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I During the last years a lot of work has been devoted
to the study of large deviations functional of interacting
particle systems.

I Current large deviations, density large deviations, scal-
ing of the cumulants of the current ... on the ring or
in contact with reservoirs: [Bodineau-Derrida], [Bertini, De Sole, Gabrielli,

Landim, Lasinio], [Derrida-Gerschenfeld], [Belitsky, Schütz], [Krapivsky, Mallick, Sadhu], [Meer-

son, Sasorov, Villenkin]... .

I Recent interest in higher dimensions: [Hurtado, Pérez-Espigares, del

Pozo, P.L. Garrido], [Akkermans, Bodineau, Derrida, Shpielberg], [Pérez-Espigares, Redig, Gia-

rdinà]....
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Consider a (closed) 2D driven diffusive conservative (in the
density ρ(t, x)) system whose hydrodynamics (in the diffusive
time scale) are given by the PDE

∂tρ+ div j(ρ) = 0, j(ρ) = −D(ρ)∇ρ+ ν f (ρ)

I ρ is the density,

I j is the density current,

I D := D(ρ) is a square diffusion matrix,

I f := f (ρ) a two dimensional vector,

I ν > 0 a parameter regulating the strength of the drift.

I t > 0 is the time and x ∈ T2 := [0, 1]2.
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I Weakly asymmetric lattice
gas

I Active particles
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To take into account fluctuations around this typical behav-
ior we replace the previous PDE by the conservative SPDE
(fluctuating hydrodynamics)

∂tρ+ div j(ρ) = 0, j(ρ) = −D(ρ)∇ρ+ ν f (ρ) +
√
εσ(ρ) η

where

I η is a space-time white noise,

I σ := σ(ρ) is a symmetric matrix.
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The SPDE describes the behavior of the empirical density ρε

(resp. current jε) of an extended system of size ε−1 (ε� 1),
with a weak drift term of order εν, in the time scale ε−2t,
where t is the macroscopic time:

ρε(ε−2t, ε−1x) ≈ ρ(t, x), t > 0, x ∈ T2,

∂tρ
ε + div jε = 0.



C. Bernardin

Weakly Asym.
Syst.

WADDS

Examples

Current-Density LDF

Strongly Asym.
Syst.

Weak solutions

Entropic solutions

Generalized JV
functional

Kinetic formulation

Current-density LDF

We have also

P [(jε, ρε) ≈ (j , ρ), on the time window [0,T ]] ≈ e−ε
−2I[0,T ](j ,ρ).

where

Iν[0,T ](j , ρ)

=
1

2

∫∫
Ω

〈[
j + D∇ρ− νf

]
, σ−1

[
j + D∇ρ− νf

]〉
dsdx

if the constraint
∂sρ = −div j

is satisfied and equal to infinity otherwise.
Here Ω = [0,T ]× T2.
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I This is the starting point of the Macroscopic Fluctuation
Theory.

I The form of the LDF I has been proved to be valid for
a large class of (weakly) asymmetric interacting particles
systems.



C. Bernardin

Weakly Asym.
Syst.

WADDS

Examples

Current-Density LDF

Strongly Asym.
Syst.

Weak solutions

Entropic solutions

Generalized JV
functional

Kinetic formulation

Density LDF

The LDF Hν
[0,T ] is given by

Hν
[0,T ](ρ) = inf

j
Iν[0,T ](j , ρ)

describes the cost to observe a density profile ρ during the
time window [0,T ].
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I Consider a strongly asymmetric driven diffusive system,
i.e. the drift term is now of order O(1) w.r.t. the scaling
parameter ε (inverse of the system size).

I The typical behavior of the system, in the hyperpolic time
scale ε−1t, is now given by the scalar conservation law

∂tρ+ div f (ρ) = 0.

I The (heuristic) derivation of this equation is simply based
on the assumption of propagation of local equilibrium in
the hyperbolic time scale.
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Weak solutions

I Classical (smooth) solutions to scalar conservation laws
do not exist. They develop discontinuities after a very
short time.

I We say that a function ρ : [0,T ] × T2 → R is a weak
solution if∫∫

Ω
{ρ ∂tϕ+ 〈f (ρ),∇ϕ〉} dt dx = 0.

for any smooth test function ϕ : [0,T ]× T2 → R.

I Weak solutions are not unique! What is the weak solu-
tion which describes correctly the typical behavior of the
microscopic system?
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For any p > 0, there is a weak solution to the 1D Burgers
equation ∂tu + ∂x(u2) = 0 with initial condition u(0, x) = 0.
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Entropic solution

I The typical behavior of the microscopic system is de-
scribed by the (UNIQUE) entropic solution.

I Given a convex function g → η(g) on R, called “en-
tropy”, we associate a conjugated “entropy flux” g →
q(g) = (qx(g), qy (g)) ∈ R2, such that q′(g) = η′(g)f ′(g).

I A weak solution is called entropic if for each entropy-
entropy flux pair (η, q) with η convex, and ϕ ≥ 0 a
test function, the entropic inequality (second principle)
holds: ∫∫

Ω
{∂tϕη(ρ) + 〈q(ρ),∇ϕ〉} dtdx ≥ 0.

