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Diffusive lattice gases 

SSEP: simple 

symmetric exclusion 
process 

RWs, ZRP: a=a(ni) 
random walkers; zero-range 

process 

Large-scale behavior: fluctuating hydrodynamics 

 ,),()()( tDt xξ 
x: Gaussian noise,  

delta-correlated in x and t 

Diffusive lattice gases are fully characterized, at large scales, by the  
diffusivity D() and mobility () 

Spohn 1991 

KMP (Kipnis, Marchioro and Presutti 1982): random exchange of energy among neighbors 



D() and ()  are related to the equilibrium free energy density F(): 
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When noise is ignored: diffusion equation    )(Dt

Simple examples of diffusive lattice gases 

a’(r)>0 

Einstein-Kubo relation 



Macroscopic Fluctuation Theory (MFT) 
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MFT can be derived from Fluctuating Hydrodynamics via saddle-point expansion of the proper path 
integral (Tailleur, Kurchan, Lecomte 2007). This leads to a minimization problem which can be cast into a 
classical Hamiltonian field theory for the particle density q(x,t) and conjugate “momentum” density p(x,t): 
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Bertini, De Sole, Gabrielli, Jona-Lasinio and Landim (2001, … 2014) 
 
Large parameter: number of particles in relevant region of space.  Extends the  
weak-noise WKB theory of Freidlin and Wentzel to fields 
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Deterministic limit: p(x,t)=0: downhill trajectories 
 
 
Fluctuations: p(x,t)≠0: uphill trajectories, the optimal density history 
 
The probability density of a large deviation is given by the mechanical action 
along a proper uphill trajectory: 
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Boundary conditions, in x and t, are problem-dependent 

If the initial condition is random, one should also find the optimal initial density profile and 
add to S the Boltzmann-Gibbs free energy “cost” of creating it 



 
 

MFT emerged in the context of  
non-equilibrium steady states of lattice gases  
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Expected density profile solves the steady-state mean-field problem 

)]/([ LxF  large deviation functional 

Reviews: Derrida 2007, Jona-Lasinio 2010, Bertini et al 2015  

Optimal path 



 
 

MFT emerged in the context of  
non-equilibrium steady states of lattice gases  
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Average current 

),,(  JS large deviation function 

Reviews: Derrida 2007, Jona-Lasinio 2010, Bertini et al. 2015 

Is the optimal path stationary for any J ?  



 
 

MFT emerged in the context of  
non-equilibrium steady states of lattice gases  

 

ρ+ ρ- 

L 

Reviews: Derrida 2007, Jona-Lasinio 2010, Bertini et al. 2014 

• Long range correlations 
• Uphill trajectory is different from time-reversed downhill trajectory 
• Non-smooth parameter dependence of large deviation function/functional: 
phase transitions (Bunin, Kafri and Podolsky 2012) 



 Non-stationary settings are also interesting 
                                           
Today: Fluctuations of mass/energy transfer through a point on an 

infinite line 

Derrida and Gerschenfeld 2009, Sethuraman and Varadhan 2011, Krapivsky and M 2012, 

M and Sasorov 2013, 2014, Vilenkin, M and Sasorov 2014 
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for Random Walkers  
(RWs), SSEP and KMP 

What is optimal path of the system conditioned on J ?  

Large deviation function Even                  is nontrivial    
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Deterministic profile 



                 MFT formulation of the problem: Derrida and Gerschenfeld 2009 
 
 
                                                                                   
 
 
     
Deterministic step-like initial condition: 
 
 
The integral constraint                                            calls for a Lagrange multiplier 
 
and leads to boundary condition 
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 Exact solution is not available except for Random Walkers 
                                           

Today: Perturbative approaches based on additional small parameters: 

 

1.   Small J, hence small . Expansion in powers of . Krapivsky and M (2012) 

 

2. Very large J: diffusion terms in the MFT equations are very small 

M and Sasorov 2013, 2014; Vilenkin, M and Sasorov 2014 

 

 

 

                    

Numerical solutions for particular lattice gases:  

 

Iteration algorithm of Chernykh and Stepanov (2001) 

Krapivsky and M 2012, Vilenkin, M and Sasorov 2014 



For D=1 
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Small J: small- expansion 
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The 1st-order solution yields the variance of          for all lattice gases with D=const:    (J)P  

Krapivsky and M 2012 

Higher orders would give higher cumulants of  (J)P  



This equation can be of elliptic, hyperbolic or parabolic type, leading to 
three classes of lattice gases: 

       Very large J: What if we neglect the diffusion terms?    

