R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

R-trivial Markov Processes

Arvind Ayyer

J. Phys.: Conf. Ser. Vol., 638 (2015) 012005, 9pp

(joint work with A. Schilling, B. Steinberg and N. Thiéry) Int. J. of Algebra and Computation, **25** Issue 1 no. 2 (2015), 169–231. Communications in Mathematical Physics, **335** no. 3 (2015), 1065–1098.

Indian Institute of Science Bangalore

November 9, 2015

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

*ロ * * ● * * ● * * ● * ● * ● * ●

Outline

- Isetlin Library
- R-trivial Processes
- Toom-Tsetlin model
- Oirected nonabelian sandpile model

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

A model of a library

• *n* books on a shelf

$$B_1 B_2 \cdots B_n$$

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

A model of a library

• n books on a shelf

$$B_1 \mid B_2 \cdots \mid B_n$$

- The probability of choosing book B_i is x_i .
- Once the book is chosen, it is moved to the back.

$$B_1 \ B_2 \cdots B_i \cdots B_n \to B_1 \ B_2 \cdots B_n \ B_i$$
 with probability x_i .

Tsetlin Library 0●0000	0000000	0000000000000	Nonabelian sandpile model
	- 1 · · · ·		

A Markov chain on permutations

• Let $\sigma \in S_n$ be a permutation.

• Steady state π : (Tsetlin '63, Hendricks '72)

$$\pi(\sigma) = \prod_{i=1}^{n} \frac{x_{\sigma_i}}{x_{\sigma_1} + \dots + x_{\sigma_i}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Tsetlin Library o●oooo	0000000	0000000000000	000000000000000000000000000000000000000
A K A I	- 1 · ·	3. 1.4	

A Markov chain on permutations

• Let $\sigma \in S_n$ be a permutation.

• Steady state π : (Tsetlin '63, Hendricks '72)

$$\pi(\sigma) = \prod_{i=1}^{n} \frac{x_{\sigma_i}}{x_{\sigma_1} + \dots + x_{\sigma_i}}$$

- A derangement is a permutation with no fixed points.
- d_m be the number of derangements in S_m .
- Let T_n be the Markov matrix. Then (Phatarfod '91)

$$\det(\lambda I - \mathcal{T}_n) = \prod_{S \subset [n]} (\lambda + x_S)^{d_{|S|}}$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

where
$$x_S = \sum_{i \in S} x_i$$
.

Tsetlin Librar	y
000000	

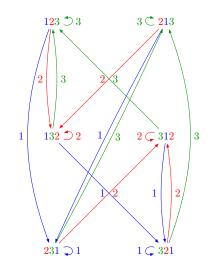
R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example: n = 3



Tsetlin	Library
00000	0

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

Example: n = 3

۲

$$M_{3} = \begin{pmatrix} * & x_{3} & 0 & 0 & x_{3} & 0 \\ x_{2} & * & x_{2} & 0 & 0 & 0 \\ 0 & 0 & * & x_{3} & 0 & x_{3} \\ x_{1} & 0 & x_{1} & * & 0 & 0 \\ 0 & 0 & 0 & x_{2} & * & x_{2} \\ 0 & x_{1} & 0 & 0 & x_{1} & * \end{pmatrix} \begin{bmatrix} 123 \\ 132 \\ 213 \\ 231 \\ 312 \\ 321 \end{bmatrix}$$

۲

$$\pi(231) = \frac{x_3 x_1}{(x_2 + x_3)(x_1 + x_2 + x_3)}$$

• Eigenvalues: 0, $-x_1 - x_2$, $-x_1 - x_3$, $-x_2 - x_3$ and $-x_1 - x_2 - x_3$ twice.

