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Consider a (closed) 2D driven diffusive conservative (in the
density p(t,x)) system whose hydrodynamics (in the diffusive  waops
time scale) are given by the PDE

dep +div j(p) =0, j(p) =—-D(p)Vp+v f(p)

> p is the density,

» j is the density current,

» D := D(p) is a square diffusion matrix,

» f := f(p) a two dimensional vector,

» v > 0 a parameter regulating the strength of the drift.
> t > 0 is the time and x € T2 := [0, 1]°.
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Examples

To take into account fluctuations around this typical behav-
ior we replace the previous PDE by the conservative SPDE
(fluctuating hydrodynamics)

dep+div j(p) =0, j(p) =—D(p)Vp+v f(p)++eo(p)n

where
> 1 is a space-time white noise,

> o :=o(p) is a symmetric matrix.
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Examples

£

The SPDE describes the behavior of the empirical density p
(resp. current j¢) of an extended system of size e 7! (¢ < 1),
with a weak drift term of order v, in the time scale e 2t,
where t is the macroscopic time:

pr(e?t,eIx) ~p(t,x), t>0, xeT?
atp‘g =+ diVjE = O



Current-density LDF
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We have also

Current-Density LDF

P[(%, p°) = (J, p),on the time window [0, T]] ~ e~ TonUnr),
where
T4 1y, p)

1
:2// {[j + DVp —vf], o7 [j+ DVp —vf]) dsdx
Q

if the constraint
Osp = —div j

is satisfied and equal to infinity otherwise.
Here Q = [0, T] x T2
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Current-Density LDF

» This is the starting point of the Macroscopic Fluctuation
Theory.

» The form of the LDF Z has been proved to be valid for
a large class of (weakly) asymmetric interacting particles
systems.



Density LDF
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Current-Density LDF

The LDF H[la’.,.] is given by

Hio, 11(p) = inf Zjo 11U/, )
J

describes the cost to observe a density profile p during the
time window [0, T].
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» Consider a strongly asymmetric driven diffusive system,
i.e. the drift term is now of order O(1) w.r.t. the scaling oo
tron Sym.
parameter ¢ (inverse of the system size). Syst.

» The typical behavior of the system, in the hyperpolic time
scale e~1t, is now given by the scalar conservation law

» The (heuristic) derivation of this equation is simply based
on the assumption of propagation of local equilibrium in
the hyperbolic time scale.
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» Classical (smooth) solutions to scalar conservation laws
do not exist. They develop discontinuities after a very
short time.

Weak solutions

» We say that a function p : [0, T] x T2 — R is a weak
solution if

//Q {pOrp + (f(p), Vi) } dt dx = 0.

for any smooth test function ¢ : [0, T] x T? — R.

» Weak solutions are not unique! What is the weak solu-
tion which describes correctly the typical behavior of the
microscopic system?
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Weak solutions

u=20

For any p > 0, there is a weak solution to the 1D Burgers
equation d;u + Ox(u?) = 0 with initial condition u(0, x) = 0.
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Entropic solution

>
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The typical behavior of the microscopic system is de-
scribed by the (UNIQUE) entropic solution.

Given a convex function g — n(g) on R, called “en-
tropy”, we associate a conjugated “entropy flux" g —
q(g) = (ax(g), ay(g)) € R?, such that ¢'(g) = 1/(g)f'(g).  envore souos
A weak solution is called entropic if for each entropy-
entropy flux pair (1, q) with 1 convex, and ¢ > 0 a

test function, the entropic inequality (second principle)
holds:

[ @eonto) + (a(o), 7)) atax = o

Existence and uniqueness of an entropic solution has been
proved under generic conditions. The entropic solution
is the only weak solution dissipating entropy.



Entropic solution: vanishing viscosity limit S

» The entropic solution p can also be obtained as p =
lime_q p° of

Entropic solutions

Orp” + divf(p®) = eAp©.

» This also explains the entropic inequality, which holds for
p® and will thus persist in the limit ¢ — 0.



Large deviations of the density S

» Entropic solution to the conservation law

atp + diV f(p) = 0 Generalized JV

functional

describes the typical macroscopic behavior of the strongly
asymmetric microscopic system (size £71) in the hyper-
bolic time scale e~ 1t.

