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Tropics are Extremely Important in Globally Warming World 
 

Rich Observed Phenomena 
 

Hard to understand physically with Multi-Scale interaction 
 

GCM Computer Models Fail to Represent 

 
Challenge for Contemporary Appl. Math, Need New 

 

Physical Theories 
 

Multi-Scale Models 
 

Numerics and Algorithms 
 

PDE Phenomena 
 

And their symbiotic interaction 
 

See Khouider, Majda, Stechmann, Nonlinearity (2013), Climate Science in the Tropics:  
 Also see Majda’s NYU faculty website for many papers on all this over last ten years 
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The Skeleton of  

Tropical Intraseasonal Oscillations 

Andrew Majda (Courant Institute, NYU) 

Samuel N. Stechmann (U. Wisconsin) 

In Proc. Natl. Acad. Sci., 2009 

 
• New minimal dynamical model for the MJO 
• Robustly recovers the MJO’s fundamental features 

(i.e., its “skeleton”) on intraseasonal/planetary scales: 
- slow phase speed of ≈ 5 m/s 
- peculiar dispersion relation of dω/dk ≈ 0 
- horizontal quadrupole vortex structure 
 



Multi-scale clouds and waves in the tropics

Clouds in the tropics are organized across vast length and time scales

• Cloud systems

• Wave trains of cloud systems
called convectively coupled waves

• Envelopes of convectively coupled waves
called the Madden–Julian oscillation (MJO)

Global climate models (GCMs)

• use grid spacings of ≈ 100 km

• must represent clouds as a sub-grid scale process

• can hope to resolve convectively coupled waves

• but do not adequately capture convectively coupled waves or MJO



Multi-scale clouds and waves in the tropics

.

from Nakazawa (1988) .



Multi-scale clouds and waves in the tropics

Precipitation Spectral Power

from Lin et al. 2006

2000–2001 (from Zhang 2005)



Multi-scale clouds and waves in the tropics

Observations Global Climate Model (GCM)

from Lin et al. (2006)



Multi-scale clouds and waves in the tropics

Clouds in the tropics are organized across vast length and time scales

• Cloud systems

• Wave trains of cloud systems
called convectively coupled waves

• Envelopes of convectively coupled waves
called the Madden–Julian oscillation (MJO)

Global climate models (GCMs)

• use grid spacings of ≈ 100 km

• must represent clouds as a sub-grid scale process

• can hope to resolve convectively coupled waves

• but do not adequately capture convectively coupled waves or MJO



Outline

1. Dry fluid dynamics of the tropical atmosphere

2. Observed features of MJO

3. A simple model for the MJO’s “skeleton”



Dry fluid dynamics of the tropical atmosphere

Du

Dt
−βyv = −∂p

∂x
Dv

Dt
+βyu = −∂p

∂y

0 = −∂p

∂z
+ g

θ

θref

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0

Dθ

Dt
+ w

dΘ̄
dz

= 0

(u, v) = horizontal velocity

w = vertical velocity

p = pressure

θ = potential temp.



Vertical modes: Equatorial shallow water equations

Linear waves

• Expand in vertical modes: u(x, y, z, t) =
∑

j uj(x, y, t) cos jz, etc.

• Equatorial shallow water system for each vertical mode j:

∂uj

∂t
− yvj − ∂θj

∂x
= 0

∂vj

∂t
+ yuj − ∂θj

∂y
= 0

∂θj

∂t
− 1

j2

(
∂uj

∂x
+

∂vj

∂y

)
= 0

• Gravity wave speed ∝ 1/j

z=0

θ1u1

z=16 km z=16 km

u2 θ2

z=0 .
50 m/s 25 m/s .



Meridional modes: Equatorially trapped waves

Expand in meridional modes: u(x, y, t) =
∑

m um(x, t)φm(y), etc.

φ0(y) ∝ exp
(
−y2

2

)
, φ1(y) ∝ y exp

(
−y2

2

)
, φ2(y) ∝ (2y2 − 1) exp

(
−y2

2

)

Result: Zonally propagating waves K(x, t), Rm(x, t), etc.

Dispersion curves for

equatorial shallow water eqns.
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Dry fluid dynamics of the tropical atmosphere

Summary

• Primitive equations (x, y, z) −→ equatorial shallow water equations (x, y)

– Expand in vertical modes cos(jz)

• Equatorial shallow water equations (x, y) −→ zonally propagating waves (x)

– Expand in meridional modes φm(y)

Result: Zonally propagating waves (Kelvin, Rossby, etc.)