Tsetlin Library 0000●0	R-trivial Processes 0000000	Toom-Tsetlin Model	Nonabelian sandpile model
Out of equilib	prium behaviour		

• The **total variation distance** between two probability distributions *P*, *Q* on a finite set Ω is

$$||P-Q||_{\mathsf{TV}} = \max_{A \subset \Omega} |P(A) - Q(A)|.$$

• Let π_0 be the starting distribution. The **mixing time** is the smallest *t* such that

$$||M_t \pi_0 - \pi||_{\mathsf{TV}} \le \frac{e^{-2}}{2}.$$

- For the case of equal weights $x_i = 1/n$, the mixing time is $n \log n + 2n$ (Diaconis, '93).
- Exact formulas in the general case of going from permutation σ to τ in k steps (Fill, '96).

(日) (日) (日) (日) (日) (日) (日) (日) (日)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Generalizations

- Umpteen generalizations!
- Different moves, more shelves.
- Infinite libraries.
- Hyperplane arrangements (Bidigare, Hanlon, Rockmore '99)
- Left regular bands (Brown '00)
- Linear extensions of posets (A., Klee, Schilling '14)

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

*ロ * * ● * * ● * * ● * ● * ● * ●

Underlying Philosophy

- Equilibrium/reversible Markov processes satisfy **detailed balance**.
- If the process has a generator g, then (morally) so is g^{-1} .

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

Underlying Philosophy

- Equilibrium/reversible Markov processes satisfy **detailed balance**.
- If the process has a generator g, then (morally) so is g^{-1} .
- The set of generators of the process form a group.
- The set of generators of a nonequilibrium/reversible Markov process will in general form a **monoid**.
- \bullet A monoid ${\mathcal M}$ is a set with an associative product and an identity.

Generators

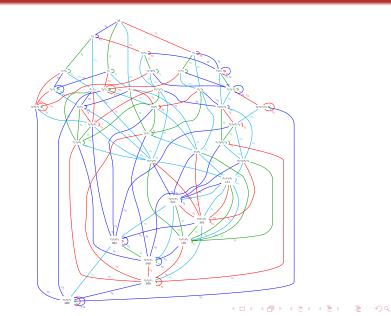
- Each generator corresponds to a fixed action.
- For example, in an 1D exclusion process, g_i could correspond to hopping of a particle from site *i* to *i* + 1.
- By construction, generators will be **column-monomial matrices**, i.e., matrices of 0's and 1's with a single 1 per column.

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

Bad example



R-trivial Processes

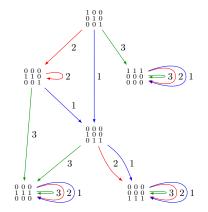
Toom-Tsetlin Model

Nonabelian sandpile model

・ロト ・四ト ・ヨト ・ヨト

æ

Nice example



Order Dale	tions		
000000	0000000	0000000000000	000000000000000000000000000000000000000
Tsetlin Library	R-trivial Processes	Toom-Tsetlin Model	Nonabelian sandpile model

- A **partial order** is a binary relation on a set which is *reflexive*, *antisymmetric* and *transitive*.
- A **preorder** is a binary relation on a set which is *reflexive* and *transitive*.
- Natural preorders on \mathcal{M} :

$$x \leq_R y \text{ if } y = xu \text{ for some } u \in \mathcal{M}$$
$$x \leq_L y \text{ if } y = ux \text{ for some } u \in \mathcal{M}$$

• Equivalence classes on \mathcal{M} :

$$xRy \text{ if } y\mathcal{M} = x\mathcal{M}$$
$$xLy \text{ if } \mathcal{M}y = \mathcal{M}x$$

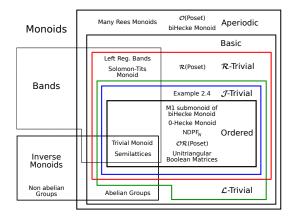
M is *R*-trivial (*L*-trivial) if all *R*-classes (*L*-classes) are singletons. Equivalently, if the preorders are partial orders.