» We are interested in the cost to produce a fluctuation of
the density in this hyperbolic time scale.
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> Let 71 the size of the microscopic system. The LDF
H[lE)’T](,O) gives the cost to produce a given density fluctu-
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> Let 71 the size of the microscopic system. The LDF
H[lE)’T](,O) gives the cost to produce a given density fluctu-
ation equal to p for the weakly asymmetric system (drift
strength is ve) in the diffusive time scale ts=2.

» We are interested in the cost H* to produce a fluctu- Generalized IV
ation of the density p in the hyperbolic time scale te~! Kinace o
for the strongly asymmetric system (drift strength is 1).

Formally we can take v = ¢! in the weakly asymmetric
version.

» We thus expect that the cost H[%‘fﬂ (p) is given by

Ho.ry(p) = lim Hig 7/,1(p)-

V—00



The one dimensional case

«O>» «Fr «Z>» «E>»

nae



The one dimensional case C Bernardin

» One dimensional TASEP: the LDF (JV functional) of
the empirical density of the TASEP in the hyperbolic
time scale has been rigorously derived by [Jensen’'00-
Varadhan'04] starting directly from the microscopic sys-
tem [TASEP] (f(p) = a(p) = p(1 = p), D(p) =1).

Generalized JV
functional
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» One dimensional TASEP: the LDF (JV functional) of
the empirical density of the TASEP in the hyperbolic
time scale has been rigorously derived by [Jensen’'00-
Varadhan'04] starting directly from the microscopic sys-

tem [TASEP] (f(p) = U(p) = p(]‘ - '0)’ D(p) - 1)' Carmrtliz 1Y

> [Bellettini-Bertini-Mariani-Novaga'10] proposed a gener- functional
alization of the JV functional for general f,D,o in 1D
by studying the limit (for the '-convergence)

V—00

» These results show that H[C(’)OT](U) < oo only if uis a
weak solution of the scalar conservation law. This gives
a physical meaning of weak solutions: there are ex-

actly the profiles appearing in a large fluctuation.
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The two dimensional case

C. Bernardin
» By following Bellettini-Bertini-Mariani-Novaga approach

in 2D, we propose a generalization of the JV formula.

Generalized JV
functional



The two dimensional case C Bernardin

» By following Bellettini-Bertini-Mariani-Novaga approach
in 2D, we propose a generalization of the JV formula.

» The derivation is based on three simple principles:

1. Locally around a (space-time) discontinuity point, a weak Generalized JV
solution looks like a moving step function between u~
and u™ propagating at some velocity v in a direction k.

2. For a weak solution u(t,x) = g((k,x) — vt) in the form
of a moving step function, Hjg’s(u) can be evaluated
by computing explicitly lim, _ o H[%,T/U](u”) for a good
smooth approximation u” of u.

3. The cost of a weak solution v is obtained by summing
the individual costs of each discontinuity of u (space-time
additive principle).
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Local structure of a weak solution
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> Let J, = {(t,s:(a))} C [0, T] x T? = Q be the set of
discontinuity of the weak solution u.

Generalized JV
functional
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Local structure of a weak solution S

> Let J, = {(t,s:(a))} C [0, T] x T? = Q be the set of
discontinuity of the weak solution wu.

> For (t,st(c)) = (t,x) € Jy let

L L
n:i= (nt7 nx) = % <_ <%7 [%] >7 [%] ) € R?)? Generalized JV

functional

the normal to J,.
» Q\J, = QT UQ and for (t,x) = (t,s:(a)) € Jy,

+ .
us = lim u(s,y).
(s,y)€QE—(t,x) ( y)

» Since u is a weak solution (Rankine-Hugoniot condition)

(uF —um)n" +{((F(u™) = F(u7)),n) =0
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Cost of a moving step function
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» Take an entropic moving step function in the form

p(t,x) = g(—(k;x) + vt)

with g : R — R a step function taking the values u™ :
. eneralized JV
and u™, with ||k|| = 1. ot



Cost of a moving step function
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» Take an entropic moving step function in the form
p(t,X) - g(_<k7x> + Vt)

with g : R — R a step function taking the values u™ :
i eneralized JV
and u™, with ||k|| = 1. ot

» The space-time reversed function
u(t, x) = p(—t, —x) = g((k, x) — vt)

is a weak solution (anti-entropic) in the form of a
moving step function.



