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Introduction
Current fluctuations in the hydrodynamic limit



Soundary-driven systems

Time-averaged current

~ p (Total flux to B)
1" (Observation time)

>

e ]

Large deviation principle

ForT > 1, P(J) ~ e—T®(J) Large deviation function
(LDF)

Reservoir A
Reservoir B

Cumulant generating function
(X8 = Tt (J) = sup[AJ — u(N)]
\ Lk Sivs



Goal: obtain

Hydrodynamic limit ~u(\) and @(J)

L — oo, local equilibrium

Diffusive scaling
i — Lz, t— L°t

el o]

Reservoir A
Reservoir B
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Goal: obtain
Hydrodynamic limit - () and ()

L — oo, local equilibrium

Diffusive scaling
i — Lz, t— L°t

0 <z <1 (continuum)

Reservoir B

Reservoir A

Fluctuating hydrodynamics

Oup = ~0u | ~D(p)0ep + /o (p)n
(n(z, (' 1)) = L™16(x — /)6 (t — t')
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Goal: obtain

Hydrodynamic limit - () and ()

L — oo, local equilibrium

Diffusive scaling
i — Lz, t— L°t

Boundary Boundary
condition: 0 <z <1 (continuum) condition:
p(0) = pa p(1) = pB

Fluctuating hydrodynamics

Orp = —0y {—D(P)axp + mn}

Diffusivity Mobility
<77(337 75)77(35,7 tl)> — L__15(£C o x/)é(t o t/)
Weak noise

(microscopic origin)



Goal: obtain

Calculation of current LDFs p(A) and @(J)

Diffusive scaling Fluctuating hydrodynamics

i — Lz, t— L%t Oip = —0y [—D(p)é’mp + \/a(p)n}

Boundary Boundary
condition: 0 <z <1 (continuum) condition:
p(0) = pa p(1) = pB

Microscopic approaches (take the limit later)

Derrida, Doucot, Roche, J. Stat. Phys. 115, 717 (2004)
Bodineau & Derrida, Phys. Rev. Lett. 92, 180601 (2004)

Macroscopic fluctuation theory (take the limit first)
~ Bertini et al., Phys. Rev. Lett. 94, 030601 (2005)
- Bertini et al., J. Stat. Phys. 123, 237 (2006)

Simplification
by saddle-point
approximation
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Goal: obtain

Macroscopic fluctuation theory p(¥) and ()
Diffusive scaling Fluctuating hydrodynamics
i — Lx, t— L°t Orp = —0, {—D(p)(r)’xp + \/0(,0)77}
20
Boundary : Boundary
condition: 0 <z <1 (continuum) condition:
p(0) = pa =t p(1) =p5

1. Express the CGF in a path integral form. -
Fluctuating curent

<€)\QB> — /DIO <5(at,0 8:8,]) €L fOT/L di fol do >\]> ’

Hydrodynamic
eqguation




Goal: obtain

Macroscopic fluctuation theory u(\) and @(J)

Diffusive scaling Fluctuating hydrodynamics

i — Lz, t— L%t Oip = —0y [—D(p)é’mp + \/a(p)n}
= J

Boundary

condition:

p(0) = pa

Boundary
0 <z <1 (continuum) condition:

p(1) = pB

2. Introduce the conjugate field p.

2
:/Dﬁe_LfOT/L dtﬁ(atp+8:c])

Martin, Siggia, Rose, Phys. Rev. A 8, 423 (1973)
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Goal: obtain
Macroscopic tluctuation theory p(¥) and ()

Diffusive scaling Fluctuating hydrodynamics

i — Lz, t— L%t Oip = —0y [—D(p)é’mp + \/a(p)n}
= J

Boundary Boundary
condition: . condition:
_ 0 <z <1 (continuum _
p(0) = pa <<l ) p(1) = pB
p(0) =0 p(1) = A

3. Average over the fluctuating current.

2
(A5 = / DpDp <6—LfoT/L dt f d <ﬁatp—jamﬁ>>

O,



Goal: obtain

Macroscopic fluctuation theory u(\) and @(J)

Diffusive scaling Fluctuating hydrodynamics

i — Lz, t— L%t Oip = —0y [—D(p)é’mp + \/a(p)n}

Boundary Boundary
condition: . condition:
_ 0 <z <1 (continuum _
p(0) = pa <<l ) p(1) = pB
p(0) =0 p(1) = A