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

Monoid Classes



R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Usefulness of R-trivial Monoids

- Solvable models with quenched disorder.
- Explicit formula for the steady state.
- Formulas for absorption times and mixing times.
- Guarantee that all eigenvalues are real.
- Eigenvalues are linear in the generator rates.
- Irreversible Markov processes

Tsetlin	Library

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

(日) (日) (日) (日) (日) (日) (日) (日)

An anchored interface model

- (Derrida, Lebowitz, Speer, Spohn '91): model of \pm spins on \mathbb{Z}_+
- Each \pm exchanges with the first \mp on its right with rate λ_{\pm} .
- For example,

Tsetlin	Library

(日) (日) (日) (日) (日) (日) (日) (日) (日)

A simplification

- (Lebowitz, Neuhauser, Ravishankar '96): simpler variant
- Rather than allowing all spins to exchange, only allow the leftmost spin in a block to exchange with the first opposite spin to its right.

 $+\underline{--+}+-++++ \longrightarrow +\underline{+---}+-++++$

• Further, the first spin flips independently with rate α .

Finite exclusion process

- Replace \pm by 1,0 resp.
- Exclusion process on the closed lattice with n_0 0's and n_1 1's.

$$\underbrace{\underbrace{0\ldots0}_{k}1 \to 1\underbrace{0\ldots0}_{k}, \text{ with rate } \alpha,}_{k}$$
$$\underbrace{1\ldots1}_{k}0 \to 0\underbrace{1\ldots1}_{k}, \text{ with rate } \beta.$$

Example	$n_0 = n_1 = 2$		
Tsetlin Library 000000	R-trivial Processes	Toom-Tsetlin Model 000●0000000000	Nonabelian sandpile model

- \bullet Configurations: $\{0011, 0101, 0110, 1001, 1010, 1100\}.$
- Markov matrix:

۲

$$\begin{pmatrix} -\alpha & \beta & \beta & 0 & 0 & 0 \\ 0 & -\beta - 2\alpha & 0 & \beta & 0 & 0 \\ 0 & \alpha & -\beta - \alpha & 0 & \beta & \beta \\ \alpha & \alpha & 0 & -\beta - \alpha & \beta & 0 \\ 0 & 0 & \alpha & 0 & -2\beta - \alpha & 0 \\ 0 & 0 & 0 & \alpha & \alpha & -\beta \end{pmatrix}$$

Stationary distribution: Forward
$$\frac{\beta^{3}\alpha}{\beta^{2}}, \frac{\beta^{3}\alpha}{(\beta + \alpha)^{4}}, \frac{\alpha^{2}\beta (2\beta + \alpha)}{(\beta + \alpha)^{4}}, \frac{\beta^{2}\alpha (\beta + 2\alpha)}{(\beta + \alpha)^{4}}, \frac{\alpha^{3}\beta}{(\beta + \alpha)^{4}}, \frac{\alpha^{2}\beta}{(\beta + \alpha)^{4}}, \frac{\alpha^{2}\beta}{(\beta + \alpha)^{4}}, \frac{\beta^{2}\alpha (\beta + 2\alpha)}{(\beta + \alpha)^{4}}, \frac{\alpha^{3}\beta}{(\beta + \alpha)^{4}}, \frac{\alpha^{2}\beta}{(\beta + \alpha)^$$

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

*ロ * * ● * * ● * * ● * ● * ● * ●

Steady state properties

- Not a product measure
- If $k \leq n_1$, then

$$\langle \eta_1 \dots \eta_k \rangle = \frac{\alpha^k}{(\alpha + \beta)^k}.$$

• If
$$k \leq \min(n_0, n_1)$$
, then the density

$$\rho_k = \langle \eta_k \rangle = \frac{\alpha}{\alpha + \beta}$$

• Many other nice properties (A., 2015)

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Tsetlin library with multiple copies of books

- We have m books $\{b_1, \ldots, b_m\}$.
- A fixed number n_i of books b_i .
- Total number of books is $\sum_{i=1}^{m} n_i = L$.
- Configurations are words $\sigma = (\sigma_1, \ldots, \sigma_L)$.
- We will describe a multiparameter process

