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The PDG view

What are these states? q̄q mesons?



Isoscalar meson spectrum
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� 163,203 lattice (about 2-2.5 fm), mπ ≈ 440 MeV

[arXiv:0909.0200, arXiv:1004.4930]



Particle(s) in a box

� Spatial lattice of extent L with periodic boundary
conditions

� Allowed momenta are quantized: p = 2π
L (nx, ny, nz)

with ni ∈ {0,1,2, . . . L− 1}
� Energy spectrum is a set of discrete levels,

classified by p: Allowed energies of a particle of
mass m

E =

s

m2 +

�

2π

L

�2

N2 with N2 = n2
x

+ n2
y

+ n2
z

� Can make states with zero total momentum from
pairs of hadrons with momenta p,−p.

� “Density of states” increases with energy since
there are more ways to make a particular value of
N2 e.g. {3,0,0} and {2,2,1}→ N2 = 9



Avoided level crossings

� Consider a toy model with two states (a resonance
and a two-particle decay mode) in a box of
side-length L

� Write a mixing hamiltonian:

H =

�

m g

g 4π
L

�

� Now the energy eigenvalues of this hamiltonian are
given by

E± =
(m+ 4π

L )±
Æ

(m− 4π
L )2 + 4g2

2



Avoided level crossings
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Avoided level crossings

� Ground-state smoothly changes from resonance
to two-particle state

� Need a large box. This example, levels cross at
mL = 4π ≈ 12.6

� Example: m = 1 GeV state, decaying to two
massless pions - avoided level crossing is at
L = 2.5fm.

� If the decay product pions have mπ = 300 MeV, this
increases to L = 3.1fm



Lüscher’s method

� Relates the spectrum in a finite box to the
scattering phase shift (and so resonance properties)

Lüscher’s formula

δ(p) = −ϕ(κ) + πn

tanϕ(κ) =
π3/2κ

Z00(1;κ2)

κ =
pL

2π

� pn is defined for level n with energy En from the
dispersion relation:

En = 2
Æ

m2 + p2
n



Lüscher’s method

� Z00 is a generalised Zeta function:

Zjs(1, q2) =
∑

n∈Z3

rjYjs(θ,ϕ)

(n2 − q2)s

[Commun.Math.Phys.105:153-188,1986.]

� With the phase shift, and for a well-defined
resonance, can fit a Breit-Wigner to extract the
resonance width and mass.

δ(p) ≈ tan−1

 

4p2 + 4m2
π
−m2

σ

mσΓσ

!



Schrödinger equation

Exercise: find the phase shift for a 1-d potential

V(x) = V0δ(x− a) +V0δ(x+ a)

� Now compute the spectrum in a finite box and use
Lüscher’s method to compare the two

L

E
n



Test: O(4) Sigma model
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I=2 ππ scattering
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I=2 ππ scattering
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� Non-resonant scattering in S-wave - compares well
with experimental data



Group theory of two particles in a box

� Consider two identical particles, with momentum p
and −p (so zero total momentum).

� Ω(p), set of all momentum directions related by
rotations in Oh

� Can make a set of operators, {ϕ(p)} from Ω and
these form a (reducible) representation of Oh.

� Example: Φ = {ϕ(1,0,0), ϕ(0,1,0), ϕ(0,0,1)}
contains the A1 and E irreps

� Different particles: +p and −p are not equivalent

p irreducible content
(0,0,0) A

g
1

(1,0,0) A
g
1 ⊕ Eg

(1,1,0) A
g
1 ⊕ Eg ⊕ T

g
2

(1,1,1) A
g
1 ⊕ T

g
2

� More complicated if mesons have internal spin



Multi-meson states in QCD
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� Multi-hadron states not seen in this calculation



The inelastic threshold

� Lüscher’s method is based on elastic scattering.
� Since mπ is small, most resonances are above this

threshold
� Not clear how to proceed - perhaps a histogram

approach will help us gain some expertise
� It will be crucial to ensure we have a

comprehensive basis of operators that create
multi-hadron states.



Summary

� The lattice provides a robust framework for
investigating the hadron spectrum. New methods
to improve precision continue to develop.

� Computations of the hadron masses is an important
check for many aspects of lattice QCD. Universality
seems to work!

� Are we near the mq→ 0, V →∞, a→ 0 limit?
� Many open questions in hadron spectroscopy:

� Are there intrinsic excitations of gluons inside
light hadrons?

� What are the states above the open-charm
threshold?

� Can precision spectroscopy help us to understand
what degrees of freedom are important in
confined systems?

� We need a lot more expertise in scattering
measurements