Cost of a moving step function

C. Bernardin

» Take an entropic moving step function in the form

p(t,x) = g(—(k,x) + vt)
with g : R — R a step function taking the values u™ Entropic sluti

and U+, with Hk” =1. functional

» The space-time reversed function

u(t,x) = p(—t, —X) = g(<kvx> - Vt)

is a weak solution (anti-entropic) in the form of a
moving step function.

» The entropic solution p can be approximated by a
traveling wave p”(t,x) (vanishing viscosity
approximation of order v~ 1).
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» We use the space-time reversed approximation
u”(t,x) = p¥(—t,—x) to show that

Jim Hio 7, (u”)

Generalized JV
k,D(g)k — functional
=24, NQ| / <<k’0((§))k>> I’I(u , u+,g) dg

with
rk(g7 uiv U+)

(Fu)(u—g)+f(ut)(g—u™)—f(g)(u—u™) k)
lut—u~]
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» Mathematical problem (even in 1D) : Can we obtain any
(moving step) weak solution by reversing in time and
space an entropic moving step solution ?
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» Mathematical problem (even in 1D) : Can we obtain any s

Example

(moving step) weak solution by reversing in time and = cooiieenir
space an entropic moving step solution ?

» Usually, no. We have to use a density argument. Math- "
ematical proof is missing. omesanar® Y

Kinetic formulation

“One does not see at the
moment how to produce
a general non-entropic so-
lution, partly because one
does not know what it is.”
S.R.S. Varadhan




Additive principle
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Assuming space-time additive principle holds we get
H[%C:T](U)

T (. D(g) )t N Foncionar

:2/ . / o /<o(g>>r w (0707, 8) dg
0 XESt Tnx]]

with

rk(g7 u-, U+)

_ (et —g)+F(ut)(g—u)—F(g)(u—u™) k)
- lut—u~|
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With respect to the 1D case, the difference in the 2D
case for the JV functional is the replacement of the
second derivative of the Einstein entropy

_ 2D(g)

Generalized JV
O-(g) functional

S"(g)

by the scalar
(n*, D(g) n*)

(R o(g) )
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With respect to the 1D case, the difference in the 2D
case for the JV functional is the replacement of the
second derivative of the Einstein entropy

_ 2D(g)

Generalized JV
O-(g) functional

S"(g)

by the scalar

(0" D(g) )
(n*,o(g)n*)’
One may also obtain a variational form of the generalized
JV functional, based on a kinetic interpretation of the
scalar conservation law.



Kinetic formulation (Lions, Perthame,
Tadmor'94)
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Let x(g,u) = lo<cg<u — Llu<g<o. Then u is a weak solution
of

Oru+div f(u) =0
iff h(t,x,g) = x(g, u(t,x)) is solution of

Kinetic formulation

Och+ {F'(), Vxh) = ~Ogn

for some locally finite space-time measure 1 := p,(g, dt, dx)dg.
Observe that

h(t,x, g)dg = u(t,x).

If u is the entropic solution then p, is a negative measure.
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» We say that V(g, t,x) is an entropy sampler if for any
(t,x) the function g — V(g, t,x) is convex.

Kinetic formulation
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» We say that V(g, t,x) is an entropy sampler if for any
(t,x) the function g — V(g, t,x) is convex.

» The entropy production of a weak solution u w.r.t. the
entropy sampler V is defined by the number Kinetic formulation

Po(w)i= [ de [[ Vet mile.de.ox)



Variational form of the 2D JV functional

C. Bernardin

We have that

Hio 1(p) = sup Py(p).
veVv

Kinetic formulation

where V is the set of entropy samplers which are such that
(in matrix sense)

2D(g) —o(g)V"(g,t,x) >0



Perspectives
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A complete rigorous proof is missing.

» Generalization to 2D strongly asymmetric systems in con-

tact with baths at different densities ([Bahadoran, Bodineau-
Derridal).

Obtain the corresponding quasi-potential, i.e. the non-
equilibrium free energy of the NESS (hyperbolic MFT for
2D Asymmetric Systems).

Kinetic formulation

» Case of multi-component systems (hard).

» Applications to deduce properties of the steady state of

active particles.
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