Tsetlin Library	R-trivial Processes	Toom-Tsetlin Model	Nonabelian sandpile model
000000	0000000	००००००●०००००००	
Dynamics			

- Suppose the current state is σ .
- Choose a book b and an index j $(1 \le j \le \#b$'s) with rate $x_{b,j}$
- If j = 1, move the first copy of b to the front.
- Otherwise, move the j^{th} copy of b next to the $(j-1)^{st}$ copy of b.
- Example: m = 4, n = (1, 4, 2, 2). All moves of book b in

$$cbacbbddb \longrightarrow \begin{cases} \underline{bc}acbbddb & \text{with rate } x_{b,1} \\ cb\underline{bac}bddb & \text{with rate } x_{b,2} \\ cbacb\underline{b}ddb & \text{with rate } x_{b,3} \\ cbacbb\underline{b}dd & \text{with rate } x_{b,4} \end{cases}$$

Tsetlin Library	R-trivial Processes	Toom-Tsetlin Model	Nonabelian sandpile model
000000	0000000	00000000000000	
Complete E>	ample: $m=2$	with 2 1's and	2 2's

- Configurations: $\{1122, 1212, 1221, 2112, 2121, 2211\}$.
- Markov matrix:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Compare with • the Toom model example

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のくぐ

Complete Example: m = 2 with 2 1's and 2 2's

- The stationary distribution is complicated.
- But the eigenvalues are exceptionally simple

$$\begin{pmatrix} 0, & -x_{1,1} - x_{2,1}, & -x_{2,1} - x_{1,2}, & -x_{2,2} - x_{1,1}, \\ & -x_{1,2} - x_{2,2}, & -x_{2,1} - x_{2,2} - x_{1,2} - x_{1,1} \end{pmatrix}$$

• Of course, this is also the case for the Toom model

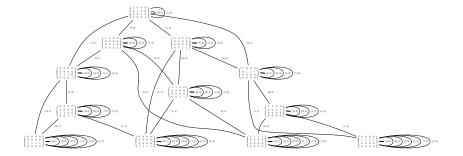
$$(0, (-\alpha - \beta)^4, -2\alpha - 2\beta)$$

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

Cayley graph



Tsetlin	Library

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Derangements of Words

- σ has content $\vec{n} = (n_1, \ldots, n_m)$.
- σ is a **derangement** if no letter in σ is in the same position as

$$(1,\ldots,1,2,\ldots,2,\ldots,m,\ldots,m).$$

- (3,2,1,1) is, but (2,1,3,1) is not.
- Let d_n denote the number of derangements of words of content n. (Even and Gillis '76)

$$d_{\vec{n}} = (-1)^L \int_0^\infty e^{-x} \prod_{j=1}^m L_{n_j}(x) \mathrm{d}x,$$

where $L_n(x)$ are Laguerre polynomials.

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Main Result

For
$$I_j \subseteq [n_j] = \{1, 2, \dots, n_j\}$$
, let $x_{b_j, I_j} = \sum_{s \in I_j} x_{b_j, s}$.

Theorem (ASST 2014)

The characteristic polynomial of the Markov matrix $T_{\vec{n}}$ is

$$|\lambda I - T_{\vec{n}}| = \prod_{l_1 \subseteq [n_1], \dots, l_m \subseteq [n_m]} \left(\lambda + \sum_{j=1}^m x_{b_j, l_j}\right)^{d(|l_1|, \dots, |l_m|)}.$$

Tsetlin Library	R-trivial Processes	Toom-Tsetlin Model	Nonabelian sandpile model
000000	0000000	000000000000000	
Special Cas	es		

• Toom model:
$$m = 2$$

$$|\lambda I - T_{(n_1,n_2)}| = \prod_{\substack{l_1 \subseteq [n_1], l_2 \subseteq [n_2] \ |l_1| = |l_2|}} (\lambda + x_{1,l_1} + x_{2,l_2}).$$

