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LDF for Equilibrium Systems with Integrable

Interactions

The Boltzmann-Gibbs-Einstein relation for the probability that the
number of particles NΛ, in a macroscopic region Λ inside a much
larger box V , V >> Λ (V = Rd/Zd), with < NΛ >= ρ|Λ| will have a
value n|Λ|, n 6= ρ, is given by

Probability(NΛ = n|Λ|) ∼ Exp{−|Λ|[f (n)]− f (ρ)− λ(n − ρ)]}

where f (ρ) is the usual Helmholtz free enrgy per unit volume and

λ = ∂f (ρ)
∂ρ

is the chemical potential.
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To get “typical” fluctuations we set, n = ρ + ξ√
|Λ|

and expand the

LDF around n = ρ.
This yields

Prob(u) = Exp[−1

2

u2

σ
]

where σ = (∂
2f
∂ρ2 )−1 is the compressibility.

According to Ginibre’s Theorem (with some generalization),
σ ≥ σ0 > 0 for systems with integrable potentials (the proof actually
requires a lot more). At critical points σ is infinite.
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Coulomb potentials are however very far from being integrable and
the LDF as well as fluctuations require a separate study. I shall do
that first then consider some very simple non-equilibrium systems for
which the LDF can be computed explicitly not only for NΛ but also
for a density profile ρ(x).
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Coulomb Systems

The properties of macroscopic matter are almost entirely determined
by the Coulomb interactions between electrons and nuclei, satisfying
appropriate quantum statistics.
While the real world is 3 dimensional it is useful to consider such
systems also in other dimensions and as classical systems. The
Coulomb interaction between charges ei , ej at positions ri , rj in Rd is,
with r = |ri − rj |,

vd(r) =


−eiej r d = 1

−eiej log(r) d = 2

+eiej r
2−d d ≥ 3

(1)
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I shall also consider the Jellium or one-component-plasma (OCP)
model (introduced by Wigner) in which particles with a positive
charge e move in a uniform background of negative charge with
density −ρe. The background produces an external potential
proportional to ρer 2

i ; ri the distance from the center of rotational
symmetry.
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My concern here will be primarily with effects due to the long range
nature of the Coulomb potential. When necessary, we can think of
the charges as being smeared out in little balls or having hard cores
to take care of the singular contact interactions in d ≥ 2.
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Fluctuations

To fluctuate is normal and in most cases fluctuations are themselves
normal, by which I mean that in a region Λ with volume |Λ|, they
grow like the square root of |Λ| as in a Poisson process (or faster as at
critical points). There are however many very interesting cases where
the fluctuations are subnormal. This includes local charge fluctuations
in globally neutral macroscopic systems, the case I shall now discuss.
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To get a feeling for what such fluctuations might look like we note
that in many situations, such as those involving fluids at low and
moderate temperatures, we usually consider macroscopic systems as
made up of neutral atoms or molecules interacting via effective short
range Lennard-Jones type potentials. In such cases, the fluctuations
in the net charge QΛ in a region Λ will be due entirely to the surface
of Λ cutting these entities in a “random” way. < Q2

Λ > may then be
expected to be proportional to the surface area of Λ.
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The question naturally arises as to whether this type of behavior is
indeed a consequence, in some or all situations, of the true Coulomb
interactions. In particular, is it true for charge fluctuations in
plasmas, molten salts, metals, etc., where bare Coulomb interactions
are part of the effective Hamiltonian?

To simplify matters I shall consider the classical OCP (with e = 1)
whose structure is of interest also in other contexts, such as the
distribution of eigenvalues of random matrices. I will indicate the
difference with multi-component systems when relevant.
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Now, while for systems with short range interactions one can prove
(Ginibre) that the variance in particle number NΛ in a region Λ ⊂ Rd

grows at least as fast as the volume |Λ|

VΛ =< (NΛ− < NΛ >)2 > ≥ c |Λ|, c > 0, (2)

this does not hold for Coulomb interactions. Fluctuations in the
charge QΛ, which for the OCP is the same as fluctuations in NΛ with
< NΛ >= ρ|Λ|, will, as already noted, only grow as the surface area
< Q2

Λ >∼ |∂Λ|. This is in fact what one can prove, under reasonable
assumptions on clustering.
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To see how this comes about we note that the variance VΛ is
expressible in terms of the pair correlation function of the infinite
system. For a translation invariant system we have,

VΛ =

∫
Λ

∫
Λ

dr1dr2G (r1 − r2)

= |Λ|
∫
Rd

G (r)dr −
∫
Rd

G (r)αΛ(r)dr,

where

G (r1 − r2) =

〈∑
i ,j

δ(r1 − xi)δ(r2 − xj)

