Transport and Thermoelectric efficiency in vibrationally assisted molecular junction

Bijay Kumar Agarwalla CQIQC PostDoctoral Fellow University of Toronto

Non-Equilibrium Statistical Physics

26 Oct, 2015 - 20 Nov, 2015

TATA INSTITUTE OF FUNDAMENTAL RESEARCH

Outline

- Transport and response coefficients in dimer molecular junction
- Efficiency statistics for time-reversal breaking system

Important parameters for molecular junction transport

M. Galperin, M. A. Ratner, and A. Nitzan, J. Phys.: Condens. Matter 19, 103201 (2007)

Molecular electronics:

Electron-nuclei interactions are central to molecular electronic applications

Signature of molecular vibration : Inelastic electron tunneling spectroscopy

Anderson-Holstein Model: Single electron coupled to vibrational mode

Effect of vibrational mode on current, heating and cooling etc

- M. Galperin, A. Nitzan, and M. A. Ratner, Phys. Rev. B 74, 075326 (2006).
- M. Galperin, A. Nitzan, and M. A. Ratner, J. Chem. Phys. 121, 11965 (2004).
- M. Galperin, M. A. Ratner, and A. Nitzan, J. Phys.: Condens. Matter 19, 103201 (2007). Review
- R. Hartle, M. Butzin, and M. Thoss, Phys. Rev. B 87, 085422 (2013).
- R. Egger and A. O. Gogolin, Phys. Rev. B 77, 113405 (2008).

Full-counting statistics

R. Avriller, and A. Levy Yeyati, Phys. Rev. B 80, 041309(R) (2009).
D. F. Urban, R. Avriller, and A. Levy Yeyati, Phys. Rev. B 82, 121414(R) (2010).
R. S. Souto et al. Phys. Rev. B 89, 085412 (2014).
T. L. Schmidt and A. Komnik, Phys. Rev. B 80, 041307(R) (2009).
Y. Utsumi et. al. Phys. Rev. B 87, 115407 (2013).

Transient study (Bistability, relaxation dynamics): exact numerical scheme

R. S Souto et. al. Phys. Rev. B 92, 125435 (2015). Eli Y. Wilner, H. Wang, M. Thoss and E. Rabani Phys. Rev. B 89, 205129 (2014).

Donor-Acceptor model

Model Hamiltonian : Vibrationally assisted molecular junction

$$\begin{split} H &= \epsilon_d c_d^{\dagger} c_d + \epsilon_a c_a^{\dagger} c_a + H_{vib} + H_{el-vib} \\ &+ \sum_{l \in L} \epsilon_l c_l^{\dagger} c_l + \sum_{r \in R} \epsilon_r c_r^{\dagger} c_r \\ &+ \sum_{l \in L} v_l (c_l^{\dagger} c_d + c_d^{\dagger} c_l) + \sum_{r \in R} v_r (c_r^{\dagger} c_a + c_a^{\dagger} c_r). \\ \text{Anharmonic (AH) two-state mode (DA-AH)} \\ H_{vib} &= \frac{\omega_0}{2} \sigma_z \ , \ H_{el-vib} = g[c_d^{\dagger} c_a + c_a^{\dagger} c_d] \sigma_x \end{split}$$
Harmonic (HO) mode (DA-HO)
$$H_{vib} &= \omega_0 b_0^{\dagger} b_0, \ H_{el-vib} = g[c_d^{\dagger} c_a + c_a^{\dagger} c_d] (b_0^{\dagger} + b_0)$$

M. Esposito et. al. Rev. Mod. Phys. 81, 1665 (2009). *K. Saito and A. Dhar, Phys. Rev. Lett.* 99, 180601 (2007).

Results:
$$\mathcal{Z}(\lambda_e, \lambda_p) = \left\langle e^{i\lambda_e H_R + i\lambda_p N_R} e^{-i\lambda_e H_R^H(t) - i\lambda_p N_R^H(t)} \right\rangle$$

2nd order in electron-phonon interaction
all order in metal-molecule strength
CGF:

Anharmonic (AH) Mode (Quantum master equation approach)

$$\mathcal{G}_{AH}(\lambda_e, \lambda_p) = -\frac{1}{2}(k_u + k_d) + \frac{1}{2}\sqrt{(k_u - k_d)^2 + 4k_u^{\lambda}k_d^{\lambda}}$$

Harmonic (HO) mode (Non-equilibrium Green's function approach)

$$\mathcal{G}_{HO}(\lambda_e, \lambda_p) = \frac{1}{2}(k_d - k_u) - \frac{1}{2}\sqrt{(k_u + k_d)^2 - 4k_u^\lambda k_d^\lambda}$$

