The hadron spectrum on the lattice

Mike Peardon
School of Mathematics, Trinity College Dublin, Ireland

Asian School on LQCD, Mumbai, 17th March 2011

Beannachtaí na Féile Pádraig oraibh

The PDG view

What are these states? $\bar{q}q$ mesons?

Isoscalar meson spectrum

• 16³, 20³ lattice (about 2-2.5 fm), $m_{\pi} \approx 440$ MeV

[arXiv:0909.0200, arXiv:1004.4930]

Particle(s) in a box

- Spatial lattice of extent L with periodic boundary conditions
- Allowed momenta are quantized: $p = \frac{2\pi}{L}(n_x, n_y, n_z)$ with $n_i \in \{0, 1, 2, ..., L-1\}$
- Energy spectrum is a set of discrete levels, classified by p: Allowed energies of a particle of mass m

$$E = \sqrt{m^2 + \left(\frac{2\pi}{L}\right)^2 N^2}$$
 with $N^2 = n_x^2 + n_y^2 + n_z^2$

- Can make states with zero total momentum from pairs of hadrons with momenta p, -p.
- "Density of states" increases with energy since there are more ways to make a particular value of N² e.g. {3,0,0} and {2,2,1} → N² = 9

Avoided level crossings

- Consider a toy model with two states (a resonance and a two-particle decay mode) in a box of side-length L
- Write a mixing hamiltonian:

$$H = \left(\begin{array}{cc} m & g \\ g & \frac{4\pi}{L} \end{array}\right)$$

Now the energy eigenvalues of this hamiltonian are given by

$$E_{\pm} = \frac{(m + \frac{4\pi}{L}) \pm \sqrt{(m - \frac{4\pi}{L})^2 + 4g^2}}{2}$$

Avoided level crossings

Avoided level crossings

- Ground-state smoothly changes from resonance to two-particle state
- Need a large box. This example, levels cross at $mL = 4\pi \approx 12.6$
- Example: m = 1 GeV state, decaying to two massless pions - avoided level crossing is at L = 2.5fm.
- If the decay product pions have $m_{\pi} = 300$ MeV, this increases to L = 3.1fm

Lüscher's method

 Relates the spectrum in a finite box to the scattering phase shift (and so resonance properties)

Lüscher's formula

$$\delta(p) = -\phi(\kappa) + \pi n$$
 $an \phi(\kappa) = rac{\pi^{3/2} \kappa}{Z_{00}(1; \kappa^2)}$ $\kappa = rac{pL}{2\pi}$

• p_n is defined for level n with energy E_n from the dispersion relation:

$$E_n = 2\sqrt{m^2 + p_n^2}$$

Lüscher's method

Z₀₀ is a generalised Zeta function:

$$Z_{js}(1, q^2) = \sum_{n \in \mathbb{Z}^3} \frac{r^j Y_{js}(\theta, \phi)}{(n^2 - q^2)^s}$$

[Commun.Math.Phys.105:153-188,1986.]

 With the phase shift, and for a well-defined resonance, can fit a Breit-Wigner to extract the resonance width and mass.

$$\delta(p) \approx \tan^{-1} \left(\frac{4p^2 + 4m_{\pi}^2 - m_{\sigma}^2}{m_{\sigma} \Gamma \sigma} \right)$$

Schrödinger equation

Exercise: find the phase shift for a 1-d potential

$$V(x) = V_0 \delta(x - a) + V_0 \delta(x + a)$$

 Now compute the spectrum in a finite box and use Lüscher's method to compare the two

Test: O(4) Sigma model

Spectrum of O(4) model in broken phase

Phase shift inferred from Lüscher's method

$I=2 \pi\pi$ scattering

Resolve shifts in masses away from non-interacting values

$I=2 \pi\pi$ scattering

Non-resonant scattering in S-wave - compares well with experimental data

Group theory of two particles in a box

- Consider two identical particles, with momentum p and -p (so zero total momentum).
- $\Omega(p)$, set of all momentum directions related by rotations in O_b
- Can make a set of operators, $\{\phi(p)\}$ from Ω and these form a (reducible) representation of O_h .
- Example: $\Phi = {\phi(1, 0, 0), \phi(0, 1, 0), \phi(0, 0, 1)}$ contains the A_1 and E irreps
- Different particles: +p and -p are not equivalent

p	irreducible content
(0,0,0)	A_1^g
(1,0,0)	$A_1^g \oplus E^g$
(1,1,0)	$A_1^g \oplus E^g \oplus T_2^g$
(1,1,1)	$A_1^g \oplus T_2^g$

More complicated if mesons have internal spin

Multi-meson states in QCD

Multi-hadron states not seen in this calculation

The inelastic threshold

- Lüscher's method is based on elastic scattering.
- Since m_{π} is small, most resonances are above this threshold
- Not clear how to proceed perhaps a histogram approach will help us gain some expertise
- It will be crucial to ensure we have a comprehensive basis of operators that create multi-hadron states.

Summary

- The lattice provides a robust framework for investigating the hadron spectrum. New methods to improve precision continue to develop.
- Computations of the hadron masses is an important check for many aspects of lattice QCD. Universality seems to work!
- Are we near the $m_q \to 0$, $V \to \infty$, $a \to 0$ limit?
- Many open questions in hadron spectroscopy:
 - Are there intrinsic excitations of gluons inside light hadrons?
 - What are the states above the open-charm threshold?
 - Can precision spectroscopy help us to understand what degrees of freedom are important in confined systems?
- We need a lot more expertise in scattering measurements