② Toom model: m = 2, with $x_{1,j} = \beta$ and $x_{2,j} = \alpha$

$$|\lambda I - T_{(n_1, n_2)}| = \prod_{k=0}^{\min(n_1, n_2)} (\lambda + k(\alpha + \beta))^{\binom{n_1}{k}\binom{n_2}{k}}$$

③ Tsetlin library: $\vec{n} = (1, ..., 1)$ with $x_{i,1} = x_i$

$$\det(T_n - \lambda I) = \prod_{S \subset [n]} (\lambda + x_S)^{d_{|S|}}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

Tsetlin	Library

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

*ロ * * ● * * ● * * ● * ● * ● * ●

Steady state properties

• For $k \leq n_p$, the joint correlation of p'th species is

$$\langle \eta_1^{(p)} \dots \eta_k^{(p)} \rangle = \prod_{i=1}^k \frac{x_{p,i}}{x_{1,1} + \dots + x_{p-1,1} + x_{p,i} + x_{p+1,1} + \dots + x_{m,1}}$$

• For $x_{p,i} = y_p \forall i \in [n_p]$ and $k \leq \min(n_1, \ldots, n_m)$,

$$\langle \eta_k^{(p)} \rangle = \frac{y_p}{y_1 + \cdots + y_m}$$

Abelian Sandpile Model

- Prototypical model for the phenomenon of self-organized criticality, like a heap of sand.
- Data: A graph, G = (V, E). A subset S of V, of sinks.
- Allowed configurations: Maps $\phi: V \setminus S \to \mathbb{Z}_{\geq 0}$, such that $\phi(v) < deg(v)$, interpreted as the number of grains of sand sitting at vertex v.
- Move: Pick a random v, and add one grain to it. If φ(v) + 1 ≥ deg(v), topple, giving one grain each to its neighbors, and continue. A grain given to a sink is considered lost.

- Arborescence \mathcal{T} : exactly one directed path from any vertex to the root r
- Set of leaves *L*: vertices with in-degree zero.

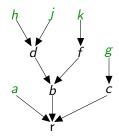


Figure: An arborescence with leaves at a, g, h, j, k.

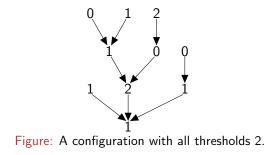
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Tsetlin Library	R-trivial Processes	Toom-Tsetlin Model	Nonabelian sandpile model			
000000	0000000	0000000000000	oo●ooooooooooooooooo			
Configurations						

- Threshold T_v : maximal number of grains at vertex $v \in V$.
- Configuration space:

$$\Omega(\mathcal{T}) = \{(t_v)_{v \in V} \mid 0 \le t_v \le T_v\}.$$

• Variable t_v : the number of grains of sand at $v \in V$.



*ロ * * ● * * ● * * ● * ● * ● * ●

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Sandpile dynamics

- We define a Markov chain on these arborescences.
- Sand grains enter at the leaves, ...

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

*ロ * * ● * * ● * * ● * ● * ● * ●

Sandpile dynamics

- We define a Markov chain on these arborescences.
- Sand grains enter at the leaves, ...
- ..., topple along the vertices, ...

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のくぐ

Sandpile dynamics

- We define a Markov chain on these arborescences.
- Sand grains enter at the leaves, ...
- ..., topple along the vertices, ...
- ..., and exit at the root.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Sandpile dynamics

- We define a Markov chain on these arborescences.
- Sand grains enter at the leaves, ...
- ..., topple along the vertices, ...
- ..., and exit at the root.
- Unlike in the (usual) abelian sandpile model, sand grains only enter at leaves.

This a discrete-time process, unlike the other examples.

