

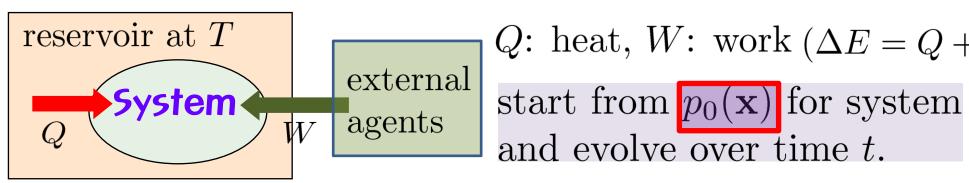
Dynamic transitions in nonequilibrium work fluctuations of linear diffusion systems

Hyunggyu Park (KIAS)

with Jae Dong Noh (UOS) and Chulan Kwon (Myongji U)

PRE(2011,2013)/ PRL(2013)/ ...

Dynamics processes & Fluctuation theorems



Q: heat, W: work ($\Delta E = Q + W$)

Integral fluctuation theorems
$$\langle e^{-R} \rangle = 1$$
 (i.c.)

$$\langle e^{-\Delta S_{tot}} \rangle = 1 \ (S_{tot} = S + S_r: \text{ total entropy}) \ (\text{any i.c.})$$

 $\langle e^{-\beta W_d} \rangle = 1 \ (W_d = W - \Delta F: \text{ dissipated work}) (EQ \text{ i.c.})$

$$R = -\beta Q_{hk}, \ \Delta S - \beta Q_{ex}, \cdots$$

$$\langle R \rangle \ge 0$$

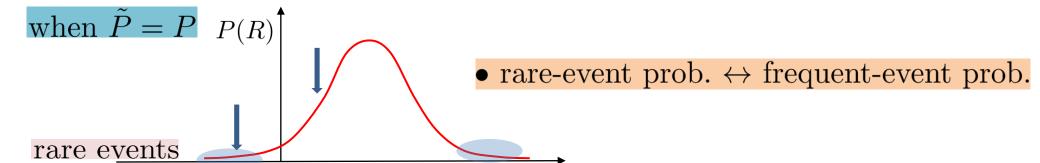
Thermodynamic 2nd laws $\langle R \rangle \geq 0$. Jensen's inequality

Dynamics processes & Fluctuation theorems

Detailed fluctuation theorems

$$(R = \Delta S_{tot}, \beta W_d = \beta W - \Delta F, \cdots)$$

$$\frac{P(R)}{\tilde{P}(-R)} = e^R \quad (\tilde{P} \text{ for 'reverse' process for } \Delta S_{tot}, \beta W_d)$$



• Generating function

$$G(\lambda) = \langle e^{-\lambda R} \rangle = \int dR \ P(R) \ e^{-\lambda R}$$

• Tail usually decays exponentially.