4. Apply the saddle-point approximation.

Th) = [ Dpppe LI’ Sl S pto-H )

L>1 H(p,p) = —D(p)(0xp)(0p) + §U(P)(a:cla)2
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Goal: obtain

Macroscopic tluctuation theory p(¥) and ()

Diffusive scaling Fluctuating hydrodynamics

i — Lz, t— L%t Oip = —0y [—D(p)é’mp + \/a(p)n}

Boundary Boundary
condition: . condition:
_ 0 <z <1 (continuum _
p(0) = pa <<l ) p(1) = pB
p(0) =0 p(1) = A
5. Derive Hamilton’s equations. Position I\/Iomentum

T/L?
Tu(\) = —L mm/ dt/ dz [pOip — H(Pa )]
1

D(0) (D) (D) + 50() (02’



Goal: obtain

Macroscopic fluctuation theory u(\) and @(J)

Diffusive scaling Fluctuating hydrodynamics

i — Lx, t— L°t Orp = —0, {—D(p)(r)’xp + a(p)n

Boundary Boundary
condition: . condition:

_ 0 <z <1 (continuum _
p(0) = pa <<l ) p(1) = p
p(0) =0 p(1) = A

1
5. Derive Hamilton’s equations. p,p) = —D(p)(0rp)(0xp) + §a(p)(5’xﬁ)2
T/L?

Tu(M\) =—L mln/ dt/ dx [p0ip — H(p, p)]

OH
Orp = a_p = (P)Ozp +ﬂ (p)&nﬂ]' Orp = o

0, p = noise realization



Goal: obtain
Macroscopic fluctuation theory u(\) and @(J)

Diffusive scaling Fluctuating hydrodynamics

i — Lz, t— L%t Oip = —0y [—D(p)é’mp + \/a(p)n}

Boundary Boundary
condition: . condition:
_ 0 <z <1 (continuum _
p(0) = pa <<l ) p(1) = p
p(0) =0 p(l) = A
6. Assume that the minimizing solution is stationary.
T/L?
Tu(A) = —L mln/ dt/ dx [pO:p — H (p, p)]
OH Ak
Op = 5= =0, c‘%p——@—p—o » o(z,t) = px(z), plx,t) = px(z)

Bodineau & Derrida, Phys. Rev. Lett. 92, 180601 (2004)



Goal: obtain

Macroscopic fluctuation theory u(\) and @(J)

Diffusive scaling Fluctuating hydrodynamics

i — Lz, t— L%t @p:—@xLle&m+WNNMﬂ

Boundary Boundary
condition: . condition:
_ 0 <z <1 (continuum _
p(0) = pa <<l ) p(1) = p
p(0) =0 p(l) = A
/. Evaluate the Hamiltonian at the “optimal profile”.
Current CGF Optimal profile
1 ! k oAk % A Ak
u) =7 [ deH (3. p3) ple.t) = p3(x), e t) = (@)
0

Bodineau & Derrida, Phys. Rev. Lett. 92, 180601 (2004)



Bertini et al., Rev. Mod. Phys. 87, 593 (2015)

Macroscopic fluctuation theory

Diffusive scaling

Fluctuating hydrodynamics

>

i — Lz, t— L%t

Oip = —0y [—D(P)axp + mﬁ}

Continuum
limit Saddle-point
approximation

v

Effective Hamiltonian

1

H(,O, /5) — —D(p) (a:cp) (a:c:a) + 50(:0) (833/6)2

Stationary solution

Current CGF

! Optimal profile

1
LGN




Current fluctuations in the hydrodynamic limit

Current CGF
For D(p) =1 and o(p) = cap® + c1p,
(— 2 (arcsinhy/w)> forw >0

C2
C2

L
= (arcsin —w)2 for w < 0

5 —€254) — ca(e? —1)pap5]

Imparato, Lecomte, van Wijland, Phys. Rev. E 80, 011131 (2009)

Current LDF ®(J) = sup|AJ — u(A)]
A

Symmetric exclusion process Kipnis—Marchioro—Presutti model
(SEP c1 = 2,C = —2) (KMP c1=0,c = 2)

®(J) ~ J? (Gaussian) ®(J) ~ J (Exponential)



Current fluctuations in the hydrodynamic limit

Current CGF Current LDF

% / dz H(p%, %) 2(J) = SUp[AJ — ()

In any case, J(\) = I _ O(L™ 1)
d\
Interpretation

In the hydrodynamic limit, current fluctuations are always comparable
to the average density gradient.

