Chandrasekhar lecture

$$
\text { Oct. } 27,2015
$$

Random Matrix Theory and
the Dynamics of Non-equilibrium Interfaces

Herbert Spohn
TUMünchen
non-equilibrium growth

1. Eden growth

- seed (also line seed)
- growth sites, filled with equal probability
\Rightarrow isotropic version

- deterministic shape
\Rightarrow shape fluctuations
\Statistical Mechanics M
non-equilibrium
reverse processes suppressed (detach)

$$
h(t)=v_{0} t+\left(\lambda_{e} t\right)^{1 / 3} \xi
$$

growth random amplitucle
\Rightarrow full probability density function of ξ
finer details

$$
h_{1}(t), h_{2}(t)
$$

surface correlations

Universality
\Rightarrow any realized system is more complex
\Rightarrow theory relies on a few models with "exact" solutions
2. turbulent liquid crystal film

Takeuchi, Sand 2012 cell top \square
$\leftarrow 16 \mathrm{~mm} \rightarrow$

- metastable DLS 1 phase
- stable DLS 2 phase
light transmission YES

transitions: metastable \approx stable
only at interface
A NO mass transport If

Random Matrix Theory.
3. Tracy-Widom (1993)

Gaussian Unitary Ensemble
random $A \quad N \times N$ hermitian

$$
\frac{1}{Z} e^{-\frac{1}{2 N}} \operatorname{tr} A^{2}
$$

eigenvalues $\quad \lambda_{1}<\ldots<\lambda_{N}, \quad \operatorname{large} N$

$$
\begin{aligned}
& \lambda_{N} \cong 2 N+N^{1 / 3} \xi_{G U E} \Leftarrow \\
& \mathbb{P}\left(\xi_{G U E} \leqslant s\right)=\operatorname{det}\left(1-K_{2,5}\right)_{L^{2}\left(\mathbb{R}_{+}\right)}
\end{aligned}
$$

Airy kernel

$$
K_{2, s}(x, y)=\int_{0}^{\infty} d \lambda A_{i}(x+s+\lambda) A_{i}(y+s+\lambda)
$$

Gaussian Orthogonal Ensemble random A real symmetric

$$
\begin{aligned}
& \lambda_{N} \cong 2 N+N^{1 / 3} \xi_{G O E} \\
& \mathbb{P}\left(\xi_{G O E} \leq s\right)=\operatorname{det}\left(1-K_{1, s}\right) L^{2}\left(\mathbb{R}_{+}\right) \\
& \\
& \quad K_{1, s}(x, y)=A_{i}(x+y+s
\end{aligned}
$$

- droplet / curved

$$
\xi=\xi_{G U E}
$$

- flat interface

$$
\xi=\xi_{G O E}
$$

Why random matrix theory?
4. KPZ equation

Kardar, Parisi, Zhang (1986)

$\|$ universality |
height function $h(x, t) \quad t \geqslant 0$

$$
\left\|\partial_{t} h=\left(\partial_{x} h\right)^{2}+\frac{1}{2} \partial_{x}^{2} h+W\right\|
$$

nonlinearity space-time white noise

- isotropic growth

$$
\partial_{t} h=\sqrt{1+\left(\partial_{x} h\right)^{2}} \cong \frac{1}{2}\left(\partial_{x} h\right)^{2}
$$

- Cole-Hop f transformation

$$
z=e^{h} \Rightarrow \partial_{t} z=\frac{1}{2} \partial_{x}^{2} Z+W Z
$$

random potential
"solved" by Feynman path integral

$$
\begin{aligned}
& Z(x, t)=\int D_{x} \exp \left[-\int_{0}^{t} d s\left\{\frac{1}{2} \dot{x}(s)^{2}-W(x(s), s)\right\}\right] \underbrace{Z_{0}(x(0))}_{\text {initial condition }} \\
& \text { - directed polymer in random medium } \\
& 7 \text { partition function disordered }
\end{aligned}
$$

- Z partition function disordered
- $\log z=h \quad$ free energy \Leftarrow fluctuations (shape fluctuations)
\Rightarrow sharp wedge $\quad Z_{0}(x)=\delta(x) \quad$ point - point

$$
h(x, 0)=-\frac{1}{\delta}|x|, \delta \rightarrow 0
$$

$$
(0,0) \sim(x, t)
$$

5. exact solution

Amir, Corwin, Quastel 2011 Sasamoto, II.S.

2011

$$
\eta(x, t)=h(x, t)+\frac{1}{2 t} x^{2}+\frac{1}{24} t
$$

stationary in x
generating function

$$
\begin{aligned}
\left\langle e^{\left.-e^{\left(\eta(0, t)-t^{1 / 3} s\right)}\right\rangle}\right. & =\operatorname{det}\left(1-K_{t, s}\right)_{L^{2}\left(\mathbb{R}_{+}\right)} \\
K_{t, 5}(x, y) & =\int d \lambda \frac{1}{1+e^{-t^{1 / 3} \lambda}} A_{i}(x+s+\lambda) A_{i}(y+s+\lambda)
\end{aligned}
$$

limit $t \rightarrow \infty$ tUE

6. discretize

universality,

up-right path $\times($.

$$
x(0)=1, \quad x(t)=n
$$

$$
\begin{aligned}
& \text { energy } \\
& \begin{aligned}
& \text { I }(x(s), 0 \leq s \leq t)= \int_{0}^{t} d s W(x(s), s) \\
&=\sum_{j=1}^{n}\left\{b_{j}\left(t_{j}\right)-b_{j}\left(t_{j-1}\right)\right\} \quad b_{j}(t)=\int_{0}^{t} d s W(j, s) \\
& Z_{d}(n, t)=\sum_{\substack{\text { path } \\
(0,1) \rightarrow(t, n)}} e^{-\beta E(x(s), 0 \leq s \leq t)}
\end{aligned}
\end{aligned}
$$

$$
\beta \rightarrow \infty
$$

\approx minimization of ground state energy

$$
h_{n}(t)=\min _{\operatorname{path}(0,1) \rightarrow(t, n)} \text { 王 }(x(s), 0 \leq s \leq t)
$$

Baryshnikov, $2002 \quad h_{n}(t)=$ largest eigenvalue of $A(t)$ GU
 hermitian, $n \times n, \frac{1}{z} e^{-\frac{1}{2 N t}} \operatorname{tr} A^{2}$

$$
h_{\lfloor v t\rfloor}(t) \cong t+t^{1 / 3} \xi_{G \cup E}
$$

$$
\beta<\infty
$$

Borodin, Corwin, Ferrari 2013
7. equilibrium crystal shape

Using cube, $T=0$, attractive

particles (lattice gas) $N^{3}-M$
$N \rightarrow \infty$, large M
\approx Using corner microcanonical

rounded (massless Gaussian field)

Prokovsky - Talapor

$$
h(r)=r^{3 / 2}
$$

Wigner semicircle

Ferrari, Prähofer, U.S. 2005
equilibrium fluctuations of facet edge
$=\mathrm{KPZ}$ fluctuations, curved GUE

Outlook

- metastable - stable interface $\quad \Rightarrow$ fluctuations as RMTheory
- higher dimensions $\mathrm{KPZ} \quad \partial_{t} h=(\nabla h)^{2}+\Delta h+W \quad h(\underset{m}{\mathrm{x}}, t)$
- one dimension, several components