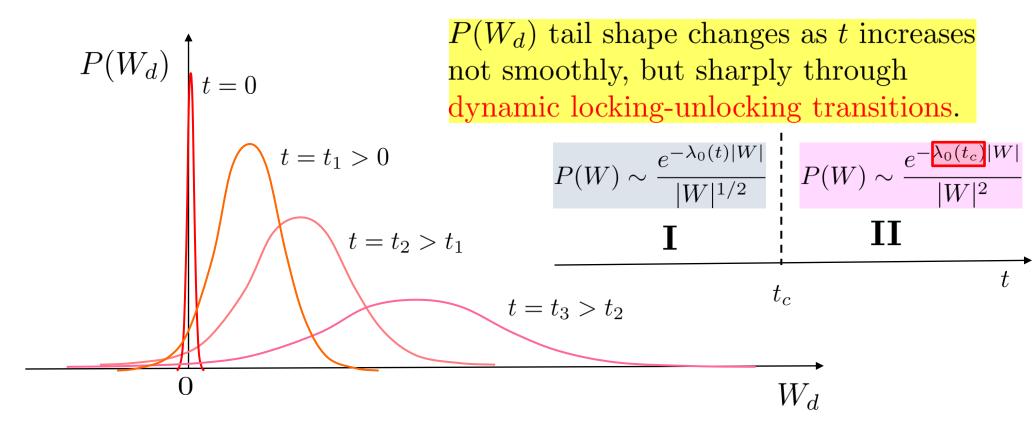
$$P(R) \sim e^{-aR}$$

Singularities of $G(\lambda)$ characterize tail shape at $\lambda = -a$

(also at
$$\lambda = 1 + a$$
) (DFT)

One-page summary of our analytic results

• We consider a simple linear dffusion system without time-dep. protocol and watch the $P(W_d)$ tail as function of time t. $\tilde{P} = P \& W_d = W$



• More surprisingly, we find sequences of dynamic transitions, sometimes infinitely many transitions, $\mathbf{I} \rightarrow \mathbf{I} \mathbf{I} \rightarrow \mathbf{I} \rightarrow \cdots$ at $t_{c1}, t_{c2}, t_{c3}, \cdots$ depending on specific details of linear diffusion processes.

Brownian dynamics

$$m\ddot{\mathbf{x}} = -\gamma\dot{\mathbf{x}} + \mathbf{f}(\mathbf{x}) + \boldsymbol{\xi}$$
 $\langle \boldsymbol{\xi}(t)\boldsymbol{\xi}^T(t')\rangle = 2\mathsf{D}\delta(t - t')$

Diffusion dynamics (overdamped limit)

$$\gamma \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) + \boldsymbol{\xi} \qquad \mathbf{f} = \mathbf{f}_c + \mathbf{f}_{nc} = -\boldsymbol{\nabla}E + \mathbf{f}_{nc} \qquad \text{(high dim. > 1)}$$
$$\int_0^t d\tau \ \dot{\mathbf{x}}^T \cdot \mathbf{f}_c = -\Delta E \qquad \int_0^t d\tau \ \dot{\mathbf{x}}^T \cdot \mathbf{f}_{nc} \equiv W \qquad -\Delta E + W = -Q$$

Linear force Analytically solvable

$$\mathbf{f} = -\mathsf{F} \cdot \mathbf{x}$$

multivariate, Ornsteice Whleribeck process

$$\mathbf{F}_c = \mathbf{F}_c^T \text{ and } E(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \cdot \mathbf{F}_c \cdot \mathbf{x}$$

Exact $P(\mathbf{x},t)$, $\mathbf{J}(\mathbf{x},t)$

$$\mathsf{F}_{nc} \neq \mathsf{F}_{nc}^T$$

 $\mathsf{F}_{nc} \neq \mathsf{F}_{nc}^T$ NEQ steady state with rotating current

• simple examples

Particle dynamics trapped in a harmonic potential and driven by a swiring force in 2D

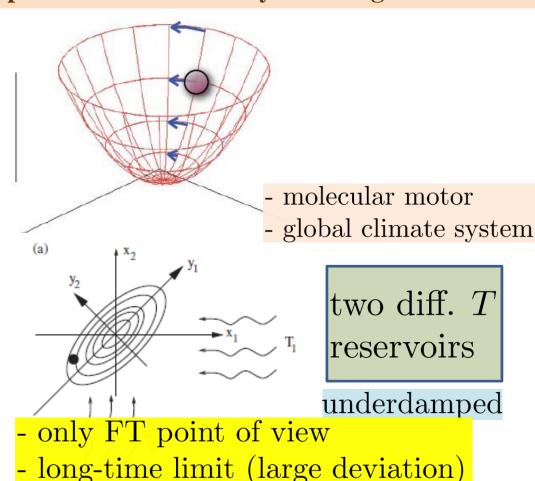
$$\gamma \dot{\mathbf{x}} = -\mathbf{F}_c \cdot \mathbf{x} - \mathbf{F}_{nc} \cdot \mathbf{x} + \boldsymbol{\xi}$$
$$\mathbf{F}_c = \begin{pmatrix} 1+a & b \\ b & 1-a \end{pmatrix}$$

$$\mathsf{F}_{nc} = \left(\begin{array}{cc} 0 & q \\ -q & 0 \end{array} \right)$$