〉
− ρ2,

= ρδ(r1 − r2) + ρ2(r1 − r2)− ρ2,

αΛ(r) =

∫
χΛ(r + r1)[1− χΛ(r1)]dr1

χΛ(y) =

{
1 y ∈ Λ
0 y /∈ Λ
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This is modified in a simple way for a periodic system.
For charge fluctuations in multi-charge systems G (r) corresponds to
the charge-charge correlations.
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When Λ ↑ Rd in a self similar way αΛ will grow like the surface area
|∂Λ| ∼ |Λ|(d−1)/d with |∂Λ| = 2 for d = 1. Averaging αΛ(r)/|∂Λ|
over rotations we obtain

lim
|Λ|→∞

αΛ(r)

|∂Λ|
= αd |r|,

where

αd =


1/2 d = 1
1/π d = 2
. . .
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In Coulomb systems

lim
1

|Λ|
VΛ =

∫
Rd

G (r)dr = 0, (3)

due to Debye screening. This is known as the “first sum rule”.
Systems satisfying (3) are also known as superhomogeneous.

We then have, for systems satisfying (3),

VΛ

|∂Λ|
→ −αd

∫ ∞
0

rdG (r)dr , (4)

where we have sphericalized G . Equation (4) is called the
Stillinger-Lovett relation. When (3) holds but (4) is infinite the
variance will grow faster than the surface area but slower than the
volume.
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Question Can the variance grow slower than |∂Λ|. The answer by J.
Beck is “no” if the distribution is rotational invariant (or Λ is a
sphere). It is still an open question how small this variance can be
and whether it attains its minimum value for a regular lattice.
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Going beyond the variance, we also have that for Coulomb systems in
d ≥ 2 the charge fluctuation satisfy a central limit theorem :
deviation from the average divided by the square root of the variance
gives

(NΛ − 〈NΛ〉)√
VΛ

→ ξ,

a standard Gaussian random variable. This was proven by
Martin-Yalcin.
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In fact the following is true: let R2 (generally Rd) be divided into
squares Γj of area L2 whose centers are located LZ2. Setting

ξj = Q(Γj)/σ(Γj), σ(Γj) = KL1/2

we find that the joint distribution of the {ξj} approaches as L→∞ a
Gaussian measure with covariance

Cj ,k =

[
δj ,k −

1

4

∑
e

δj−k,e

]
=

1

4
[−∆]j ,k , (∗)

where e is the unit lattice vector and ∆ is the discrete Laplacian.

This means that the charge fluctuations in Γj ,L are compensated by
the opposite charges in neighboring (cubes). This is exactly what one
would expect when the charges are bound together in neutral
molecules.
The same holds for d > 2. In d = 1, |∂Λ| = 2 and as shown by M-Y
the charge (particle in OCP) fluctuations are bounded and have a
well-defined non Gaussian distribution as |Λ| → ∞.
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Large Deviations

As might be expected from the reduction of fluctuations, the
probability of large deviations from charge neutrality, for
multi-component or OCP system, will be smaller for Coulomb
systems than those for systems with short range interactions. This
problem was studied by Jancovici, L., and Manificat (JLM) in (1993),
using electrostatic type arguments. They found that this is indeed
the case in all dimensions and all β.
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For the 2d OCP with density ρ = 1, the probability of having n(R)
particles in a disc of radius R , corresponding to a charge
|Q| = |n(R)− πR2|, behaves as

Prob
{
|n(R)− πR2| > Rα

}
∼ exp

[
−cαRφ(α)

]
,

with

φ(α) =


2α− 1 , 1

2
< α ≤ 1

3α− 2 , 1 ≤ α ≤ 2
2α , α ≥ 2

This probability is much smaller than the large deviations for systems
with short range interactions where, e.g. for α = 2 one would get
e−cR

2
instead of e−cR

4
. As usual the symbol ∼ means that taking the

logarithm of both sides and dividing by Rφ(α) we get a finite limit
when R →∞.
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These “macroscopic” results can be checked and confirmed at β = 2
where we have explicit solutions for the correlation functions. We can
get then additional information such as the charge density outside the
disc of radius R conditioned on there being no particles inside. In
particular the density at r = R+ is given by ρ(R+) ∼ 1

2
πρ2R
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It turns out that the large deviation function we obtained is of the
same form, in its dependence on α as that of a point process

generated by the zeroes of a Gaussian Entire Function, f =
∑ ξk√

k!
zk ,

with the ξk i.i.d standard complex Gaussians (Nazarov, Sodin,
Volberg).
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For d = 1, we have, as already noted, the probability of having the
charge going to infinity in any interval of length L goes to zero
independent of how L→∞, i.e, the φ(α) is infinite for α > 0. ( It
may be interesting to note here that this fact is not a consequence of
having bounded variance in any interval as can be shown by a
counter-example (Goldstein, Lebowitz, Speer).)
The situation in d = 3 is similar to that in d = 2 although the details
differ.
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Number Rigidity

So far we have discussed fluctuations and large deviations of the
charge in a region Λ without saying anything about the configuration
of particles/charges outside Λ, i.e. in Λc = Rd \ Λ. We ask now:
what can we say about the distribution of points (charge) inside Λ
given the configuration in Λc , i.e, we want the conditional probability
µΛ (dXΛ|XΛc ) of a configuration in dXΛ given XΛc .

