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A model of a library

n books on a shelf

B1 B2 · · · Bn

The probability of choosing book Bi is xi .

Once the book is chosen, it is moved to the back.

B1 B2 · · · Bi · · · Bn → B1 B2 · · · Bn Bi with probability xi .
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A Markov chain on permutations

Let σ ∈ Sn be a permutation.

Steady state π: (Tsetlin ’63, Hendricks ’72)

π(σ) =
n∏

i=1

xσi
xσ1 + · · ·+ xσi

.

A derangement is a permutation with no fixed points.

dm be the number of derangements in Sm.

Let Tn be the Markov matrix. Then (Phatarfod ’91)

det(λI − Tn) =
∏

S⊂[n]

(λ+ xS)d|S|

where xS =
∑

i∈S
xi .
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Example: n = 3
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Example: n = 3

M3 =




∗ x3 0 0 x3 0
x2 ∗ x2 0 0 0
0 0 ∗ x3 0 x3

x1 0 x1 ∗ 0 0
0 0 0 x2 ∗ x2

0 x1 0 0 x1 ∗







123
132
213
231
312
321




π(231) =
x3x1

(x2 + x3)(x1 + x2 + x3)

Eigenvalues: 0, −x1 − x2, −x1 − x3, −x2 − x3 and
−x1 − x2 − x3 twice.
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Out of equilibrium behaviour

The total variation distance between two probability
distributions P,Q on a finite set Ω is

||P − Q||TV = max
A⊂Ω
|P(A)− Q(A)|.

Let π0 be the starting distribution. The mixing time is the
smallest t such that

||Mtπ0 − π||TV ≤
e−2

2
.

For the case of equal weights xi = 1/n, the mixing time is
n log n + 2n (Diaconis, ’93).

Exact formulas in the general case of going from permutation
σ to τ in k steps (Fill, ’96).
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Generalizations

Umpteen generalizations!

Different moves, more shelves.

Infinite libraries.

Hyperplane arrangements (Bidigare, Hanlon, Rockmore ’99)

Left regular bands (Brown ’00)

Linear extensions of posets (A., Klee, Schilling ’14)
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Underlying Philosophy

Equilibrium/reversible Markov processes satisfy detailed
balance.

If the process has a generator g , then (morally) so is g−1.

The set of generators of the process form a group.

The set of generators of a nonequilibrium/reversible Markov
process will in general form a monoid.

A monoidM is a set with an associative product and an
identity.
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Generators

Each generator corresponds to a fixed action.

For example, in an 1D exclusion process, gi could correspond
to hopping of a particle from site i to i + 1.

By construction, generators will be column-monomial
matrices, i.e., matrices of 0’s and 1’s with a single 1 per
column.
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Bad example
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Nice example

0 0 0
1 1 1
0 0 0

0 0 0
1 0 0
0 1 1

1 0 0
0 1 0
0 0 1

1 1 1
0 0 0
0 0 0

0 0 0
1 1 0
0 0 1

0 0 0
0 0 0
1 1 1

3 2 12

3 2 1

2 1

2

1

3

3

3 2 1

3

1
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Order Relations

A partial order is a binary relation on a set which is reflexive,
antisymmetric and transitive.

A preorder is a binary relation on a set which is reflexive and
transitive.

Natural preorders on M:

x ≤R y if y = xu for some u ∈M
x ≤L y if y = ux for some u ∈M

Equivalence classes on M:

xRy if yM = xM
xLy if My =Mx

M is R-trivial (L-trivial) if all R-classes (L-classes) are
singletons. Equivalently, if the preorders are partial orders.
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Monoid Classes

OR(Poset)

biHecke Monoid

0-Hecke Monoid

Non abelian
Groups

Unitriangular 
Boolean Matrices

Solomon-Tits 
Monoid

Inverse
Monoids

Semilattices

Monoids

J-Trivial

R-Trivial

L-Trivial

Aperiodic

Ordered

Basic

Left Reg. Bands

Trivial Monoid

M1 submonoid of 
biHecke Monoid

Abelian Groups

Bands

Many Rees Monoids
O(Poset)

R(Poset)

Example 2.4
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Usefulness of R-trivial Monoids

Solvable models with quenched disorder.

Explicit formula for the steady state.

Formulas for absorption times and mixing times.