Questions
+ How can we study even larger current fluctuations?

+ Can extreme current fluctuations induce non-hydrodynamic
tail behaviors?




Current fluctuations in the hydrodynamic limit

Questions

+ How can we study even larger current fluctuations?
+ Can extreme current fluctuations induce non-hydrodynamic
tail behaviors?

Objectives

+ Develop a rescaling scheme which enables saddle-point techniques
but does not directly lead to the hydrodynamic limit.

+ Check if the rescaling scheme can recover the hydrodynamic limit
under appropriate conditions.

+ Obtain current CGFs assuming stationary saddle-point solutions.




Rest of the talk

+ Large N limit

+ Current fluctuations of the SEP-like model
+ Current fluctuations of the KMP-like model
+ Properties of optimal profiles

+ Conclusions and future works



Large N limit

Revisiting the hydrodynamic limit

Hydrodynamic limit involves two limiting processes.

2. The number L of such subsystems

goes to infinity.
< >

Reservoir A
Reservoir B

+—>
1. The system can be divided into
subsystems of size N > 1,
each of which is in local equilibrium.

Idea: take only the first limit, leave the second limit untaken.

Derrida, J. Stat. Mech., P07023 (2007)



—xample: coarse-grained S

Large N limit

Reservoir A

Reservoir B



—xample: coarse-grained SE

Large N limit

Reservoir A

“Some bonds are far slower "
¢ than the others.

Reservoir B



Large N limit

—xample: coarse-grained SE

o Boxes of N sites B

Reservoir A
Reservoir B



Large N limit

—xample: coarse-grained SEP
Q Boxes of N sites 5
4 (N ) )
~ T LV — Ty
< /\ i e
O n; Ti+t1 Tit2 5
% particles OO particles = particles GE,
{ \/N TLZ'_|_1(N — nz) ‘

v Local equilibrium 0

For each box, any configuration
with a fixed number of particles
Is equally likely.



Large N limit

|11
U

—xample: coarse-grained S

na Boxes of N sites N —np

4 4

/\ nz(N — ni+1)

T i1 Mi4-2 1
A particles [ particles [ particles "B

\/nzqu (N — TLZ)

N —ngy np
Coarse-grained dynamics
(with appropriate boundary rates and rescaling of time)



Large N limit

—xample: coarse-grained SEP
N A N —np
} /\nZ(N — TLZ'_|_1) }
N A H T H H (47 H’ni_|_1H H nry, H np
¢ Vi (N =) 4
N —nqy npg

Propagator for the number configuration

Plng, tn;, ] = /DnDﬁ exp {—/tf dit [n-n— H(n,ﬁ)]}

ti

Lefevre & Biroli, J. Stat. Mech., P07024 (2007)



Large N limit

Propagator for the number configuration

Lt
P[ng, t|ni, tj] = /DnDﬁ exp {—/ di [n-n— H(n,ﬁ)]}
4

Rescaling to density
naB — NpaB

i — pi
t — N1t

$

Propagator for the density configuration

i
ti

N > 1 enables the saddle-point approximation




Pre-Hamiltonian Large N limit

L—1

H(n,n) = Z ni(N —niq1) (eﬁ”;“_m — 1) + nip1 (N —ny) (eﬁi_ﬁi“ —1)]
i=1

+n1 (N —na)(e™™ —1) +a(N —nq) (" — 1)
—+ nL(N — ”r_LB) (e_f”L — 1) —|—’7LB(N — nL) (GﬁL — 1)

Rescaling to density
naB — NpaB

i — pi
t — N1t

Effective Hamiltonian (Vv > 1) '
L—1

H(p.p) =) [pi(1 = pir1) (777 = 1) + pisa (1 — pi) (€7 7P+ — 1))
1=1

+p1(1—=pa) (€77 = 1) + pa(l = pr) (e = 1)
+pr(1—pp) (e = 1) + pp(1 — pr) (e’ — 1)




Effective Hamiltonian (N > 1) Large N limit

H(p,p) =)  [pi(1 = pit1) ("7 = 1) + pipa(1 = py) (7771 —1)]