Observations of the MJO

Precipitation Spectral Power

2000–2001 (from Zhang 2005)

from Lin et al. 2006

MJO: slow eastward propagation ≈ 5 m/s

MJO: peculiar dispersion relation dω
dk

≈ 0

MJO is envelope of smaller-scale convectively coupled waves



Horizontal structure of MJO

Quadrupole vortices:

Hendon and Salby (1994)



Moisture preconditioning in the MJO

Kiladis et al (2005)

Lower tropospheric moisture (contours) leads enhanced convection (dark shading)



Previous attempts at a theory for the MJO

MJO originally discovered in 1971

Previous theories emphasized planetary-scale instability mechanisms such as

• evaporation–wind feedback

• boundary layer frictional convective instability

• stochastic linearized convection

• radiation instability

• ...

But all these theories are at odds with observational record in various crucial ways

No theory for the MJO has yet been generally accepted

• “Search for the Holy Grail of tropical atmospheric dynamics”



The Skeleton of  

Tropical Intraseasonal Oscillations 

Andrew Majda (Courant Institute, NYU) 

Samuel N. Stechmann (U. Wisconsin) 

In Proc. Natl. Acad. Sci., 2009 

 
• New minimal dynamical model for the MJO 
• Robustly recovers the MJO’s fundamental features 

(i.e., its “skeleton”) on intraseasonal/planetary scales: 
- slow phase speed of ≈ 5 m/s 
- peculiar dispersion relation of dω/dk ≈ 0 
- horizontal quadrupole vortex structure 
 



Fundamental mechanism proposed for MJO skeleton

Neutrally stable interactions between

1. planetary-scale, lower-tropospheric moisture

2. synoptic-scale, convectively-coupled-wave activity

• Tacit assumption: primary instabilities/damping occur on synoptic scales

• MJO “muscle” from other potential upscale transport effects from synoptic scales

– convective momentum transports from synoptic-scale waves

– variations in surface heat fluxes



Minimal dynamical model

ut − yv = −px

yu = −py

0 = −pz + θ

ux + vy + wz = 0

θt + w = H̄a

qt − Q̃w = −H̄a

at = Γq(ā + a)

Momentum equations:

• Equatorial long-wave scaling

• Coriolis term: equatorial β-plane approx.

• Hydrostatic balance

Thermodynamic equations:

• q: lower tropospheric moisture

• a: amplitude of convective activity envelope

Key mechanism: positive q creates a tendency to enhance convective activity a

Minimal number of parameters: Q̃, Γ, ā



Minimal dynamical model

(vertical truncation)

ut − yv − θx = 0

yu − θy = 0

θt − ux − vy = H̄a

qt + Q̃(ux + vy) = −H̄a

at = Γāq

• Truncate at first vertical baroclinic mode

• Matsuno–Gill-like model
without dissipative mechanisms
but with
– lower tropospheric moisture, q

– envelope of synoptic-scale wave activity, a,

provides dynamic planetary-scale heating



Minimal dynamical model

(vertical and meridional truncation)

Kt + Kx = − 1√
2
H̄A

Rt − 1
3
Rx = −2

√
2

3
H̄A

Qt +
1√
2
Q̃Kx − 1

6
√

2
Q̃Rx =

(
−1 +

1
6
Q̃

)
H̄A

At = ΓāQ

Meridional structures:

K: Kelvin wave

R: first symmetric equatorial Rossby wave

Q: exp(−y2/2)

A: exp(−y2/2)



Phase speed and oscillation frequency
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standard
Q=0.8
Q=0.95
Γ=0.5
Γ=2 • Phase speeds of ≈ 5 m/s

• Results robust over parameter space

• Eastward MJO branch: dω
dk ≈ 0

on intraseasonal time scales

• Westward branch: seasonal time
scales for wavenumbers 1 and 2

.