Brownian gyrator: nano heat engine (Filliger and Reimann, PRL 2007)

Molecular refrigerator (Kim and Qian , PRL 2004/PRE 2007)

Time-dependent harmonic potentials (Zon/Cohen, Nickelsen/Engel, ..)



- no interesting transient behavior

• Set $\gamma = D = I$ (scaling & rotation with $\beta = 1$)

$$\dot{\mathbf{x}} = -\mathbf{F} \cdot \mathbf{x} + \boldsymbol{\xi} \quad (\mathbf{F} = \mathbf{F}_c + \mathbf{F}_{nc}) \quad \langle \boldsymbol{\xi}(t) \boldsymbol{\xi}^T(t') \rangle = 2\mathbf{I} \, \delta(t - t')$$

• Path-integral formulation (Onsager-Machlup)

$$P_{t}(\mathbf{x}) = \int d\mathbf{x}_{0} P_{0}(\mathbf{x}_{0}) \int D[\mathbf{x}] e^{-\int_{0}^{t} d\tau L(\mathbf{x}, \dot{\mathbf{x}})}$$
(all Gaussian integrals)
$$P_{t}(\mathbf{x}) \sim e^{-\frac{1}{2}\mathbf{x}^{T} \cdot \mathsf{A}(t) \cdot \mathbf{x}}$$
$$L(\mathbf{x}, \dot{\mathbf{x}}) = \frac{1}{4} (\dot{\mathbf{x}} + \mathsf{F} \cdot \mathbf{x})^{T} \cdot (\dot{\mathbf{x}} + \mathsf{F} \cdot \mathbf{x})$$
with $\mathsf{A}(0) = \mathsf{F}_{c}$ (EQ)

$$\dot{\mathsf{A}} = -2\mathsf{A}^2 + \mathsf{A}\mathsf{F} + \mathsf{F}^T\mathsf{A} \implies \frac{d\mathsf{A}^{-1}}{dt} = 2\mathsf{I} - \mathsf{F}\mathsf{A}^{-1} - \mathsf{A}^{-1}\mathsf{F}^T$$

Generating function

$$G(\lambda) = \langle e^{-\lambda W} \rangle = \int \frac{d\mathbf{x}_t}{d\mathbf{x}_0} P_0(\mathbf{x}_0) \int D[\mathbf{x}] e^{-\int_0^t d\tau [L(\mathbf{x}, \dot{\mathbf{x}}) + \lambda W]}$$

$$\tilde{L}(\mathbf{x}, \dot{\mathbf{x}}) = L(\mathbf{x}, \dot{\mathbf{x}}) - \lambda \dot{\mathbf{x}}^T \cdot \mathsf{F}_{\mathsf{nc}} \cdot \mathbf{x} \qquad \dot{\tilde{A}} = -2 \int_{0}^{t} dt \, \tilde{\mathbf{A}} \, \tilde{\mathbf{F}} \cdot \tilde{\mathbf{F}} \, \tilde{\mathbf{F}} \,$$

Crucial: Nonlinear Inhomogeneous Matrix DE to solve

$$\dot{\tilde{\mathbf{A}}} = -2\tilde{\mathbf{A}}^2 + \tilde{\mathbf{A}}\tilde{\mathbf{F}} + \tilde{\mathbf{F}}^T\tilde{\mathbf{A}} + \mathbf{\Lambda} \qquad \qquad \tilde{\mathbf{F}} = \mathbf{F} - \lambda(\mathbf{F} - \mathbf{F}^T) \\ \Lambda = (\mathbf{F}^T\mathbf{F} - \tilde{\mathbf{F}}^T\tilde{\mathbf{F}})/2 \\ \tilde{\mathbf{A}}(0) = \mathbf{F}_c + \lambda(\mathbf{F}_{nc} + \mathbf{F}_{nc}^T)/2$$

Exactly solvable for general F by translation and inversion. In 2D, explicit form is available, but looks horrible.

