorem Let a be a continuous bilinear form on a Hilbert space H
and F ∈ H ′. If a is H-elliptic with constant α0, then the variational
equation {

Find u ∈ H such that

a(u, v) = 〈F , v〉H′,H , ∀v ∈ H,

has a unique solution u ∈ H.
Moreover, we have the following a priori estimate:

‖u‖
H
≤ 1

α0
‖F‖

H′ .

* It applies to our model problem as follows.
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Theorem Consider the model problem above with A ∈ M(α, β,Ω)
and f ∈ H−1(Ω) = (H1

0 (Ω))′ (in particular in L2(Ω)). There exists a
unique solution u ∈ H1

0 (Ω) such that∫
Ω
A∇u∇v dx =

∫
Ω
f v dx ∀v ∈ H1

0 (Ω).

Moreover, one has the following a priori estimate

‖u‖H1
0 (Ω) ≤

CΩ

α
‖f ‖L2(Ω),

where CΩ is the Poincaré constant.

* The problem is well posed, in the sense of Hadamard.
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The notion of trace

The notion of trace gives a meaning to the restriction of functions in
W 1,p(Ω) to ∂Ω (∂Ω Lipschitz continuous), where one can still define
a normal a.e. and integrals on ∂Ω and consequently Lp(∂Ω).

The trace theorem. If Ω is a bounded open subset of RN such
that ∂Ω is Lipschitz continuous, then there exists a unique linear
continuous map

γ : H1(Ω) 7−→ L2(∂Ω),

such that γ(u) = u|
∂Ω

for any u ∈ H1(Ω) ∩ C 0
(

Ω
)
. The function

γ(u) is called the trace of u on ∂Ω.

* This give a meaning to boundary conditions for functions in H1.

Theorem. For N ≥ 2, let Ω be a bounded open subset of RN such
that ∂Ω is Lipschitz continuous. Then

H1
0 (Ω) =

{
u ∈ H1(Ω)| γ(u) = 0 on ∂Ω

}
.

* This give a meaning to the homogeneous Dirichlet boundary
condition for functions in H1

0 .
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The space H1
per(Y )

We introduce now a notion of periodicity for functions in the Sobolev
space H1. Let Y =]0, `1 [× . . .×]0, `N [, be the reference cell where
`1, . . . , `N are given positive numbers.

Definition. Let C∞per(Y ) be the subset of C∞(RN) of Y -periodic

functions. We denote by H1
per(Y ) the closure of C∞per(Y ) for the

H1-norm.

Proposition. Let u ∈ H1
per(Y ). Then, u has the same trace on the

opposite faces of Y .
Moreover, let g be a function defined a.e. on Y and denote by g# its
extension by periodicity to the whole of RN , defined by

g#(x + k `i ei ) = g(x) a.e. on Y , ∀ k ∈ Z, ∀ i ∈ {1, . . . ,N},

where {e1, . . . , eN} is the canonical basis of RN . Then u# is in
H1(ω) for any ω bounded open subset of RN .
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Periodic boundary conditions

In the sequel, we will make use of the subspace

Wper(Y ) =
{
v | v ∈ H1

per(Y ), MY (v) = 0
}
.

Proposition. The space Wper(Y ) is a Banach space for the norm

‖u‖Wper(Y ) = ‖∇u‖L2(Y ), for any u ∈Wper(Y ).

* We introduce now a class of problems which plays a crucial role
in homogenization. For A ∈ M(α, β,Y ) and h a given function in
L2(Y )N , consider the problem

- div (A∇u) = - div h in Y ,

u Y - periodic,

MY (u) = 0,
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Its variational formulation is:
Find u ∈Wper (Y ) such that∫
Y
A(y)∇u ∇v dy =

∫
Y
h∇v dy , ∀v ∈Wper (Y )

Theorem The problem above admit a unique solution u and the
following a priori estimate holds

‖u‖Wper (Y ) ≤
1

α
‖f ‖L2(Y ).

Moreover, its periodic extension to RN (still denoted u) is the unique
solution of the variational problem∫

RN

A(y)∇φ ∇v dy =

∫
RN

h∇φ, dy , ∀φ ∈ D(RN),

* By density, one can take φ ∈ H1
0 (Ω).
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A particular case

For h = A(y)λ, where λ ∈ RN , one has the problem arising in
homogenization

- div (A∇χ̂λ) = -div (Aλ) in Y ,

χ̂λ Y - periodic.

MY (χ̂λ) = 0,

whose variational formulation is∫
Y
A(y)∇χ̂λ ∇v dy =

∫
Y
A(y)λ ∇v dy , ∀φ ∈ H1

per (Y ),

By linearity, χ̂λ =
∑N

i=1 λi χ̂ej , where (ei )i=1,...,n is the canonical basis

of RN .

* The functions ŵλ = λ · x − χ̂λ play also an important role.
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Other boundary conditions

One can adapt these ideas to study:

Dirichlet-Neumann conditions.

Robin conditions.

other situations . . .

* We can discuss them in the afternoons !!
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