Physical structure of MJO skeleton
low−level pressure contours
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suppressed convection (A < 0) enhanced convection (A > 0)

• horizontal quadrupole vortices

• moisture leads convection

• Kelvin wave structure on equator

• off-equatorial quadrupole Rossby gyres



Formula for MJO frequency

Simplified case: 1D dynamics above the equator

• No rotation ⇒ Perfect east–west symmetry

• Linear system in 4 variables (u, θ, q, a) + Perfect east–west symmetry ⇒

Exact solution: 2ω2 = ΓR̄ + k2 ±
√

(ΓR̄ + k2)2 − 4ΓR̄k2(1 − Q̃)

Approx. solution: ω ≈
√

ΓR̄(1 − Q̃)

• Model recovers peculiar dispersion relation dω/dk ≈ 0

• Simple formula for MJO frequency in terms of model parameters



Summary

• New minimal dynamical model for the MJO

• Robustly recovers the MJO’s fundamental features
(i.e., its “skeleton”) on intraseasonal/planetary scales:

– slow phase speed of ≈ 5 m/s

– peculiar dispersion relation of dω/dk ≈ 0

– horizontal quadrupole vortex structure

• Simple formula for MJO oscillation frequency: ω ≈
√

ΓR̄(1 − Q̃)

• Explanation of preferred eastward propagation of intraseasonal variability

• Neutrally stable model on planetary/intraseasonal scales

– Tacit assumption: primary instabilities on synoptic scales

• “Muscle” of MJO provided by other upscale transports from synoptic scales

Majda and Stechmann (2009) Proc. Natl. Acad. Sci.



Precipitation Fronts in the Equatorial
Atmosphere
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Department of Mathematics and
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Courant Institute
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May 15, 2006
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Dying Rainy Region

From Khouider and Majda (2005) in Theoretical and

Computational Fluid Dynamics

Moist region surrounded by two dry regions

Moist region propagating eastward and shrinking

Left and right boundaries move at different speeds

2



Boundary Conditions: Linear Extrapolation
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Periodic Domain
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Typical Scales for Large Scale Dynamics in
Tropics

c 50 m/s Velocity scale

L 1500 km Length scale

T 8 hours Time scale

H 16 km Tropopause height

W0 0.2 m/s Vertical velocity scale

5



1500 km × 1500 km black square shown
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Motivation

General circulation models (GCMs) use parameterizations for

interactions between moisture and large scale dynamics

What kinds of waves with moisture does the parameterization

support? Are they physically meaningful?

Use a simplified tropical climate model to investigate: shallow

water equations + water vapor equation, with a parameterization

for convection (i.e., storms, rain)

7



Outline

• 1st baroclinic mode equations with moisture

• Discontinuous fronts for vanishing convective adjustment time

(τc → 0) (Frierson, Majda, and Pauluis 2004)

• Front structure for nonzero convective adjustment time (τc 6= 0)

8



1st Baroclinic Mode Equations

• Start with hydrostatic Boussinesq equations

• Choose vertical structure for velocity, temperature (i.e., choose

the 1st baroclinic mode)

• Project hydrostatic Boussinesq equations onto this vertical

structure

• Result is the 1st Baroclinic Mode Equations

9



Hydrostatic Boussinesq Equations

DU
Dt

+ yU⊥ + ∇Φ = SU Conservation of momentum

DΘ

Dt
+ W

dΘ̄

dz
= SΘ Conservation of energy

∂Φ

∂z
= Θ Hydrostatic balance

∇ · U +
∂W

∂z
= 0 Incompressibility constraint

U = (U, V )

∇ = (∂x, ∂y)

D

Dt
=

∂

∂t
+ U · ∇ + W

∂

∂z

W
∣∣
z=0,H

= 0

10



Vertical Structure

Surface (z=0)

Tropopause (z=H)

W,Θ,SΘ U,V,Φ

Θ : Potential temperature

SΘ : Source of potential temperature (precipitation)

Φ : Pressure

11



Vertical Projection




W

Θ

SΘ


 (x, y, z, t) =




w

θ

P


 (x, y, t) sin

(πz

H

)


 U

Φ


 (x, y, z, t) =


 u

p


 (x, y, t) cos

(πz

H

)

Project using the inner product

〈F, G〉 =
1

H

∫ H

0

F (z)G(z) dz

Result of projection is ...
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1st Baroclinic Mode Equations with Moisture

1st Baroclinic:

∂u
∂t

+ yu⊥ −∇θ = 0

∂θ

∂t
−∇ · u = P

Moisture:
∂q

∂t
+ Q̄∇ · u = −P

w = −∇ · u

P : Precipitation

Those are linear shallow water equations with rotation, coupled to

moisture through the nonlinear precipitation P

See Frierson et al (2004) or Khouider and Majda (2005) for

derivation of moisture equation

13



Precipitation Parameterization

Betts–Miller Scheme

P =
1

τc
(q − q̃(θ))+

τc : convective adjustment time

q̃ : moisture saturation profile

Choose linear form for moisture saturation q̃:

q̃(θ) = q̂ + αθ

14



Conservation Principles

Equivalent Potential Temperature θe = q + θ

∂θe

∂t
= (1 − Q̄)∇ · u

Z = q + Q̄θ
∂Z

∂t
= −(1 − Q̄)P ≤ 0

Total Energy Density

ǫ =
1

2
(|u|2 + θ2) +

1

2

(q + Q̄θ)2

(1 − Q̄)(α + Q̄)