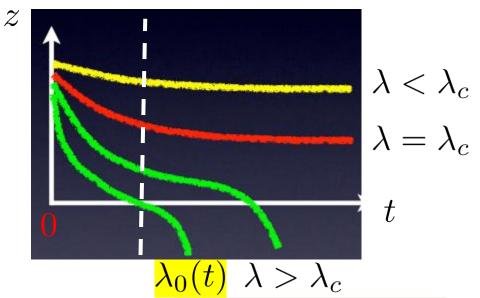
$$G(\lambda) = \langle e^{-\lambda W} \rangle$$
 Gaussian integrals \longrightarrow Product of determinants

$$\ln G(\lambda;t) = \int_0^t d\tau \, \operatorname{Tr}(\tilde{\mathsf{A}}(\tau) - \tilde{\mathsf{F}}) - \frac{1}{2} \ln \underbrace{\frac{\det{[\tilde{\mathsf{A}}(t) - \lambda(\mathsf{F}_{nc} + \mathsf{F}_{nc}^T)/2]}}_{\det{\mathsf{F}_c}}$$

Generating function and PDF

$$\ln G(\lambda;t) = \int_0^t d\tau \, \operatorname{Tr}(\tilde{\mathsf{A}}(\tau) - \tilde{\mathsf{F}}) - \frac{1}{2} \ln \underbrace{\frac{\det{[\tilde{\mathsf{A}}(t) - \lambda(\mathsf{F}_{nc} + \mathsf{F}_{nc}^T)/2]}}{\det{\mathsf{F}_c}}$$

$$z = \det \left[\tilde{\mathsf{A}}(t) - \lambda (\mathsf{F}_{nc} + \mathsf{F}_{nc}^T)/2 \right]$$

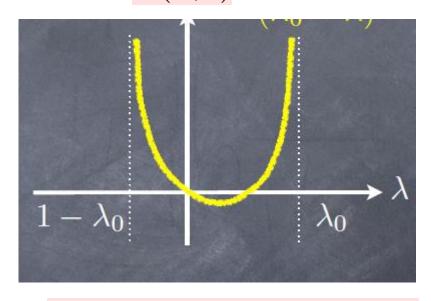


For fixed t, z = 0 at $\lambda = \lambda_0(t)$

Near
$$\lambda = \lambda_0(t)$$
, $z(\lambda;t) \sim (\lambda_0(t) - \lambda)$ $P(W,t) \sim |W|^{-1/2} e^{-\lambda_0(t)|W|}$

• $\lambda_0(t)$ decreases continuously with t approaches λ_c .

$$G(\lambda, t)$$



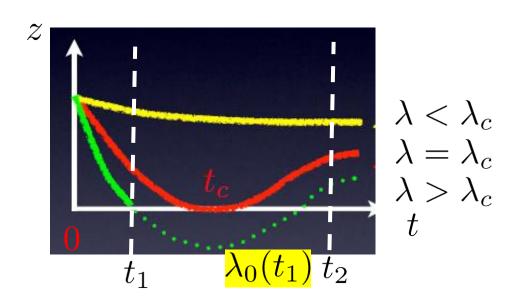
$$G(\lambda, t) \sim (\lambda_0(t) - \lambda)^{-1/2}$$