I Existence and uniqueness of an entropic solution has been
proved under generic conditions. The entropic solution
is the only weak solution dissipating entropy.
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Entropic solution: vanishing viscosity limit

I The entropic solution ρ can also be obtained as ρ =
limε→0 ρ

ε of

∂tρ
ε + divf (ρε) = ε∆ρε.

I This also explains the entropic inequality, which holds for
ρε and will thus persist in the limit ε→ 0.
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Large deviations of the density

I Entropic solution to the conservation law

∂tρ+ div f (ρ) = 0.

describes the typical macroscopic behavior of the strongly
asymmetric microscopic system (size ε−1) in the hyper-
bolic time scale ε−1t.

I We are interested in the cost to produce a fluctuation of
the density in this hyperbolic time scale.
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I Let ε−1 the size of the microscopic system. The LDF
Hν

[0,T ](ρ) gives the cost to produce a given density fluctu-

ation equal to ρ for the weakly asymmetric system (drift
strength is νε) in the diffusive time scale tε−2.

I We are interested in the cost H∞ to produce a fluctu-
ation of the density ρ in the hyperbolic time scale tε−1

for the strongly asymmetric system (drift strength is 1).
Formally we can take ν = ε−1 in the weakly asymmetric
version.

I We thus expect that the cost H∞[0,T ](ρ) is given by

H∞[0,T ](ρ) = lim
ν→∞

Hν
[0,T/ν](ρ).
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The one dimensional case

I One dimensional TASEP: the LDF (JV functional) of
the empirical density of the TASEP in the hyperbolic
time scale has been rigorously derived by [Jensen’00-
Varadhan’04] starting directly from the microscopic sys-
tem [TASEP] (f (ρ) = σ(ρ) = ρ(1− ρ), D(ρ) = 1).

I [Bellettini-Bertini-Mariani-Novaga’10] proposed a gener-
alization of the JV functional for general f ,D, σ in 1D
by studying the limit (for the Γ-convergence)

H∞[0,T ] = lim
ν→∞

Hν
[0,T/ν]

I These results show that H∞[0,T ](u) < ∞ only if u is a
weak solution of the scalar conservation law. This gives
a physical meaning of weak solutions: there are ex-
actly the profiles appearing in a large fluctuation.
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H∞[0,T ] = lim
ν→∞

Hν
[0,T/ν]

I These results show that H∞[0,T ](u) < ∞ only if u is a
weak solution of the scalar conservation law. This gives
a physical meaning of weak solutions: there are ex-
actly the profiles appearing in a large fluctuation.
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The two dimensional case

I By following Bellettini-Bertini-Mariani-Novaga approach
in 2D, we propose a generalization of the JV formula.

I The derivation is based on three simple principles:

1. Locally around a (space-time) discontinuity point, a weak
solution looks like a moving step function between u−

and u+ propagating at some velocity v in a direction k.
2. For a weak solution u(t, x) = g(〈k, x〉 − vt) in the form

of a moving step function, H∞[0,T ](u) can be evaluated

by computing explicitly limν→∞ Hν
[0,T/ν](u

ν) for a good
smooth approximation uν of u.

3. The cost of a weak solution u is obtained by summing
the individual costs of each discontinuity of u (space-time
additive principle).
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Local structure of a weak solution

I Let Ju = {(t, st(α))} ⊂ [0,T ] × T2 = Ω be the set of
discontinuity of the weak solution u.

I For (t, st(α)) = (t, x) ∈ Ju let

n := (nt ,nx) = 1
N

(
−
〈

dst
dt ,
[

dst
dα

]⊥〉
,
[

dst
dα

]⊥) ∈ R3,

the normal to Ju.

I Ω\Ju = Ω+ ∪ Ω− and for (t, x) = (t, st(α)) ∈ Ju

u± := lim
(s,y)∈Ω±→(t,x)

u(s, y).

I Since u is a weak solution (Rankine-Hugoniot condition)

(u+ − u−)nt + 〈(f (u+)− f (u−)),nx〉 = 0
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Cost of a moving step function

I Take an entropic moving step function in the form

ρ(t, x) = g(−〈k, x〉+ vt)

with g : R→ R a step function taking the values u−

and u+, with ‖k‖ = 1.

I The space-time reversed function

u(t, x) = ρ(−t,−x) = g(〈k, x〉 − vt)

is a weak solution (anti-entropic) in the form of a
moving step function.

I The entropic solution ρ can be approximated by a
traveling wave ρν(t, x) (vanishing viscosity
approximation of order ν−1).



C. Bernardin

Weakly Asym.
Syst.

WADDS

Examples

Current-Density LDF

Strongly Asym.
Syst.

Weak solutions

Entropic solutions

Generalized JV
functional

Kinetic formulation

Cost of a moving step function

I Take an entropic moving step function in the form

ρ(t, x) = g(−〈k, x〉+ vt)

with g : R→ R a step function taking the values u−

and u+, with ‖k‖ = 1.

I The space-time reversed function

u(t, x) = ρ(−t,−x) = g(〈k, x〉 − vt)

is a weak solution (anti-entropic) in the form of a
moving step function.