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Source Operator

Path to root: vertex $v \in V$

$$v^{\downarrow} = (v = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_a = r).$$

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

Source Operator

Path to root: vertex $v \in V$

$$v^{\downarrow} = (v = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_a = r).$$

Source operator: leaf $\ell \in L$

 $\sigma_\ell \colon \Omega(\mathcal{T}) \to \Omega(\mathcal{T})$

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

Source Operator

Path to root: vertex $v \in V$

$$v^{\downarrow} = (v = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_a = r).$$

Source operator: leaf $\ell \in L$

$$\sigma_\ell \colon \Omega(\mathcal{T}) \to \Omega(\mathcal{T})$$

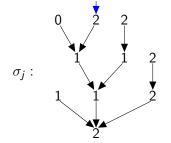
Follow the path ℓ^{\downarrow} from ℓ to the root r

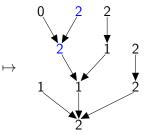
- Add a grain to the first vertex along the way that has not yet reached its threshold, if such a vertex exists.
- If no such vertex exists, then the grain is interpreted to have left the tree at the root and $\sigma_{\ell}(t) = t$.

・ロト・(四ト・(日下・(日下・(日下)

R-trivial Processes 0000000 Foom-Tsetlin Model

Nonabelian sandpile model



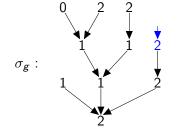


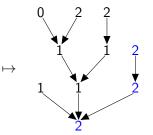
◆□> ◆□> ◆三> ◆三> ・三> のへで

R-trivial Processes 0000000 Toom-Tsetlin Model

Nonabelian sandpile model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ





R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

(日) (日) (日) (日) (日) (日) (日) (日)

Topple operators

Definition (Landslide sandpile model)

$$au_{v}: \Omega(\mathcal{T})
ightarrow \Omega(\mathcal{T})$$

 τ_v moves all grains from $v \in V$ to the first available sites along v^{\downarrow} . Grains remaining after the root exit the system.

Remark

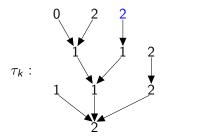
If
$$t_v = 0$$
 (no grain at site v), then $\theta_v(t) = \tau_v(t) = t$.

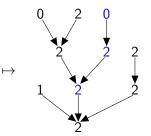
R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

Toppling in the Landslide sandpile model



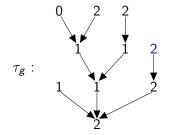


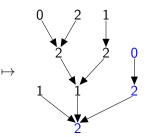
R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

Toppling in the Landslide sandpile model





▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のくぐ

Generators

- Probabilities: $\{x_v, y_\ell \mid v \in V, \ell \in L\}$
 - $\mathbf{x}_{\mathbf{v}}$: probability of choosing the topple operator $\theta_{\mathbf{v}}$ (resp. $\tau_{\mathbf{v}}$) y_{ℓ} : probability of choosing the source operator σ_{ℓ}

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のくぐ

Generators

- Probabilities: $\{x_v, y_\ell \mid v \in V, \ell \in L\}$
 - $\mathbf{x}_{\mathbf{v}}$: probability of choosing the topple operator $\theta_{\mathbf{v}}$ (resp. $\tau_{\mathbf{v}}$) y_{ℓ} : probability of choosing the source operator σ_{ℓ} We assume that

0

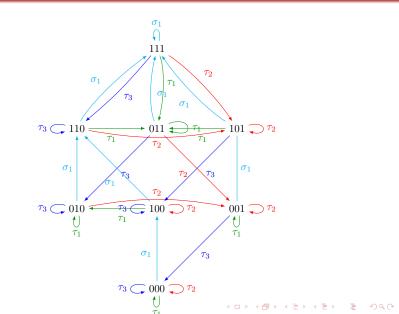
$$x_{\mathbf{v}}, y_{\ell} > 0, \quad \sum_{\mathbf{v} \in V} x_{\mathbf{v}} + \sum_{\ell \in L} y_{\ell} = 1$$