25 / 44



For equilibrium Gibbs measures of systems with short range
interactions the answer to this is given by the DLR (Dobrushin,
Lanford, Ruelle) equations.

µΛ (x1, . . . xN |XΛc ) =
exp [−βU(XΛ|XΛc )]∫

e−βU(XΛ|XΛc )dXΛ

(5)

where U(XΛ|XΛc is the potential energy of a configuration in Λ given
the configuration in Λc = Rd \ Λ.
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This equation involving U(XΛ|XΛc ) holds for all infinite volume Gibbs
measures whether these are obtained as limits of finite volume
micro-canonical, canonical or grand-canonical ensembles (with the
appropriate β and z for the first two). It does not however work for
systems with long range Coulomb interactions, where U(XΛ|XΛc ) may
be infinite for many configurations.
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Aizenman and Martin (AM 1981), using earlier work by Lenard, gave
a characterization of these measures in d = 1 via the electric field
E (x).
Using this description AM proved that the charge in an interval
[a, b] = Λ, which corresponds for the OCP to the number of particles
in Λ, is uniquely specified by the configuration XΛc for all typical
configurations with respect to infinite volume measure µ. (The set of
atypical configurations has measure zero).
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This “number rigidity” property, i.e, NΛ = f (XΛc ), was recently
proven by Ghosh and Peres (GP2012) to hold for the OCP in d = 2,
at β = 2. It was also proven by Ghosh (G2012) to hold at β = 2 for
the d = 1 Dyson log gas, i.e, for charged particles in one dimension
interacting via a 2d logarithmic Coulomb potential in a uniform
background. The variance of particle number in an interval [a, b] in
this system grows like log(b − a) which is slower than |Λ| but greater
than |∂Λ|.

GP also showed that while NΛ is fixed by XΛc the distribution of
points inside Λ is not rigid: it is in fact absolutely continuous with
respect to the Lebesgue measure. The same is true for the 1d
Coulomb system studied by MA.

29 / 44



This “number rigidity” property, i.e, NΛ = f (XΛc ), was recently
proven by Ghosh and Peres (GP2012) to hold for the OCP in d = 2,
at β = 2. It was also proven by Ghosh (G2012) to hold at β = 2 for
the d = 1 Dyson log gas, i.e, for charged particles in one dimension
interacting via a 2d logarithmic Coulomb potential in a uniform
background. The variance of particle number in an interval [a, b] in
this system grows like log(b − a) which is slower than |Λ| but greater
than |∂Λ|.
GP also showed that while NΛ is fixed by XΛc the distribution of
points inside Λ is not rigid: it is in fact absolutely continuous with
respect to the Lebesgue measure. The same is true for the 1d
Coulomb system studied by MA.

29 / 44



The 2d and 1d cases studied by GP correspond (as is well known)
respectively to the distribution of the bulk eigenvalues of the random
matrices chosen from the Ginibre ensemble and of the Gaussian
Unitary Ensemble (GUE or GCE). In the Ginibre ensemble each of the
entries in a N × N marix are iid complex Gaussian random variables
while the GUE consists of random Gaussian Hermitian matrices
whose eigenvalues are real. The infinite volume measure µ is obtained
by letting N →∞ and scaling to make the density ρ uniform.

In both cases the eigenvalue distribution is known to be a
determinantal process. It was these processes that were the focus of
GP. Their proof of rigidity looks very different from that of AM.
However from a physical point of view the GP systems are just
examples of Coulomb systems. Their rigidity should therefore follow
from charge screening in Coulomb systems.
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In recent work with Aizenman and Ghosh we were indeed able to
prove rigidity for systems (point processes) d = 1 and 2 in which
V
|Λ| → 0, i.e, the variance in the particle number (or charge) grows
slower than the volume. These are called superhomogeneous
processes. We require in addition that the truncated pair correlation
function decays at least as fast as r−2 in d = 1 and as r−(4+ε) in
d = 2. This includes all the cases mentioned before as well as the 1d
log gas for β ≤ 2, the 2d two component Coulomb system in d = 2
for β ≤ 2 using results of Samai, and the 2d OCP for small β.
I believe in fact that this is the case for all β in d = 1 and 2 but
should not hold in d ≥ 3.
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Rigidity-Non rigidity transition in d = 3

Consider a point process obtained by displacing each point x ∈ Zd by
Yx , i.i.d. random variables with distribution w(y)dy .
Then the point process is rigid in Z1 if Yx has a finite first moment,
in Z2 if Yx has a finite second moment, in Zd , d ≥ 3 there is for
w(y) a Gaussian with variance σ a “phase transition”. The process is
rigid if σ < σc and not rigid if σ > σc . (Y.peres and A.Sly on arXiv).
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