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FIG. 1: (Color online) Growing DSM2 cluster. (a) Images.
Indicated below is the elapsed time after the emission of laser
pulses. (b) Snapshots of the interfaces taken every 5 s in the
range 2 s ≤ t ≤ 27 s. The gray dashed circle shows the mean
radius of all the droplets at t = 27 s. The coordinate x at this
time is defined along this circle.

enclosing a region of 16mm × 16mm for the convec-
tion. We chose here the homeotropic alignment of liquid
crystals in order to work with isotropic DSM2 growth,
which is realized by coating N ,N -dimethyl-N -octadecyl-
3-aminopropyltrimethoxysilyl chloride uniformly on the
electrodes using a spin coater. The cell is then filled with
N -(4-methoxybenzylidene)-4-butylaniline doped with
0.01 wt.% of tetra-n-butylammonium bromide. The cut-
off frequency of the conductive regime [11] is 850±50Hz.
The cell is maintained at a constant temperature 25.0 ◦C
with typical fluctuations in the order of 10−3K. The con-
vection is observed through the transmitted light from
light-emitting diodes and recorded by a CCD camera.
For each run we apply a voltage of 26V at 250Hz,

which is sufficiently larger than the DSM1-DSM2 thresh-
old at 20.7V. After waiting a few seconds, we shoot into
the cell two successive laser pulses of wavelength 355 nm
and energy 0.3 nJ to trigger a DSM2 nucleus [13]. Figure
1 displays typical growth of a DSM2 cluster. We repeat
it 563 times to characterize the growth process precisely.
We define the local radius R(x, t) along the circle which

denotes the statistically averaged shape of the droplets,
as sketched in Fig. 1(b). This measures the interfacial
width w(l, t) ≡ 〈

√

〈[R(x, t)− 〈R〉l]2〉l〉 and the height-
difference correlation function C(l, t) ≡ 〈[R(x + l, t) −
R(x, t)]2〉, where 〈· · ·〉l and 〈· · ·〉 denote the average over
a segment of length l and all over the interface and ensem-
bles, respectively. Both w(l, t) and C(l, t)1/2 are common
quantities for characterizing the roughness, for which the
Family-Vicsek scaling [Eq. (1)] is expected.
This is tested in Fig. 2. Raw data of w(l, t) and

C(l, t)1/2 measured at different times [Fig. 2(a,b)] grow
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FIG. 2: (Color online) Scaling of the width w(l, t) and the
height-difference correlation function C(l, t). (a,b) Raw data
of w(l, t) (a) and C(l, t)1/2 (b) at different times t. (c) Time
evolution of the overall width W (t) and the plateau level
Cpl(t)

1/2 of the correlation function. (d) Collapse of the
data in (a) showing the Family-Vicsek scaling [Eq. (1)]. The
dashed lines are guides for the eyes showing the KPZ scaling.

algebraically for short length scales l & l∗ and converge
to constants for l ' l∗ in agreement with Eq. (1). The
power α of the algebraic regime measured in the last
frame t = 28.4 s is found to be α = 0.50(5). Here, the
number in the parentheses indicates the range of error
in the last digit, which is estimated both from the un-
certainty in a single fit and from the dependence on the
fitting range. The found value of α is in good agreement
with the KPZ roughness exponent αKPZ = 1/2.
The temporal growth of the roughness is measured by

the overall width W (t) ≡
√

〈[R(x, t) − 〈R〉]2〉 and the
plateau level of the correlation function, Cpl(t)1/2, de-
fined as the mean value of C(l, t)1/2 in the plateau re-
gion of Fig. 2(b). Both quantities show a very clear
power law tβ with β = 0.336(11) [Fig. 2(c)] in remarkable
agreement with the KPZ growth exponent βKPZ = 1/3.
Furthermore, rescaling both axes in Fig. 2(a) with the
KPZ exponents, we confirm that our data of w(l, t) col-
lapse reasonably well onto a single curve [Fig. 2(d)]. A
collapse of the same quality is obtained for C(l, t)1/2.
We therefore safely conclude that the DSM2 interfacial
growth belongs to the (1+1)-dimensional KPZ class. In
passing, this rules out the logarithmic temporal scaling
claimed by Escudero for the droplet geometry [14].
Our statistically clean data motivate us to test further

predictions on the KPZ class beyond those for the scaling.
In this respect one of the most challenging benchmarks
may be the asymptotic distribution of height fluctua-
tions, calculated exactly for solvable models [5, 6]. A gen-
eral expression was proposed by Prähofer and Spohn [6],
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Figure 1: Growing DSM2 cluster with a circular (A) and flat (B) interface. Binarized snapshots
at successive times are shown with different colors. Indicated in the color bar is the elapsed
time after the laser emission. The local height h(x, t) is defined in each case as a function of
the lateral coordinate x along the mean profile of the interface [a circle for (A) and a horizontal
line for (B)]. See also Movies S1 and S2.
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Figure 2: Family-Vicsek scaling. (A,B) Interface width w(l, t) against the length scale l at
different times t for the circular (A) and flat (B) interfaces. The four data correspond, from
bottom to top, to t = 2.0 s, 4.0 s, 12.0 s and 30.0 s for the panel (A) and to t = 4.0 s, 10.0 s, 25.0 s
and 60.0 s for the panel (B). The insets show the same data with the rescaled axes. (C) Growth
of the overall width W (t) ≡

√
〈[h(x, t) − 〈h〉]2〉. The dashed lines are guides for the eyes

showing the exponent values of the KPZ class.
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Figure 3: Universal fluctuations. (A) Histogram of the rescaled local height χ ≡ (h −
v∞t)/(Γt)1/3. The blue and red solid symbols show the histograms for the circular interfaces at
t = 10 s and 30 s; the light blue and purple open symbols are for the flat interfaces at t = 20 s
and 60 s, respectively. The dashed and dotted curves show the GUE and GOE TW distributions,
respectively. Note that for the GOE TW distribution χ is multiplied by 2−2/3 in view of the
theoretical prediction (24). (B) The skewness (circle) and the kurtosis (cross) of the distribu-
tion of the interface fluctuations for the circular (blue) and flat (red) interfaces. The dashed
and dotted lines indicate the values of the skewness and the kurtosis of the GUE and GOE TW
distributions (24). (C,D) Differences in the cumulants between the experimental data 〈χn〉c and
the corresponding TW distributions 〈χn

GUE〉c for the circular interfaces (C) and 〈χn
GOE〉c for the

flat interfaces (D). The insets show the same data for n = 1 in logarithmic scales. The dashed
lines are guides for the eyes with the slope −1/3.
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