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

Markov chains on a line with thresholds 1

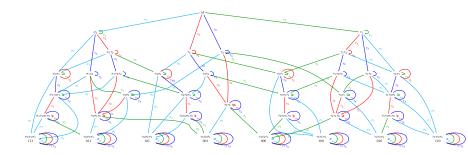


R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

Cayley Graph



◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

Landslide sandpile model: Stationary distribution

$$\mu_{v}(h) := \begin{cases} \frac{Y_{v}^{h} x_{v}}{(Y_{v} + x_{v})^{h+1}} & \text{if } h < T_{v} \\ \\ \frac{Y_{v}^{T_{v}}}{(Y_{v} + x_{v})^{T_{v}}} & \text{if } h = T_{v} \end{cases}$$

Theorem (ASST 2013)

Let $T_v = 1$ for all $v \in V$, $v \neq r$ and $T_r = m$ for some positive integer m. Then the stationary distribution of the Landslide sandpile model defined on G_{τ} is given by the product measure

$$\mathbb{P}(t) = \prod_{v \in V} \mu_v(t_v).$$

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Landslide sandpile model: Spectrum

For subsets $S \subseteq V$ and ℓ^{\downarrow} the set of vertices on path from ℓ to r:

$$y_S = \sum_{\ell \in L, \ell^{\downarrow} \subseteq S} y_\ell$$
 and $x_S = \sum_{\nu \in S} x_{\nu}.$

Transition matrix for Landslide sandpile model $M_{ au}$

Theorem (ASST 2013)

The characteristic polynomial of M_{τ} is given by

$$\det(M_{\tau} - \lambda I) = \prod_{S \subseteq V} (\lambda - (y_S + x_S))^{T_{S^c}},$$

where $S^c = V \setminus S$ and $T_S = \prod_{v \in S} T_v$.

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

Landslide sandpile model: Spectrum

For subsets $S \subseteq V$ and ℓ^{\downarrow} the set of vertices on path from ℓ to r:

$$y_S = \sum_{\ell \in L, \ell^{\downarrow} \subseteq S} y_\ell$$
 and $x_S = \sum_{\nu \in S} x_{\nu}.$

Transition matrix for Landslide sandpile model $M_{ au}$

Theorem (ASST 2013)

The characteristic polynomial of M_{τ} is given by

$$\det(M_{\tau} - \lambda I) = \prod_{S \subseteq V} (\lambda - (y_S + x_S))^{T_{S^c}},$$

where $S^c = V \setminus S$ and $T_S = \prod_{v \in S} T_v$.

Eigenvalues: $y_S + x_S$ Multiplicities: T_{S^c}

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Landslide sandpile model: Mixing time

Define
$$p := \min\{y_{\ell} \mid \ell \in L\}$$
 and $n_T := \sum_{v \in V} T_v$.

Theorem (ASST 2013)

The rate of convergence is bounded by

$$||M_{\tau}^{k}\pi_{0} - \pi||_{TV} \le \exp\left(-\frac{(kp - (n_{T} - 1))^{2}}{2kp}\right)$$

as long as $k \ge (n_T - 1)/p$.

Mixing time: Mixing time is at most $\frac{2n_T}{p}$.

000000	000000	000000000000	00000000000000000000000000000000000000
Other Models			

• 1D Asymmetric annihilation process (A., K. Mallick '10)

 $10 \longrightarrow 01 \quad \text{with rate } \alpha_i$ $11 \longrightarrow 00 \quad \text{with rate } \alpha_i$

• 1D Asymmetric Glauber model (A. '10)

 $++ \longrightarrow +-, -- \longrightarrow -+$ with rate β_i

• de Bruijn process (A., V. Strehl '11)

 $w_1 \cdots w_L \longrightarrow w_2 \cdots w_L a$ with rate $\alpha_{a,i}$

*ロ * * ● * * ● * * ● * ● * ● * ●

Proof ideas

- Construct the \leq_R preorder on \mathcal{M} and show that it is a partial order
- Use an explicit eigenvalue formula for *R*-trivial monoids in general.
- Use the structure theory of *R*-trivial monoids to get eigenvalues and their multiplicities.

R-trivial Processes

Toom-Tsetlin Model

Nonabelian sandpile model

Thank you!