  ,0)('
2

1

,0])([

2 



vqv

vqq

xt

xt





 Hodograph transformation: from q(x,t) and v(x,t) to t(q,v) and x(q,v) 

    This leads to a linear 2nd order PDE for t(q,v): 
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0)('' q                                  hyperbolic class 
                                  elliptic class 
                                  (RWs) parabolic class 

0)('' q
0)('' q M and Sasorov 2013, 2014,  

Vilenkin, M and Sasorov 2014 

Inviscid equations: 
Euler hydrodynamics 

SSEP is elliptic, KMP is hyperbolic 



Elliptic class: the singularity                                              can develop    
at t=T, see e.g. B. A. Trubnikov and S. K. Zhdanov, Phys. Rep. 155, 137 (1987),  
a review of “quasi-Chaplygin gases”. 
 
Hyperbolic class: a delta-function singularity of v would have to be 
present at all times                     which is not allowed 
 
Therefore, the inviscid limit yields a well-posed problem for the “elliptic 
gases”,  and an ill-posed problem for the “hyperbolic gases”.  
 

Two different strategies of solution at large J: 

)(),( xTtxv 
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“Elliptic gases”: Drop the diffusion terms and solve the inviscid hodograph 
equation. Implemented for the SSEP with -=+  

“Hyperbolic gases”: Take diffusion into account to regularize pulse-like 
singularities of q and v at 0<t<T. Use the inviscid equations in the “outer” 
regions, and match the inner and outer solutions. Implemented for the 
KMP 

                                                                  M and Sasorov 2014, Vilenkin, M and Sasorov 2014 

M and Sasorov 2013 



04)21(2)1(
222

 tvtqtvtqq vqvq

Vilenkin, M and Sasorov 2014, 

M and Sasorov 2014 

The hodograph equation is separable. Further, it can be transformed 
into Laplace’s equation in 3d. Flat initial condition corresponds to 
geometry of a cone. Problem soluble analytically 

       Very large J,  SSEP,  -=+=n0 

The initial density n0 determines the cone angle. For n0=1/2 the cone 
becomes a disk, and the solution can be expressed in elementary functions 



       Very large J,  SSEP,  -=+=n0 

M and Sasorov 2013, 2014, Vilenkin, M and Sasorov 2014 
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The S~j3 scaling was predicted by Derrida and Gershenfeld (2009) 

The function (n0) and the optimal path determined analytically 

Full solution 
includes  
non-hodograph 
regions, shocks 
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       Very large J,  KMP model 

Building blocks: exact soliton-like solutions of 
MFT equations  

M and Sasorov 2013 



       Very large J,  KMP model 

M and Sasorov 2013 
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Optimal path: Coupled large-amplitude solitary pulses, of q and v. They  
propagate with a constant speed, but their amplitudes slowly grow with time,  
as the q-pulse collects most of the available energy on its way to x=0. The action  
mostly comes from the pulses 



 

                                           
Another non-stationary setting: formation of void at time T 

Krapivsky, M and Sasorov 2012 
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d: dimension of space 



 

                                           
Other non-stationary settings analyzed with MFT: 

 

Statistics of integrated current on a ring (Bertini et al 2005, Bodineau and 
Derrida 2005, Hurtado and Garrido 2011): the first system where breakdown of the 
additivity principle was discovered 

  

Statistics of particle absorption by a target (M and Redner 2014,  M, Vilenkin and 
Krapivsky 2014).  Everlasting role of initial conditions in 1d 

 

Statistics of the position of a tagged particle in a single-file diffusion in 1d  
(Krapivsky, Mallick and Sadhu 2014,2015)  Everlasting role of initial conditions in 1d 

 

Melting of an Ising quadrant at zero temperature (Krapivsky, Mallick and Sadhu 
2014) Mappable to the SSEP, very similar to the problem we have discussed in this talk 

 

 

 

 

 

 



Summary 

 
Complete statistics of fluctuations of integrated current is still unknown, except 
for RWs 
 
MFT yields the variance for D=const, or for any D() but flat initial density profile 
 
MFT yields far tails of the distribution, for the SSEP and KMP models which 
exemplify the elliptic and hyperbolic universality classes, respectively 
 
The perturbative approaches are also useful for other MFT settings 
 
Each new solved example improves our understanding of large deviations far from 
equilibrium, and develops intuition 
 

Thank you 