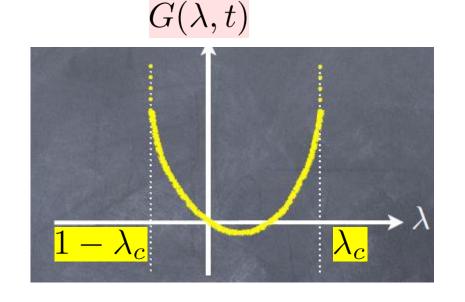
$$P(W,t) \sim |W|^{-1/2} e^{-\lambda_0(t)|W|}$$

Type I

Generating function and PDF

$$\ln G(\lambda;t) = \int_0^t d\tau \, \operatorname{Tr}(\tilde{\mathsf{A}}(\tau) - \tilde{\mathsf{F}}) - \frac{1}{2} \ln \underbrace{\frac{\det{[\tilde{\mathsf{A}}(t) - \lambda(\mathsf{F}_{nc} + \mathsf{F}_{nc}^T)/2)}}{\det{\mathsf{F}}_c}}_{}$$





For
$$t_1 < t_c$$
, $z = 0$ at $\lambda = \lambda_0(t_1)$ For $t_2 > t_c$, $z > 0$ at $\lambda = \lambda_c$
Near $\lambda = \lambda_0(t)$, $z(\lambda;t) \sim (\lambda_0(t) - \lambda)$ G diverges discontinuously.
 $G(\lambda,t) \sim (\lambda_0(t) - \lambda)^{-1/2}$ $P(W,t) \sim |W|^{-2}e^{-\lambda_c|W|}$
 $P(W,t) \sim |W|^{-1/2}e^{-\lambda_0(t)|W|}$ Type I • $\lambda_c = \lambda_0(t_c)$ constant. Type II

 $P(W,t) \sim |W|^{-2} e^{-\lambda_c |W|}$

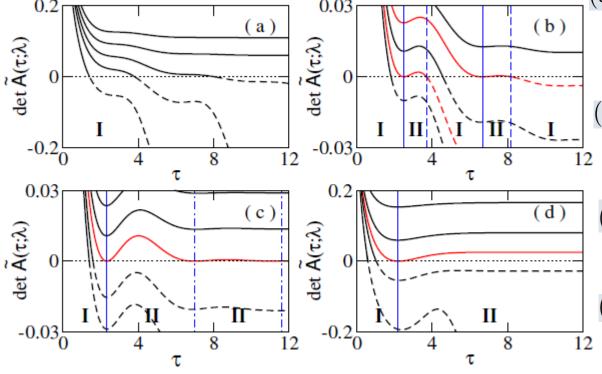
For $t_2 > t_c$, z > 0 at $\lambda = \lambda_c$

• simple case

$$\dot{\mathbf{x}} = -\mathsf{F}\cdot\mathbf{x} + \boldsymbol{\xi}$$

$$\mathsf{F}_c = \left(\begin{array}{cc} 1+y & 0 \\ 0 & 1-y \end{array}\right) \quad \mathsf{F}_{nc} = \left(\begin{array}{cc} 0 & q \\ -q & 0 \end{array}\right) \quad z = \det\left[\tilde{\mathsf{A}}(t) - \lambda(\mathsf{F}_{nc} + \mathsf{F}_{nc}^T)/2\right]$$

$$q = 0.3$$



(a)
$$y = 0.65$$

oscillation & mono. decreasing irrelevant oscillation

(b)
$$y = 0.7$$

oscillation relevant & complex tr.

(c)
$$y = \sqrt{109/200}$$

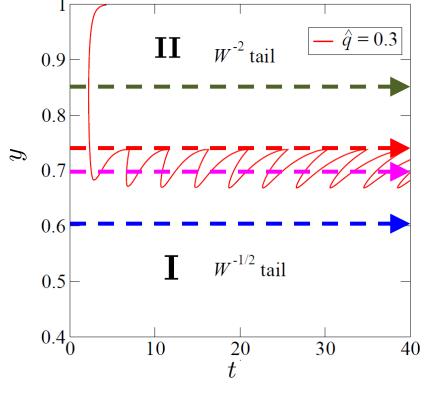
Boundary & inf. tangential pts.