Fluctuation symmetry

$$\mathcal{G}(\lambda_e, \lambda_p) = \mathcal{G}(-\lambda_e + i(\beta_L - \beta_R), -\lambda_p + i(\beta_R \mu_R - \beta_L \mu_L))$$

Energy-flux Particle-flux

B. K. Agarwalla, J.-H. Jiang, and D. Segal, Arxiv:1506.03102 B. K. Agarwalla, J.-H. Jiang, and D. Segal, Arxiv:1508.02475

$$\begin{aligned} k_d^{\lambda} &= [k_d^{\lambda}]^{L \to R} + [k_d^{\lambda}]^{R \to L} \\ [k_d^{\lambda}]^{L \to R} &= \int_{-\infty}^{\infty} \frac{d\epsilon}{2\pi} f_L(\epsilon) (1 - f_R(\epsilon + \omega_0)) J_L(\epsilon) J_R(\epsilon + \omega_0) e^{-i\lambda_p - i(\epsilon + \omega_0)\lambda_e} \\ [k_d^{\lambda}]^{R \to L} &= \int_{-\infty}^{\infty} \frac{d\epsilon}{2\pi} f_R(\epsilon) (1 - f_L(\epsilon + \omega_0)) J_R(\epsilon) J_L(\epsilon + \omega_0) e^{i\lambda_p + i\epsilon\lambda_e}. \end{aligned}$$

$$k_u^{\lambda}(\omega_0) = k_d^{\lambda}(\omega_0 \to -\omega_0)$$

Spectral Density

$$J_L(\epsilon) = g \frac{\Gamma_L(\epsilon)}{(\epsilon - \epsilon_d)^2 + \Gamma_L(\epsilon)^2/4}$$

$$J_R(\epsilon) = g \frac{\Gamma_R(\epsilon)}{(\epsilon - \epsilon_a)^2 + \Gamma_R(\epsilon)^2/4}$$

Currents:

ents:

$$\langle I_p \rangle = \frac{\partial \mathcal{G}(\lambda_e, \lambda_p)}{\partial (i\lambda_p)} \Big|_{\lambda_e = \lambda_p = 0}$$

$$\langle I_p^{AH/HO} \rangle = 2 \frac{k_d^{R \to L} k_u^{R \to L} - k_d^{L \to R} k_u^{L \to R}}{k_d + sk_u}$$

$$s = +1 \text{ for AH and } s = -1 \text{ for HO}$$

$$\langle I_e^{AH/HO} \rangle = \frac{k_d \left[\partial_{(i\lambda_e)} k_u^{\lambda} |_{\lambda_e = 0} \right] + k_u \left[\partial_{(i\lambda_e)} k_d^{\lambda} |_{\lambda_e = 0} \right]}{k_d + s k_u}$$

Sign difference reflects different steady state population normalization

$$P_0 = \frac{k_u}{k_u + k_d}$$
$$P_1 = 1 - P_0$$

$$P_n = (1 - \frac{k_u}{k_d})(\frac{k_u}{k_d})^n$$
$$\langle n \rangle = \frac{k_u}{k_d - k_u}$$

Linear Response:

$$\langle I_p \rangle = \frac{e}{\hbar} a_{p,p} \Delta \mu + \frac{e}{\hbar} a_{p,e} k_B \Delta T,$$

$$\langle I_h \rangle = \frac{1}{\hbar} a_{e,p} \Delta \mu + \frac{1}{\hbar} a_{e,e} k_B \Delta T.$$

Nonlinear response for output power and efficiency

Thermoelectric device $T_L > T_R, \ \mu_L < \mu_R$

Current-Voltage behaviour

 $\epsilon_d = \epsilon_a = 0.25 \text{ eV}, \ T = T_L = T_R = 100K, \ g = 0.1 \text{ eV}$

Rectification

$$R \equiv \frac{\langle I_p \rangle_+}{\langle I_p \rangle_-}$$

Necessary conditions :(i) spatial symmetry breaking, different energies for D and A states. (ii) small metal-molecule hybridization energy.