Continuum limit
Diffusive scaling Xy — Xy~ L

i — Lz, t— L°t pPo = PA, PL+1 = PB

Hydrodynamic limit (V> 1,L > 1)‘

H(p, p) = /O dz [~ (9.p) (D) + p(1 — p)(9up)’)

D(p) =1, o(p) = p(1 — p): this model is indeed SEP-like.

po = pr+1 =10




Large N limit

nA,B — NpaB
n; — Np; 1 — L
n; — P t — L%t
t — N1t
Microscopic Large N limit } Hydrodynamic limit
box dynamics (discrete space) (continuum)

Objectives

v Develop a rescaling scheme which enables saddle-point techniques
but does not directly lead to the hydrodynamic limit.

v Check if the rescaling scheme can recover the hydrodynamic limit
under appropriate conditions.




Large N limit

r NAB — NﬁA,Bw r 1
n; — Np; 1 — L
ni — Pi t — L%t
t — N1t
Microscopic ; Large N limit ’ Hydrodynamic limit
box dynamics (discrete space) (continuum)

Other works using the large N limit
+ Population dynamics

Meerson & Sasorov, Phys. Rev. E 83, 011129 (2011)

+ Spin-j representation of SEP and KMP (j = N /2 — o)
Tailleur, Kurchan, Lecomte, J. Phys. A 41, 505001 (2008)




Objectives

+ Obtain current CGFs assuming stationary saddle-point solutions.




Calculation of the current CGF

SEP-like model

Rescaling

Current CGF
na,B — Npa,B nr(A) = Hx(py, py)

ni — pi
t— N~

Saddle-point
v approximation




SEP-like model

Behaviors of the current CGF

Result for the large N limit > O(J)~JInJ

) (L + 1) sinh? (L%rlarcsinh\/@ forw >0
M p—
- —(L + 1) sin’ (L arcsin —w) forw < 0

L+1
Hydrodynamic result > D(J) ~ J?
) = !LLHarcsinhQ\@ for w > 0
S | —aresinh?/—w  forw <0

Auxiliary variable for both cases

w(\, pa,p) = (1 —e N[pp —e*pa + (e* —1)paps]



SEP-like model

Behaviors of the current CGF

Dashed: hydrodynamic

Comparison between the two limits Solid: large N limit

HL), p()
3.0
2.5
2.0
1.5
1.0

0.5

m1r(A), ()
20

-~

/”
-

f”
]




Behaviors of the current CGF

SEP-like model

Comparison between the two limits

HL), p()
3.0
2.5
2.0
1.5
1.0

0.5

Since J = 4L
are observed for J stronger than O(1).

L =21

Dashed: hydrodynamic
Solid: large N limit

HL()/pud)—-1

1

0.500

0.100

0.050

0.010 a =03 .
B 510 50100 500

im pr (ALY) # Lli_r)noou(E\Lo‘) if a > 1

L—o0

NTa—1 . .
~ e non-hydrodynamic behaviors



. YT a—1 . .
Since J = %‘—/\L ~ e non-hydrodynamic behaviors

are observed for J stronger than O(1).

Why O(1), instead of somewhere between O(1/L) and O(1)?

Before trying to answer this question,
let’s check a different class of model first.



KMP-like model

P-|lke dynamics




KMP-like model

KMP-like dynamics

n A N +np
> /\ni(N—FnZ-H) >
g H " H H n, HniHH H n H i
< Vi (N 1) 4
N 4+ ny npg

Features

+ Attraction instead of excluded volume repulsion.
+ N is no longer an upper bound on the number of particles.
+ Depending on the reservoir conditions, the occupancy of each site

can be much larger than M.

Idea: consider the case when 7ia, 5 ~ N°.