Guarantee that all eigenvalues are real.

Eigenvalues are linear in the generator rates.

Irreversible Markov processes
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An anchored interface model

(Derrida, Lebowitz, Speer, Spohn ’91): model of ± spins on
Z+

Each ± exchanges with the first ∓ on its right with rate λ±.

For example,

+−−−+ +−+ + + + −→ +−+−−+−+ + + +
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A simplification

(Lebowitz, Neuhauser, Ravishankar ’96): simpler variant

Rather than allowing all spins to exchange, only allow the
leftmost spin in a block to exchange with the first opposite
spin to its right.

+−−−+ +−+ + + + −→ ++−−−+−+ + + +

Further, the first spin flips independently with rate α.
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Finite exclusion process

Replace ± by 1, 0 resp.

Exclusion process on the closed lattice with n0 0’s and n1 1’s.

0 . . . 0︸ ︷︷ ︸
k

1→ 1 0 . . . 0︸ ︷︷ ︸
k

, with rate α,

1 . . . 1︸ ︷︷ ︸
k

0→ 0 1 . . . 1︸ ︷︷ ︸
k

, with rate β.
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Example: n0 = n1 = 2

Configurations: {0011, 0101, 0110, 1001, 1010, 1100}.
Markov matrix:



−α β β 0 0 0

0 −β − 2α 0 β 0 0

0 α −β − α 0 β β

α α 0 −β − α β 0

0 0 α 0 −2β − α 0

0 0 0 α α −β




Stationary distribution: Forward

(
β2

(β + α)2
,

β3α

(β + α)4
,
α2β (2β + α)

(β + α)4
,
β2α (β + 2α)

(β + α)4
,

α3β

(β + α)4
,

α2

(β + α)2

)
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Steady state properties

Not a product measure

If k ≤ n1, then

〈η1 . . . ηk〉 =
αk

(α + β)k
.

If k ≤ min(n0, n1), then the density

ρk = 〈ηk〉 =
α

α + β
.

Many other nice properties (A., 2015)
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Tsetlin library with multiple copies of books

We have m books – {b1, . . . , bm}.
A fixed number ni of books bi .

Total number of books is
∑m

i=1 ni = L.

Configurations are words σ = (σ1, . . . , σL).

We will describe a multiparameter process
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Dynamics

Suppose the current state is σ.

Choose a book b and an index j (1 ≤ j ≤ #b’s) with rate xb,j

If j = 1, move the first copy of b to the front.

Otherwise, move the j th copy of b next to the (j − 1)st copy
of b.

Example: m = 4, n = (1, 4, 2, 2). All moves of book b in

cbacbbddb −→





bcacbbddb with rate xb,1

cbbacbddb with rate xb,2

cbacbbddb with rate xb,3

cbacbbbdd with rate xb,4
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Complete Example: m = 2 with 2 1’s and 2 2’s

Configurations: {1122, 1212, 1221, 2112, 2121, 2211}.
Markov matrix:




∗ x1,2 x1,2 0 0 0

0 ∗ 0 x1,1 0 0

0 x2,2 ∗ 0 x1,1 x1,1

x2,1 x2,1 0 ∗ x1,2 0

0 0 x2,1 0 ∗ 0

0 0 0 x2,2 x2,2 ∗




Compare with the Toom model example
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Complete Example: m = 2 with 2 1’s and 2 2’s

The stationary distribution is complicated.

But the eigenvalues are exceptionally simple

(0, −x1,1 − x2,1, −x2,1 − x1,2, −x2,2 − x1,1,

−x1,2 − x2,2, −x2,1 − x2,2 − x1,2 − x1,1)

Of course, this is also the case for the Toom model

(
0, (−α− β)4, −2α− 2β

)
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Cayley graph




1 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 1







0 0 0 0
0 0 0 0
1 1 1 1
0 0 0 0







0 0 0 0
1 1 1 1
0 0 0 0
0 0 0 0







1 0 0 0
0 1 1 1
0 0 0 0
0 0 0 0







0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 1







1 1 0 0
0 0 0 0
0 0 0 0
0 0 1 1







1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0







1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0







0 0 0 0
0 0 0 0
1 1 0 0
0 0 1 1







0 0 0 0
0 0 0 0
1 1 1 0
0 0 0 1




(0, 3) (1, 3)