 $\epsilon_a = 0.2, \ \epsilon_d = 0, \ \omega_0 = 0.05, \ g = 0.01, \ \Gamma_{ph} = 0.005 \ \text{eV}, \ T_{ph} = 300 \ \text{K}$ (a) $T_L = T_R = 100 \ \text{K}$, and (b) $T_L = T_R = 300 \ \text{K}$

Scaling relations at large bias:

zero temperature, strong coupling

$$k_u \approx k_u^{R \to L} \approx \frac{\bar{g}^2 \omega_0}{\Gamma_L \Gamma_R} \left(\frac{\Delta \mu}{\omega_0} - 1\right),$$

$$k_d \approx k_d^{R \to L} \approx \frac{\bar{g}^2 \omega_0}{\Gamma_L \Gamma_R} \left(\frac{\Delta \mu}{\omega_0} + 1\right)$$

DA-AH $C_{n+1}/C_n \propto 1$

DA-HO $C_{n+1}/C_n \propto \Delta \mu^2/\omega_0^2$

Anderson-Holstein $C_{n+1}/C_n \propto \Delta \mu/\omega_0$

Phys. Rev. B 82, 121414(R) (2010).

Thermoelectric Efficiency and Statistics

G. Verley, T. Willaert, C. Van den Broeck, and M. Esposito, Nat. Commun. 5, 4721 (2014). G. Verley, T. Willaert, C. Van den Broeck, and M. Esposito, Phys. Rev. E 90, 052145 (2014).

Asymptotic form
$$P_t(\eta) \sim e^{-t\tilde{J}(\eta)}$$

LDF $\tilde{J}(\eta) = -\min_{\lambda_w} \mathcal{G}(\lambda_w, \eta \eta_c \lambda_w)$

Analytical form in the Linear Response limit:

(Scaled LDF)

$$J_G(\eta) = \frac{1}{4} \frac{(\eta + \alpha^2 + \alpha d + \alpha d\eta)^2}{(1 + \alpha^2 + 2\alpha d)(\eta^2 + \alpha^2 + 2\alpha d\eta)}$$

$$d \equiv \frac{L_{pq}}{\sqrt{L_{pp}L_{qq}}}, \quad \alpha \equiv \frac{A_p \sqrt{L_{pp}}}{A_q \sqrt{L_{qq}}}$$

Expressed in terms of Onsager's coefficients

$$0 \le J_G(\eta) \le \frac{1}{4}$$

Bounded in the Gaussian limit

Efficiency Statistics for Time-reversal breaking system

Efficiency Statistics for Time-reversal breaking system

G. Benenti, K. Saito, G. Casati, PRL. 106, 230602 (2011). K. Brandner, K. Saito, U. Seifert, PRL 110, 070603 (2013).

Linear response limit

$$P_t(\vec{I}) = \frac{t\sqrt{\det((\hat{M}^{-1})_{sym})}}{4\pi} \exp(-\frac{t}{4}\delta\vec{I}^T \cdot \hat{M}^{-1} \cdot \delta\vec{I})$$
$$\bigvee \qquad \eta = \frac{-I_1A_1}{I_2A_2}$$

J.-H. Jiang, B. K. Agarwalla, D Segal, Phys. Rev. Lett. **115**, 040601 (2015)

$$J(\eta) \equiv \frac{\mathcal{G}(\eta)}{\bar{S}_{tot}} \longleftarrow \text{(Scaled LDF)} \quad \bar{S}_{tot} = \sum_{i} I_{i}A_{i}$$

$$= \frac{J(\eta_{C}) \left(\eta + \alpha^{2} + \alpha qr + \alpha q\eta\right)^{2}}{\left(1 + \alpha^{2} + \alpha qr + \alpha q\right) \left(\eta^{2} + \alpha^{2} + \alpha q\eta + \alpha qr\eta\right)}$$

$$J(\eta_{C}) \equiv \frac{4 - q^{2}(1+r)^{2}}{16(1-q^{2}r)} \longrightarrow \text{Independent of}$$

$$Affinity \text{ parameter}$$

$$q \equiv \frac{L_{21}}{\sqrt{L_{22}L_{11}}}, \quad r \equiv \frac{L_{12}}{L_{21}}, \quad \alpha \equiv \frac{A_{1}\sqrt{L_{11}}}{A_{2}\sqrt{L_{22}}}$$

$$q \equiv \frac{L_{21}}{\sqrt{L_{22}L_{11}}}, \quad r \equiv \frac{L_{12}}{L_{21}}, \quad \alpha \equiv \frac{A_1\sqrt{L_{11}}}{A_2\sqrt{L_{22}}}$$

$$0 \leq J(\eta) \leq 1/4$$

$$J(\bar{\eta}) = 0 \qquad \bar{\eta} = -\frac{\alpha(\alpha + qr)}{(\alpha q + 1)}$$