∫
ǫ(t)dxdy

∫
ǫ(0)dxdy

Energy estimate is

15



Conservation Principles

Equivalent Potential Temperature θe = q + θ

∂θe

∂t
= (1 − Q̄)∇ · u

Z = q + Q̄θ
∂Z

∂t
= −(1 − Q̄)P ≤ 0

Total Energy Density

ǫ =
1

2
(|u|2 + θ2) +

1

2

(q + Q̄θ)2

(1 − Q̄)(α + Q̄)

∫
ǫ(t)dxdy =

∫
ǫ(0)dxdy −

∫ t

0

∫
q − αθ

α + Q̄
Pdxdydt

≤

∫
ǫ(0)dxdy

Energy estimate is independent of relaxation time τc
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Gradient Equations

∂∇u

∂t
= y∇v + vŷ +

∂∇θ

∂x

∂∇v

∂t
= −y∇u − uŷ +

∂∇θ

∂y

∂∇θ

∂t
= ∇(∇ · u) + ∇P

∂∇q

∂t
= −Q̄∇(∇ · u) −∇P

Use to show gradient energy estimate

Use to find travelling wave solutions for τc 6= 0

17



Gradient Energy Estimate

ǫgrad =
1

2

(
|∇u|2 + |∇θ|2 +

(∇q + Q̄∇θ)2

(1 − Q̄)(α + Q̄)

)

∫
ǫgrad(t)dxdy =

∫
ǫgrad(0)dxdy +

∫ t

0

∫ (
v
∂u

∂y
− u

∂v

∂y

)
dxdydt

−

∫ t

0

∫
|∇(q − αθ)|2

α + Q̄
P ′dxdydt

≤

∫
ǫgrad(0)dxdy +

∫ t

0

∫ (
v
∂u

∂y
− u

∂v

∂y

)
dxdydt

For 1D fronts, u, θ, and q are continuous if continuous initially by

Sobolev’s Lemma

This result is independent of relaxation time τc

19



Simplified Situation for Analytical Study

One dimension: u = u(x, t), v = 0

No rotation (i.e., motion on equator, y = 0)

∂u

∂t
−

∂θ

∂x
= 0

∂θ

∂t
−

∂u

∂x
=

1

τc
(q − q̃)+

∂q

∂t
+ Q̄

∂u

∂x
= −

1

τc
(q − q̃)+

Linear shallow water equations in 1D

With a linear moisture equation

Coupled by a nonlinear precipitation term

Ignore all other sources and sinks (evaporation, radiation, etc.)

22



Dry Wave Speed

Within dry region, P = 0 and

∂u

∂t
−

∂θ

∂x
= 0

∂θ

∂t
−

∂u

∂x
= 0

Dry wave speed cd = 1 (50 m/s)
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Moist Wave Speed

Within moist region, formally for τc → 0,

q = q̃(θ) = q̂ + αθ

and

∂u

∂t
−

∂θ

∂x
= 0

∂θ

∂t
−

1 − Q̄

1 + α

∂u

∂x
= 0

Moist wave speed cm =
√

1−Q̄
1+α < 1

Dry wave speed cd = 1

24



Outline

• 1st baroclinic mode equations with moisture

• Discontinuous fronts for vanishing convective adjustment time

(τc → 0) (Frierson, Majda, and Pauluis 2004)

• Front structure for nonzero convective adjustment time (τc 6= 0)

25



Free Boundary Problem for Limit τc → 0

Unsaturated Saturated

0 x−st

Gradient energy estimate ⇒

discontinuous w, θx, qx but piecewise linear u, θ, q:

0
x−st

w

0
x−st

u

26



Jump Conditions

Solve the jump conditions for the gradient equations to get the

front velocity s:

−s[w] + [θx] = 0

−s[θx] + [w] = [P ]

−s[qx] − Q̄[w] = −[P ],

where [w] = w+ − w− is the jump in w across the free boundary.

The solution for s is real only for certain cases ...

