The hadron spectrum on the lattice

Mike Peardon

School of Mathematics, Trinity College Dublin, Ireland

Asian School on LQCD, Mumbai, 17 ${ }^{\text {th }}$ March 2011

Féile Pádraig oraính

The PDG view

What are these states? $\bar{q} q$ mesons?

Isoscalar meson spectrum

- $16^{3}, 20^{3}$ Iattice (about 2-2.5 fm), $m_{\pi} \approx 440 \mathrm{MeV}$ [arXiv:0909.0200, arXiv:1004.4930]

Particle(s) in a box

- Spatial lattice of extent L with periodic boundary conditions
- Allowed momenta are quantized: $p=\frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)$ with $n_{i} \in\{0,1,2, \ldots L-1\}$
- Energy spectrum is a set of discrete levels, classified by p : Allowed energies of a particle of mass m

$$
E=\sqrt{m^{2}+\left(\frac{2 \pi}{L}\right)^{2} N^{2}} \quad \text { with } N^{2}=n_{x}^{2}+n_{y}^{2}+n_{z}^{2}
$$

- Can make states with zero total momentum from pairs of hadrons with momenta $p,-p$.
- "Density of states" increases with energy since there are more ways to make a particular value of N^{2} e.g. $\{3,0,0\}$ and $\{2,2,1\} \rightarrow N^{2}=9$

Avoided level crossings

- Consider a toy model with two states (a resonance and a two-particle decay mode) in a box of side-length L
- Write a mixing hamiltonian:

$$
H=\left(\begin{array}{cc}
m & g \\
g & \frac{4 \pi}{L}
\end{array}\right)
$$

- Now the energy eigenvalues of this hamiltonian are given by

$$
E_{ \pm}=\frac{\left(m+\frac{4 \pi}{L}\right) \pm \sqrt{\left(m-\frac{4 \pi}{L}\right)^{2}+4 g^{2}}}{2}
$$

Avoided level crossings

Avoided level crossings

- Ground-state smoothly changes from resonance to two-particle state
- Need a large box. This example, levels cross at $m L=4 \pi \approx 12.6$
- Example: $m=1 \mathrm{GeV}$ state, decaying to two massless pions - avoided level crossing is at $L=2.5 \mathrm{fm}$.
- If the decay product pions have $m_{\pi}=300 \mathrm{MeV}$, this increases to $L=3.1 \mathrm{fm}$

Lüscher's method

- Relates the spectrum in a finite box to the scattering phase shift (and so resonance properties)

Lüscher's formula

$$
\begin{gathered}
\delta(p)=-\phi(\kappa)+\pi n \\
\tan \phi(\kappa)=\frac{\pi^{3 / 2} \kappa}{Z_{00}\left(1 ; \kappa^{2}\right)} \\
\kappa=\frac{p L}{2 \pi}
\end{gathered}
$$

- p_{n} is defined for level n with energy E_{n} from the dispersion relation:

$$
E_{n}=2 \sqrt{m^{2}+p_{n}^{2}}
$$

Lüscher's method

- Z_{00} is a generalised Zeta function:

$$
Z_{j s}\left(1, q^{2}\right)=\sum_{n \in Z^{3}} \frac{r^{j} Y_{j s}(\theta, \phi)}{\left(n^{2}-q^{2}\right)^{s}}
$$

[Commun.Math.Phys.105:153-188,1986.]

- With the phase shift, and for a well-defined resonance, can fit a Breit-Wigner to extract the resonance width and mass.

$$
\delta(p) \approx \tan ^{-1}\left(\frac{4 p^{2}+4 m_{\pi}^{2}-m_{\sigma}^{2}}{m_{\sigma}\lceil\sigma}\right)
$$

Schrödinger equation

Exercise: find the phase shift for a 1-d potential

$$
V(x)=V_{0} \delta(x-a)+V_{0} \delta(x+a)
$$

- Now compute the spectrum in a finite box and use Lüscher's method to compare the two

Test: O(4) Sigma model

Spectrum of $O(4)$ model in broken phase

Phase shift inferred from Lüscher's method

$\mathrm{I}=2 \pi \pi$ scattering

Resolve shifts in masses away from non-interacting values

$\mathrm{I}=2 \pi \pi$ scattering

- Non-resonant scattering in S-wave - compares well with experimental data

Group theory of two particles in a box

- Consider two identical particles, with momentum p and $-p$ (so zero total momentum).
- $\Omega(p)$, set of all momentum directions related by rotations in O_{h}
- Can make a set of operators, $\{\phi(p)\}$ from Ω and these form a (reducible) representation of O_{h}.
- Example: $\Phi=\{\phi(1,0,0), \phi(0,1,0), \phi(0,0,1)\}$ contains the A_{1} and E irreps
- Different particles: $+p$ and $-p$ are not equivalent

p	irreducible content
$(0,0,0)$	A_{1}^{g}
$(1,0,0)$	$A_{1}^{g} \oplus E^{g}$
$(1,1,0)$	$A_{1}^{g} \oplus E^{g} \oplus T_{2}^{g}$
$(1,1,1)$	$A_{1}^{g} \oplus T_{2}^{g}$

- More complicated if mesons have internal spin

Multi-meson states in QCD

- Multi-hadron states not seen in this calculation

The inelastic threshold

- Lüscher's method is based on elastic scattering.
- Since m_{π} is small, most resonances are above this threshold
- Not clear how to proceed - perhaps a histogram approach will help us gain some expertise
- It will be crucial to ensure we have a comprehensive basis of operators that create multi-hadron states.

Summary

- The lattice provides a robust framework for investigating the hadron spectrum. New methods to improve precision continue to develop.
- Computations of the hadron masses is an important check for many aspects of lattice QCD. Universality seems to work!
- Are we near the $m_{q} \rightarrow 0, V \rightarrow \infty, a \rightarrow 0$ limit?
- Many open questions in hadron spectroscopy:
- Are there intrinsic excitations of gluons inside light hadrons?
- What are the states above the open-charm threshold?
- Can precision spectroscopy help us to understand what degrees of freedom are important in confined systems?
- We need a lot more expertise in scattering measurements