$$J(\eta^{\star}) = \frac{1}{4} \qquad \gamma^{\star} = 1 + \frac{q(r-1)(1 + \alpha q + \alpha qr + \alpha^2)}{q - qr - 2\alpha + q^2(1 + r)\alpha}$$
Maximum average efficiency condition
$$ZT = \frac{q^2r}{1 - q^2r}$$

$$\bar{\eta} = \bar{\eta}_{max} = r\frac{\sqrt{ZT + 1} - 1}{\sqrt{ZT + 1} + 1} = r\left(\frac{1 - \sqrt{1 - q^2r}}{1 + \sqrt{1 - q^2r}}\right)$$

$$\eta^{\star} = r$$

 $E_1 = 0.2, E_2 = -0.2, E_3 = 1, \Gamma = 0.5, \text{ and } t = -1$

J.-H. Jiang, B. K. Agarwalla, D Segal, Phys. Rev. Lett. **115**, 040601 (2015)K. Brandner, K. Saito, and U. Seifert, Phys. Rev. Lett. 110, 070603 (2013).

Efficiency fluctuation at maximum average output power

$$\bar{\eta}(W_{\text{max}}) = \frac{rZT}{2(ZT+2)} = \frac{q^2r^2}{4-2q^2r}$$
$$\bar{\eta}_{\text{bound}}(W_{\text{max}}) = \frac{r^2}{1+r^2}$$
$$(A-3q^2r-q^2r^2)$$

$$\eta^{\star} = r \left(\frac{4 - 3q^2r - q^2r^2}{4 - 2q^2r - 2q^2r^2} \right)$$

Time-reversal operation

$$q \equiv \frac{L_{21}}{\sqrt{L_{22}L_{11}}}, \quad r \equiv \frac{L_{12}}{L_{21}}, \quad \alpha \equiv \frac{A_1\sqrt{L_{11}}}{A_2\sqrt{L_{22}}}$$
$$r(-\phi) \rightarrow \frac{1}{r}$$
$$q(-\phi) \rightarrow qr$$

$$J(\eta) - \tilde{J}(\eta) = \frac{J(\eta_C)}{1 + \alpha^2 + \alpha qr + \alpha q} \frac{\alpha^2 q^2 (r^2 - 1)(1 - \eta^2) + 2(\alpha^2 + \eta)\alpha q(r - 1)(1 - \eta)}{\alpha^2 + \alpha q\eta + \alpha qr\eta + \eta^2}$$

Summary:

- We focused on donor-acceptor junction in which electron transfer is assisted by a particular mode, harmonic or anharmonic.
- Charge and energy currents are sensitive to the nature of the modes while S, ZT and average efficiency are insensitive.
- It can also be shown that for n-state truncated HO would provide same figure of merit.
- Efficiency statistics for time-reversal breaking system is studied in the linear response limit,
- Least likely efficiency depends on asymmetry coefficient in the maximum average efficiency condition.

Thank You

Maximum average efficiency condition

Ring type Feynman diagrams in contour time. Diagrams (a) second-order (b) fourthorder and (c) sixth-order in the electron-phonon coupling. The dotted line is the phonon Green's function. Closed loops are the electron-hole propagator which is a sum of the two diagrams (d) consisting of free electron left (solid) and right (dashed) Green's functions.

Thermoelectric Efficiency and Statistics

Jensen's inequality $\eta \leq \eta_c$ Upper bound of efficiency

Asymptotic form $P_t(\eta) \sim e^{-t\tilde{J}(\eta)}$

$$\mathsf{LDF} \quad \tilde{J}(\eta) = -\min_{\lambda_w} \mathcal{G}(\lambda_w, \eta \eta_c \lambda_w)$$

Analytical form in the Linear Response limit:

Expressed in terms of Onsager's coefficients

$$J_G(\eta) = \frac{1}{4} \frac{(\eta + \alpha^2 + \alpha d + \alpha d\eta)^2}{(1 + \alpha^2 + 2\alpha d)(\eta^2 + \alpha^2 + 2\alpha d\eta)}$$
$$d \equiv \frac{L_{pq}}{\sqrt{L_{pp}L_{qq}}}, \quad \alpha \equiv \frac{A_p \sqrt{L_{pp}}}{A_q \sqrt{L_{qq}}}$$
$$0 \le J_G(\eta) \le \frac{1}{4}$$

Bounded in the Gaussian limit

G. Verley, T. Willaert, C. Van den Broeck, and M. Esposito, Nat. Commun. 5, 4721 (2014). G. Verley, T. Willaert, C. Van den Broeck, and M. Esposito, Phys. Rev. E 90, 052145 (2014).