27



3 Branches of Precipitation Fronts

Frierson, Majda, and Pauluis (2004) find the real values of s to give

0 s

Moistening
Fast

Front

Slow
Mois−
tening
Front

Drying
Front

−cd −cm cm cd

15 m/s < s < 50 m/s Drying Front

−15 m/s < s < 0 m/s Slow Moistening Front

s < −50 m/s Fast Moistening Front

28



Analogy between Precipitation Fronts and Reacting Gas Fronts

Precipitation front Slow moistening front Fast moistening front Drying front

Reacting gas front Flame front Weak detonation Strong detonation

Lax’s shock Violated Violated Satisfied

inequalities

Front speed Subsonic Supersonic Subsonic from one side,

supersonic from the other

Realizability of Always Always Always

precipitation front

Realizability of Unique speed arises as Only for special coefficient Always

reacting gas front nonlinear eigenvalue values of viscosity and

problem heat conduction

29



Lax Stability Criterion and Numerical Solutions

Only drying fronts satisfy Lax’s stability criterion: cm < s < cd

But all 3 types of fronts realizable numerically in robust fashion?!

Precipitation for fast moistening front:
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Similar results for slow moistening front and drying front
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Outline

• 1st baroclinic mode equations with moisture

• Discontinuous fronts for vanishing convective adjustment time

(τc → 0) (Frierson, Majda, and Pauluis 2004)

• Front structure for nonzero convective adjustment time (τc 6= 0)

31



Travelling Wave Solution Form

x̃ = x − st

In dry region, exact linear structure:

u(x̃, t) = −w−x̃ + (θx− − sw−)t

In moist region, linear structure + correction:

u(x̃, t) = −w+x̃ + (θx− − sw−)t + τc

a [w](1 − e−ax̃/τc)

Similar form for θ and q

What is a above?

33



3 Branches of Precipitation Fronts

w = w+ − [w]e−ax̃/τc in moist region, a = −
1 + α

s

c2
m − s2

1 − s2

Qualitatively, a(s) looks like

−2 −1 1 2

−2

0

2

 s

a(
s 

)

c−cm m

Require exponential decay not growth: a > 0 for

cm < s < cd Drying Front

−cm < s < 0 Slow Moistening Front

s < −cd Fast Moistening Front
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Drying Front:
A Sample Velocity Field
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Slow Moistening Front
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Fast Moistening Front
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Summary

• Studied a convective parameterization in a simplified setting

• 3 branches of precipitation fronts arise: drying fronts, slow

moistening fronts, fast moistening fronts

• Even though Lax stability criterion is met only by drying

fronts, all 3 branches are robustly realizable

• Fronts have exponential structure for finite convective

adjustment time (τc 6= 0) and become discontinuous for

instantaneous convective adjustment time (τc → 0)

• Slope of front depends on front speed s and convective

adjustment time τc
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Precipitation Fronts for τc 6= 0

Look for solutions of form w = w
(

x−st
τc

)

Result:
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The Existence and Uniqueness of Weak Solutions for 

Precipitation Fronts: A novel Hyperbolic Free Boundary 
Value Problem in Several Space Variables 

 
Andrew J. Majda and Takis Souganidis 

To appear in Communication Pure Applied Mathematics, 2010 
 

Besides Existence and Uniqueness of Weak Solves 
infinite relaxation limit, also established  - contraction 

in suitable moist energy metric. 



Part II: Models with 2 Vertical Modes

• Convective parameterizations based on only 1 vertical mode (and on only 1

cloud type) do not adequately represent CCWs

• Observations suggest that two other cloud types are also important:

stratiform and congestus

• Stratiform, congestus clouds project strongly onto the 2nd baroclinic mode

• Khouider and Majda (2006) designed a model for CCWs that includes

these effects (called “the multicloud model”)

C

Congestus Deep convection Stratiform
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Equations of the multicloud model

Two linear shallow water systems, coupled through nonlinear source terms:

z=0

θ1u1

z=16 km

z=16 km

u2 θ2

z=0




∂u1

∂t
−

∂θ1

∂x
= −

1

τu
u1

∂θ1

∂t
−

∂u1

∂x
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Hd = Deep convective heating Hc = Congestus heating

R = Radiative cooling Hs = Stratiform heating

+ 4 more prognostic equations for θeb, q, Hs, Hc

+ diagnostic equations for some source terms



How can shear effects be added to the multicloud model?

Project nonlinear equations

∂tU + U∂xU + W∂zU + ∂xP = 0

onto vertical modes

U(x, z, t) = u1(x, t)
√
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+ u2(x, t)
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using the inner product

〈f, g〉 =
1

H

∫ H

0

f(z)g(z) dz

The result is ...