(0, 2) (0, 3) (1, 2) (1, 3)

(0, 2) (0, 3) (1, 3)

(1, 1)

(0, 1)

(0, 2) (1, 2)

(0, 2)

(1, 2)

(1, 1)

(0, 2) (0, 3) (1, 2) (1, 3)

(0, 1) (0, 3) (1, 2) (1, 3)

(1, 1)

(0, 2)

(0, 3) (1, 2) (1, 3)

(1, 1)

(0, 1)

(1, 2)

(0, 1)

(0, 1) (0, 2) (0, 3) (1, 1) (1, 2) (1, 3)

(0, 1)

(0, 1)

(1, 1)

(0, 1)

(0, 1)

(0, 1) (0, 2) (0, 3) (1, 1) (1, 2) (1, 3) (0, 1) (0, 2) (0, 3) (1, 1) (1, 2) (1, 3)(0, 1) (0, 2) (0, 3) (1, 1) (1, 2) (1, 3)

(1, 1)

(1, 1)

(0, 2) (0, 3) (1, 1) (1, 3)

(0, 2) (0, 3) (1, 2) (1, 3)
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Derangements of Words

σ has content ~n = (n1, . . . , nm).

σ is a derangement if no letter in σ is in the same position as

(1, . . . , 1, 2, . . . , 2, . . . ,m, . . . ,m).

(3, 2, 1, 1) is, but (2, 1, 3, 1) is not.

Let d~n denote the number of derangements of words of
content ~n. (Even and Gillis ’76)

d~n = (−1)L
∫ ∞

0
e−x

m∏

j=1

Lnj (x)dx ,

where Ln(x) are Laguerre polynomials.
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Main Result

For Ij ⊆ [nj ] = {1, 2, . . . , nj}, let xbj ,Ij =
∑

s∈Ij xbj ,s .

Theorem (ASST 2014)

The characteristic polynomial of the Markov matrix T~n is

|λI − T~n| =
∏

I1⊆[n1],...,Im⊆[nm]


λ+

m∑

j=1

xbj ,Ij



d(|I1|,...,|Im|)

.
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Special Cases

1 Toom model: m = 2

|λI − T(n1,n2)| =
∏

I1⊆[n1],I2⊆[n2]
|I1|=|I2|

(λ+ x1,I1 + x2,I2) .

2 Toom model: m = 2, with x1,j = β and x2,j = α

|λI − T(n1,n2)| =

min(n1,n2)∏

k=0

(λ+ k(α + β))(n1
k )(n2

k )

3 Tsetlin library: ~n = (1, . . . , 1) with xi ,1 = xi

det(Tn − λI ) =
∏

S⊂[n]

(λ+ xS)d|S|
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Steady state properties

For k ≤ np, the joint correlation of p’th species is

〈η(p)
1 . . . η

(p)
k 〉 =

k∏

i=1

xp,i
x1,1 + · · · xp−1,1 + xp,i + xp+1,1 + · · ·+ xm,1

.

For xp,i = yp∀i ∈ [np] and k ≤ min(n1, . . . , nm),

〈η(p)
k 〉 =

yp
y1 + · · · ym
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Abelian Sandpile Model

Prototypical model for the phenomenon of self-organized
criticality, like a heap of sand.

Data: A graph, G = (V ,E ). A subset S of V , of sinks.

Allowed configurations: Maps φ : V \ S → Z≥0, such that
φ(v) < deg(v), interpreted as the number of grains of sand
sitting at vertex v .

Move: Pick a random v , and add one grain to it. If
φ(v) + 1 ≥ deg(v), topple, giving one grain each to its
neighbors, and continue. A grain given to a sink is considered
lost.
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Arborescences or upward rooted trees

Arborescence T : exactly one directed path from any vertex to
the root r

Set of leaves L: vertices with in-degree zero.

h j k

d f g

a b c

r

Figure: An arborescence with leaves at a, g, h, j, k.
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Configurations

Threshold Tv : maximal number of grains at vertex v ∈ V .

Configuration space:

Ω(T ) = {(tv )v∈V | 0 ≤ tv ≤ Tv}.

Variable tv : the number of grains of sand at v ∈ V .

