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Ask me about thermal transport...

Crossover behavior of the thermal conductance and Kramers’ transition rate theory
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* Introduction — Quantum Biology?

 Motivation — optical experiments on photosynthetic complexes
* Quick review of current theory
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* Thinking about Power

* Interplay between performance, Geometry and Environment

e Summary & Conclusions
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Introduction — Quantum Biology?

Quantum Biology:

the search for “non-trivial” quantum effects in biological systems
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Introduction — Quantum Biology?

Quantum Biology:

the search for “non-trivial” quantum effects in biological systems

Candidates:

* Qlfaction (how do we sense molecules by smell?)
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Introduction — Quantum Biology?

Quantum Biology:

the search for “non-trivial” quantum effects in biological systems

Candidates:

* Qlfaction (how do we sense molecules by smell?)

* Avian navigation (how does a Robin find its way from Norway to
Egypt?)

* Photosynthesis



Intro to Photosynthesis

Basic Photosynthesis




Intro to Photosynthesis

* PS cells —like solar cells — can be viewed as heat engines

* They always work very far from equilibrium
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Dorfman, Voronin, Mukamel & Scully PNAS 110, 2746(2012)

See also Einax, Dierl & Nitzan, J. Phys. Chem. C 115, 21396-21401 (2011);
Ajisaka, Zunkovitz & Dubi, Sci. Rep. 5, 8312 (2015).



Intro to Photosynthesis

Phytoplankton — 50-85% of the
oxygen on planet earth



The Cosmic Calendar .

The 13.8 billion year history of the universe scaled down to a single year, where -
the Big Bang is January 15t at midnight;and right naw is midnight 1 year later
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Intro to Photosynthesis

The “fruit-fly” of
photosynthesis —

the Green Sulfur Bacteria




Intro to Photosynthesis

The “fruit-fly” of et e

photosynthesis — ‘I.:':'"n '
Putative transporte)

the Green Sulfur Bacteria .. ComgY

000000 000000 O

Light

Ch|a<

BChl-a E
: U
reaction s
* centre s
Muh et al., PNAS 104, 16862 (2007) e &
000000 000000 éb )
ese00s o00se0 (&}

= i
sesensdrantiss Cytoplasm

CsmD
v’
-
-

Periplasm

James Allen et al., Photosynth. Res., 75, 49 (2003)



Intro to Photosynthesis

The system is well-characterized:

H = 37,50 Enlninl + Zam tam In)(ml,

E, ,t,., extracted from pump-probe experiments



Experiments revile Quantum Coherence

2D-Electronic Spectroscopy:
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Experiments revile Quantum Coherence
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Experiments revile Quantum Coherence

Quantum Coherence in Exciton Transfer Complexes (ETC):
1. Is it real?
2. How is coherence maintained in a “wet and floppy environment”?

3. Dows nature use this coherence for ETC optimization?

(Optimization: Stability, Photoprotection, Efficiency)*



Theory of Quantum coherence in ETC — short intro

The general structure of theory in ETC analysis:

(i) Hamiltonian: Mo = Xnsy Enln)(nl + Zm tamIn)ml

.o . . _ +
(i) Environment: Hyy,, = X, wgaga,

oLy
(iii) Coupling: M. = XpgAng(ad +ag)efe, O ©
(iv) Spectral density J(w) = ), /135(a) — a)q) B ;,‘, O ’_
XA



Theory of Quantum coherence in ETC — short intro

What to calculate? Vast majority: local density ® r
1. Excite exciton at site 1 or 6 or both @ ( " P
2. Evaluate dynamics Ge» w - @
(via density matrix, p = —i[H, p] + Lp) Ry’
3. Calculate exciton density at cite 3 ©, 2% N

Efficiency is defined as :

N3 =73 fooo p33(t)dt



Theory of Quantum coherence in ETC — short intro

Typically looks something like this:
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Chin, Datta, Caruso, Huelga & Plenio, New. J. Phys. 12, 065002 (2010)



Theory of Quantum coherence in ETC — short intro

Efficiency is enhanced in the presence of dephasing

Plenio, M. B. and Huelga, S. F. New Journal of Physics 10, 113019 (2008);
Rebentrost, P., Mohseni, M., Kassal, |., Lloyd, S.; Aspuru-Guzik, A., New Journal of Physics
11, 033003 (2009).

(mechanism still unclear...)

Some Review:

Ishizaki & Fleming, Annu. Rev. Condens. Matter Phys (2012);

Huelga & Plenio, Nature Phys. (2014); Fleming, Huelga & Plenio, New J. Phys. (2011);
Collini, Chem. Soc. Rev. (2013); Scholes & Fleming, Adv. Chem. Phys. (2005);

Pachon & Brumer, PCCP (2012); Scholes, Nat. Phys. (2011);

Scholes & Smyth, J. Chem. Phys. (2014).



What can we add? (aims)

How is the (standard) efficiency behaves?

What is its relation to n5 ?

What is the origin for dephasing-enhanced efficiency?

The ETC is an energy-conversion device
Excitons (as opposed to electrons) do not carry charge:

Exciton current is not simply related to energy current!