2-Mode Shallow Water Equations
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• Nonlinear, hydrostatic internal gravity waves with effect of background shear

• Stechmann, Majda, and Khouider (2008) Theor. Comp. Fluid Dyn.



DRY DYNAMICS

Nonlinear dynamics of hydrostatic internal gravity waves

Interesting properties of the 2MSWE:

• Non-conservative

ut + A(u)ux = 0, A(u) 6=
∂f
∂u

, u = (u1, θ1, u2, θ2)

• Energy is conserved: (u2
1 + u2

2 + θ2
1 + 4θ2

2)/2

• Conditionally hyperbolic

• Neither genuinely nonlinear nor linearly degenerate

• Background shear can affect propagating waves



2MSWE are conditionally hyperbolic

• Hyperbolic for lower values of u and θ

– For ū1 = ū2 = θ̄1 = θ̄2 = 0, wavespeeds are ±50 m/s and ±25 m/s

• Not hyperbolic for larger shears or temperatures

– Richardson number criterion for instability

– For instance, unstable for θ2 > 5 K

– Unstable waves have overturning circulation to stabilize
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Smooth waves can break sometimes, but not always

• Without shear (and without a background θ), the linear waves are exact

solutions to the nonlinear equations

• With u1 background shear, smooth waves break to form bore-like waves
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Numerical Methods

Numerical methods are a challenge for non-conservative PDE

∂u
∂t

+ A(u)
∂u
∂x

= 0

Our approach: split A into conservative and non-conservative parts:

∂u
∂t

+
∂

∂x
F(u) = −Anc(u)

∂u
∂x

, where
∂F
∂u

= Ac

Operator splitting:

1. Non-oscillatory central scheme of Nessyahu and Tadmor (1990) for
∂u

∂t + ∂
∂xF(u) = 0

2. Centered spatial differences with 2nd order Runge–Kutta for
∂u

∂t = −Anc(u)∂u

∂x

(Note: eigenvalues of Anc are all zero)



Application of 2MSWE: Gravity waves and organized convection

Gravity waves excited by convection can favor/trigger new nearby convection

From Mapes (1993):

Buoyancy contours



Wind shear ⇒ asymmetries in waves

• Apply an imposed localized heating to generate “buoyancy bores”

Bretherton and Smolarkiewicz 1989, Nicholls et al 1991, Mapes 1993, Liu and Moncrieff 2004

– all of these references ignore wind shear for simplicity
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PDE’s and Tropics: Other Topics 
I. Regorous Derivation of Multi-Scale PDE’s 

Equatorial SWE and Singular Limits with Fast Variable 
Coefficients: Special Structure and Algebra of Hermite 
Operators  
 

Dutrifoy & Majda, Comm. Math. Sci, 2006, 2007 
Dutrifoy , Majda & Schochet, CPAM 2009 
 

Open Problems: Primitive Equations with Minimal 
Dissipative Mechanisms Include Active moisture 
 

II. Tropical /Extratroprical Interactaions 
Novel Coupled KdV-like Equations with Energy Conserving 
nonlinear Coupled Interaction  
 

Majda & Biello, Journal of Atmospheric Sciences, 2003 
Biello & Majda, GAFD, 2004, Stud. Applied Math, 2004 
Biello, Chinese Annals Math (B) 2009 



III. New Multi-Scale Models: Rich Source of PDE’s 
A.    MJO, 1,500km to 10,000km 

Majda & Klein, JAS, 2003 
Majda & Biello, PNAS, 2004 
Biello & Majda, JAS, 2005 
Biello, Majda & Moncrieff, JAS, 2007 
 

B.   Self-Similarity Across Scales and Superparameterization 
Majda, JAS, (2007 A, B) 
Xing, Majda & Grabowski, MWR, (2009) 
Majda & Grote, PNAS, (2009) 
 

C.    Squall Lines, Hurricane Embryo, Deep Moist      
Convection; 1km to 100km 
Klein & Majda, TCFD, 2006 
Majda & Xing, Comm. Math. Sci., 2010 
Majda, Mohammedian, & Xing, GAFD, 2008 
Majda, Xing, Mohammedian, JFM, 2010 
Ruprecht, Klein, Majda, JAS, 2010 
 

Nice Review: Rupert Klein, Scale Dependent Models for Atmospheric Flows Ann. Rev. 
Fluid Mech, 2010, 42, pp. 249-274  