(d)
$$y = 0.8$$
 "strong" anisotropy

No (irrelevant) oscillation 1st overshooting dominant.

• simple case
$$\dot{\mathbf{x}} = -\mathbf{F} \cdot \mathbf{x} + \boldsymbol{\xi}$$

$$\mathsf{F}_c = \left(\begin{array}{cc} 1+y & 0 \\ 0 & 1-y \end{array} \right) \quad \mathsf{F}_{nc} = \left(\begin{array}{cc} 0 & q \\ -q & 0 \end{array} \right)$$



$$y^* = \sqrt{(1+q^2)/2}, \ \lambda_c^* = (1+q)/(2q),$$

 $T^* = 2\pi/\sqrt{2(1-q^2)} = \pi/y^*,$

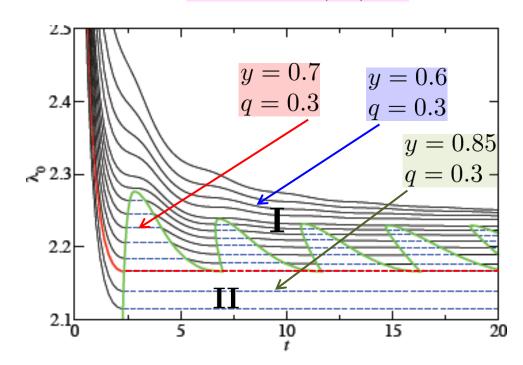
I $G(\lambda) \sim (\lambda_0(t) - \lambda)^{-1/2}$

$$P(W) \sim \frac{e^{-\lambda_0(t)|W|}}{|W|^{1/2}}$$

II $G(\lambda) \sim \text{finite for } \lambda < \lambda_0(t_c)$

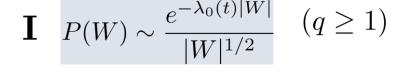
$$\infty$$
 for $\lambda > \lambda_0(t_c)$

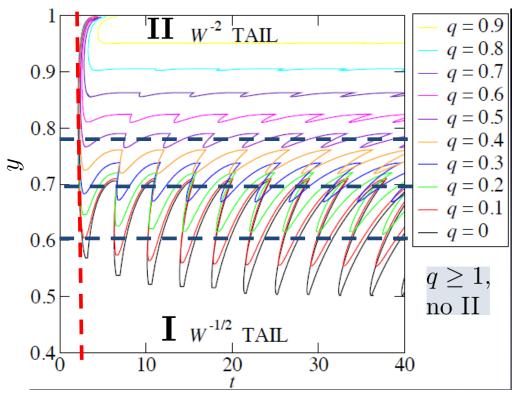
$$P(W) \sim \frac{e^{-\lambda_0(t_c)|W|}}{|W|^2}$$



• simple case
$$\dot{\mathbf{x}} = -\mathbf{F} \cdot \mathbf{x} + \boldsymbol{\xi}$$

$$\mathsf{F}_c = \left(\begin{array}{cc} 1+y & 0 \\ 0 & 1-y \end{array} \right) \quad \mathsf{F}_{nc} = \left(\begin{array}{cc} 0 & q \\ -q & 0 \end{array} \right)$$





$$\mathbf{II}\ P(W) \sim \frac{e^{-|\mathbf{\lambda}_0(t_c)|W|}}{|W|^2}$$

- Origin for locking transitions?
 - rotational mode by torque & decaying mode by anisotropy
 - II: torque is small enough to feel decaying mode
 - why locking like Shapiro steps?
- Ongoing and future works
 - tilted washboard potential?
 - i.c. dependence P(Q)
 - underdamped
 - time-dependent protocol

$$y^* = \sqrt{(1+q^2)/2}, \ \lambda_c^* = (1+q)/(2q),$$
 $T^* = 2\pi/\sqrt{2(1-q^2)} = \pi/y^*,$