Outline

Part II:
* Thinking about Power

* Interplay between performance, Geometry and Environment



A Heat-Current approach to exciton transport

This approach:
* Takes into account the source (antenna) and sink (reaction center
* Impliesincoherent energy input

* Directly calculate Power output



A Heat-Current approach to exciton transport

Starting point: the full (many-body) FMO Hamiltonian

7
— E + +
}[FMO - En CnCn + Z tnm CnCm
n=1 nm

Then use the Lindblad Equation

pt) = ——[?[ p(O)] + LIp(8)],

1 (280cem™)

A 1
Llp(®)] = Z <—§{V;Vi;,0} + ViPViJr)

i

Pros:

* Proper quantum equation

* Simple physical interpretation
Cons: Phenomenological, no memory




A Heat-Current approach to exciton transport

The V-operators encode different physical processes:
_ + _ -1
Vdeph — \/Vdephcn Cn ydeph — Tdeph
V.. = \/_-c+ \/_-c+
in Yin€1,VYVinCe »
Vout = VYoutC3

1 (280cem™)



A Heat-Current approach to exciton transport
The properties of the system are determined from the Steady state:

i )
Poo = —g[%,poo] + L[po] =0

Heat currents can be calculated as:

Qin = Tr(_Msourcepoo}[)

Qout — Tr(_MSlnkpoo}[) 1 (280cem™)




A Heat-Current approach to exciton transport

100. lO.ymj [ps"]

L

10, 100.

I
Ydeph [ps~']

Your =10ps™  —— ]

* Dephasing assists power output!

* Optimal rates ¥ j~Vaepn~0.5 ps~! (“Goldilocks” effect)



A Heat-Current approach to exciton transport
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A Heat-Current approach to exciton transport

How general is this effect?
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It holds for different geometries:
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A Heat-Current approach to exciton transport

Heat current vs. exciton current:
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Interplay between Geometry and Environment

Dephasing-induced enhancement of power output:

* Whatis the origin for the excitonic effect?

delocalization (noise-induced level alignment)
Oscillation damping

Momentum rejuvenation (large lattices)

 Does (and how) it involve the Geometry of the network?



Interplay between Geometry and Environment

Calculating local heat currents:

d : Vi = .
E(hi> = —iTr ([ hy, H]poo) = Tr (hiMpo,) = Z]: Qicj

1 (280cm™) Wu & Segal., J. Phys. A: Math.
Theor. 2009, 42, 025302

(175 cm")



Interplay between Geometry and Environment

Q.!'Hj
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* “inter-branch” heat current vanishes at

optimal dephasing!
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Interplay between Geometry and Environment

Immediate suspect: density differences - not the origin
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Directed Heat Flow
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Directed Heat Flow

An analytically soluble minimal model:

toy(e1—€3)(€1—€x+ty)
(61—62 +t0)2+6 t(z)

Vanishing dephasing limit: Q;c,, =~ —

to(e1—€3)

Ydeph

Strong dephasing limit:Q.,, =



Directed Heat Flow

An analytically soluble minimal model:
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Directed Heat Flow

The mechanism works even for pulse-excitation:

Ydeon=0.0188679 ps™! Yéepn=0.0596656 ps™! Ydeoh=0.188679 ps~’
P! p P
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Dephasing & Durability

Up till now: analysis driven by power output

The biologists’ intuition: its all about stability and Durability
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Dephasing & Durability

Up till now: analysis driven by power output

The biologists’ intuition: its all about stability and Durability
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Dephasing & Durability
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Conclusion: dephasing does not assist durability

Hypothesis: the two-branch structure developed to aid durability. The “right

amount” of dephasing evolved to optimize power output, given the two-branch
structure.



Summary [J. Phys. Chem. C, DOI: 10.1021/acs.jpcc.5b08493]

A new approach to excitonic energy transfer: \G},’T 4
Calculating heat currents O @ ,
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Summary [J. Phys. Chem. C, DOI: 10.1021/acs.jpcc.5b08493]

A new approach to excitonic energy transfer: oLy
Calculating heat currents hoSAtle ¥

* There is an optimal depahsing time for which power &%, % 5
output is maximal

e 120
., 1100




Summary [J. Phys. Chem. C, DOI: 10.1021/acs.jpcc.5b08493]

* A new approach to excitonic energy transfer: G’ /
Calculating heat currents “

* There is an optimal depahsing time for which power &%, % 5
output is maximal

e 120
., 1100

 This is due to Directed Heat Flow:

3

the interplay between classical and quantum heat *
currents forces heat to flow along the branches .

0.3

0.1

0.0

-0.1




Summary [J. Phys. Chem. C, DOI: 10.1021/acs.jpcc.5b08493]

A new approach to excitonic energy transfer: ‘C{?‘,’f 4
Calculating heat currents AR N

, o 0N

* There is an optimal depahsing time for which power &5 o";'ﬁ‘ ke

output is maximal

e 120
., 1100

* This is due to Directed Heat Flow:

3

the interplay between classical and quantum heat *
currents forces heat to flow along the branches .

Thank you for our attention...
&
Thanks to the organizers...