I The entropic solution ρ can be approximated by a
traveling wave ρν(t, x) (vanishing viscosity
approximation of order ν−1).



C. Bernardin

Weakly Asym.
Syst.

WADDS

Examples

Current-Density LDF

Strongly Asym.
Syst.

Weak solutions

Entropic solutions

Generalized JV
functional

Kinetic formulation

Cost of a moving step function

I Take an entropic moving step function in the form

ρ(t, x) = g(−〈k, x〉+ vt)

with g : R→ R a step function taking the values u−

and u+, with ‖k‖ = 1.

I The space-time reversed function

u(t, x) = ρ(−t,−x) = g(〈k, x〉 − vt)

is a weak solution (anti-entropic) in the form of a
moving step function.

I The entropic solution ρ can be approximated by a
traveling wave ρν(t, x) (vanishing viscosity
approximation of order ν−1).



C. Bernardin

Weakly Asym.
Syst.

WADDS

Examples

Current-Density LDF

Strongly Asym.
Syst.

Weak solutions

Entropic solutions

Generalized JV
functional

Kinetic formulation

Cost of a moving step function

I Take an entropic moving step function in the form

ρ(t, x) = g(−〈k, x〉+ vt)

with g : R→ R a step function taking the values u−

and u+, with ‖k‖ = 1.

I The space-time reversed function

u(t, x) = ρ(−t,−x) = g(〈k, x〉 − vt)

is a weak solution (anti-entropic) in the form of a
moving step function.

I The entropic solution ρ can be approximated by a
traveling wave ρν(t, x) (vanishing viscosity
approximation of order ν−1).



C. Bernardin

Weakly Asym.
Syst.

WADDS

Examples

Current-Density LDF

Strongly Asym.
Syst.

Weak solutions

Entropic solutions

Generalized JV
functional

Kinetic formulation

I We use the space-time reversed approximation
uν(t, x) = ρν(−t,−x) to show that

lim
ν→∞

Hν
[0,T/ν](u

ν)

= 2|Ju ∩ Ω|
∫
〈k,D(g) k〉
〈k,σ(g) k〉 Γ+

k (u−, u+, g) dg

with

Γk(g , u−, u+)

=
〈f (u−)(u+−g)+f (u+)(g−u−)−f (g)(u+−u−) , k〉

|u+−u−|
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I Mathematical problem (even in 1D) : Can we obtain any
(moving step) weak solution by reversing in time and
space an entropic moving step solution ?

I Usually, no. We have to use a density argument. Math-
ematical proof is missing.

I

“One does not see at the

moment how to produce

a general non-entropic so-

lution, partly because one

does not know what it is.”

S.R.S. Varadhan
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Additive principle

Assuming space-time additive principle holds we get

H∞[0,T ](u)

= 2

∫ T

0
dt

∫
x∈st

dst

{∫
〈nx,D(g) nx〉
〈nx,σ(g) nx〉 Γ+

nx

‖nx‖
(u−, u+, g) dg

}

with

Γk(g , u−, u+)

=
〈f (u−)(u+−g)+f (u+)(g−u−)−f (g)(u+−u−) , k〉

|u+−u−|
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I With respect to the 1D case, the difference in the 2D
case for the JV functional is the replacement of the
second derivative of the Einstein entropy

S ′′(g) =
2D(g)

σ(g)

by the scalar

2
〈nx,D(g) nx〉
〈nx, σ(g) nx〉

.

I One may also obtain a variational form of the generalized
JV functional, based on a kinetic interpretation of the
scalar conservation law.
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Kinetic formulation (Lions, Perthame,
Tadmor’94)

Let χ(g , u) = 10<g≤u − 1u≤g<0. Then u is a weak solution
of

∂tu + div f (u) = 0

iff h(t, x, g) = χ(g , u(t, x)) is solution of

∂th + 〈f ′(g),∇xh〉 = −∂gµ

for some locally finite space-time measure µ := µu(g , dt, dx)dg .
Observe that ∫

h(t, x, g)dg = u(t, x).

If u is the entropic solution then µu is a negative measure.
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I We say that V(g , t, x) is an entropy sampler if for any
(t, x) the function g → V(g , t, x) is convex.

I The entropy production of a weak solution u w.r.t. the
entropy sampler V is defined by the number

PV(u) :=

∫
dg

∫∫
Ω
V ′′(g , t, x)µu(g , dt, dx)
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Variational form of the 2D JV functional

We have that
H∞[0,T ](ρ) = sup

V∈V̂

PV(ρ).

where V̂ is the set of entropy samplers which are such that
(in matrix sense)

2D(g)− σ(g)V ′′(g , t, x) ≥ 0
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Perspectives

I A complete rigorous proof is missing.

I Generalization to 2D strongly asymmetric systems in con-
tact with baths at different densities ([Bahadoran, Bodineau-
Derrida]).

I Obtain the corresponding quasi-potential, i.e. the non-
equilibrium free energy of the NESS (hyperbolic MFT for
2D Asymmetric Systems).

I Case of multi-component systems (hard).

I Applications to deduce properties of the steady state of
active particles.
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