0 1 2

1 0 0

1 2 1

1
Figure: A configuration with all thresholds 2.
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Sandpile dynamics

We define a Markov chain on these arborescences.

Sand grains enter at the leaves, ...

..., topple along the vertices, ...

..., and exit at the root.

Unlike in the (usual) abelian sandpile model, sand grains only
enter at leaves.

This a discrete-time process, unlike the other examples.
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Source Operator

Path to root: vertex v ∈ V

v↓ = (v = v0 → v1 → · · · → va = r).

Source operator: leaf ` ∈ L

σ` : Ω(T )→ Ω(T )

Follow the path `↓ from ` to the root r

Add a grain to the first vertex along the way that has not yet
reached its threshold, if such a vertex exists.

If no such vertex exists, then the grain is interpreted to have
left the tree at the root and σ`(t) = t.
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σj :

0 2 2

1 1 2

1 1 2

2

7→

0 2 2

2 1 2

1 1 2

2
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σg :

0 2 2

1 1 2

1 1 2

2

7→

0 2 2

1 1 2

1 1 2

2
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Topple operators

Definition (Landslide sandpile model)

τv : Ω(T )→ Ω(T )

τv moves all grains from v ∈ V to the first available sites along v↓.
Grains remaining after the root exit the system.

Remark

If tv = 0 (no grain at site v), then θv (t) = τv (t) = t.
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Toppling in the Landslide sandpile model

τk :

0 2 2

1 1 2

1 1 2

2

7→

0 2 0

2 2 2

1 2 2

2
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Toppling in the Landslide sandpile model

τg :

0 2 2

1 1 2

1 1 2

2

7→

0 2 1

2 2 0

1 1 2

2
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Generators

Probabilities: {xv , y` | v ∈ V , ` ∈ L}
xv : probability of choosing the topple operator θv (resp. τv )
y`: probability of choosing the source operator σ`

We assume that
1

xv , y` > 0,
∑

v∈V

xv +
∑

`∈L

y` = 1
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Markov chains on a line with thresholds 1
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Cayley Graph
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Landslide sandpile model: Stationary distribution

µv (h) :=





Y h
v xv

(Yv + xv )h+1 if h < Tv

Y Tv
v

(Yv + xv )Tv
if h = Tv

Theorem (ASST 2013)

Let Tv = 1 for all v ∈ V , v 6= r and Tr = m for some positive
integer m. Then the stationary distribution of the Landslide
sandpile model defined on Gτ is given by the product measure

P(t) =
∏

v∈V
µv (tv ).
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Landslide sandpile model: Spectrum

For subsets S ⊆ V and `↓ the set of vertices on path from ` to r:

yS =
∑

`∈L,`↓⊆S

y` and xS =
∑

v∈S
xv .

Transition matrix for Landslide sandpile model Mτ

Theorem (ASST 2013)

The characteristic polynomial of Mτ is given by

det(Mτ − λI ) =
∏

S⊆V
(λ− (yS + xS))TSc ,

where Sc = V \ S and TS =
∏

v∈S Tv .

Eigenvalues: yS + xS
Multiplicities: TSc
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Landslide sandpile model: Mixing time

Define p := min{y` | ` ∈ L} and nT :=
∑

v∈V Tv .

Theorem (ASST 2013)

The rate of convergence is bounded by

||Mk
τ π0 − π||TV ≤ exp

(
−(kp − (nT − 1))2

2kp

)

as long as k ≥ (nT − 1)/p.

Mixing time: Mixing time is at most 2nT
p .



Tsetlin Library R-trivial Processes Toom-Tsetlin Model Nonabelian sandpile model

Other Models

1D Asymmetric annihilation process (A., K. Mallick ’10)

10 −→01 with rate αi

11 −→00 with rate αi

1D Asymmetric Glauber model (A. ’10)

+− −→+ +,−+ −→ −− with rate αi

++ −→+−,−− −→ −+ with rate βi

de Bruijn process (A., V. Strehl ’11)

w1 · · ·wL −→ w2 · · ·wLa with rate αa,i
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Proof ideas

Construct the ≤R preorder on M and show that it is a partial
order

Use an explicit eigenvalue formula for R-trivial monoids in
general.

Use the structure theory of R-trivial monoids to get
eigenvalues and their multiplicities.
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Thank you!
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