KMP-like model

Propagator for the number configuration

Lt
P[ng, t|ni, tj] = /DnDﬁ exp {—/ di [n-n— H(n,ﬁ)]}
4

Rescaling to density
iap — N°pap

Propagator for the density configuration

t

f
ti

N > 1 enables the saddle-point approximation



Pre-Hamiltonian KMP-like model

[nZ(N + ni+1) (BﬁiH_ﬁi — 1) + TLZ'_|_1(N + nz) (€ﬁi_ﬁi+1 — 1)}

=
-
>
]
- ~
)
—

1 (N +74) (€™ —1) +na(N +nq) (e" —1)
L(N+np) ( LA 1) +np(N +ng) (eﬁ’L_A — 1)

|
3 3

Rescaling to density
iap — N°pap

Effective Hamiltonian (Vv > 1) '
L—1

Hx(p.p) = Y [(piv1 — pi)(pi — pi1) + (Pi — pit1)pipit1]
1=1

+ p1(pa — p1) + Py p1pa+ (oL — N)(pB — pr) + (L — N)° pLPB




Effective Hamiltonian (Vv > 1) KMP-like model

L

1

A

Hy(p, p) = [(ﬁiﬂ — pi)(pi — pit1) + (pi — ﬁi+1)2,0ip7;+1}

]

]
—_

1

+ p1(pa — p1) + 1 p1pa+ (b — N (p — pr) + (P — A)? pLpB

>

Continuum limit
Diffusive scaling Xy — Xy~ L

i — Lz, t— L°t pPo = PA, PL+1 = PB

pAO — 07 pAL+]_ = A
Hydrodynamic limit (V> 1,L > 1) l

H(p, p) = / Az [~ (Dap) (Dap) + P2(9up)?]

D(p) =1, o(p) = p*: this model is indeed KMP-like.




KMP-like model

Calculation of the current CGF

Rescaling

Current CGF

fiap — N°pa.B .
pr(A) = Hx(px, Px)

Optimal profile
pi(t) = pxq» Pi(t) = P ;

Saddle-point A~
V approximation Stationary solution

A

Hx(p, p) =Y [(pix1 — pi)(pi — pis1) + (pi — pit1)?pipita)

1=1

+ p1(pa — p1) + p1pipa+ (pr — N (ps — pr) + (pr — N)? priB




KMP-like model

Behaviors of the current CGF

Result for the large N limit

{(L +1) sinh? (L%rlarcsinh\/c?) forw >0

(L + 1) sin’ (%ﬂ arcsin —w) forw <0

pr(A) =

Hydrodynamic result

(

) = —rarcsinh®/w  forw > 0
ILL —

1 . 2
\L—Harcsmh v—w Tforw <0

Auxiliary variable for both cases

w(X, pa, pB) = Mpp — pa) — N*paps



KMP-like model

Behaviors of the current CGF

Dashed: hydrodynamic

Comparison between the two limits Solid: large  limit

pur(A), u(d)
1.0 |

21 0.8
92 0.6 Each pair converge like

| L3 over the entire domain.
23

° |-
=~ oy L
N o o e e

Same exponential tails are
The domain is bounded by observed for.both cases.
Hydrodynamic and
__i <\ < _i > non-hydrodynamic regimes
PB PA are undistinguishable.




SEP-like model KMP-like model

Since J = 2L ~ M Hydrodynamic and
non-hydrodynamic behaviors non-hydrodynamic regimes
are observed for are undistinguishable.

J stronger than O(1).

Why so different?

Let’s check optimal profiles supporting large current fluctuations.



Optimal profiles

Optimal profiles of the SEP-like model

Density profiles

Momentum profiles

.......
..........................




Optimal profiles of the S

Optimal profiles

P-like model

| 5)* Density profiles
0.8, | |
o 4 ncreasing current
0 6L .......................
N T .
0.2
OO e e b e e b 1
0 20 40 60 30 100
j = —Oyp +

Collapse of

P /L -
0010 Momentum profiles »
O 008 7 .m-‘.-o-::::!":'.
0.006
0004 . <L = 100, 200, 400, 800
0002 . /L = 100
02 04 06 08 10'"
2p(1 = p)0up

Large current supported by large momentum gradient

Since 0,p ~ L*~ ! for A ~ L°,
a = 1 is the borderline for small gradient.



Optimal profiles

Optimal profiles of the KMP-like model

Density profiles Momentum profiles




Optimal profiles

Optimal profiles of the KMP-like model

Collapse of Momentum profiles

. density profiles A
p*/L yp P .
7 T s s i Tl |
O . 1 5 j T 2()-4'()‘ ........... 60 ......... 80 .... 100
E . | T T ‘ .
0.10 } 4 1 & | A+ 1 0 .,
I 3 2 —3i, 9L — = .
I .:;:' <)\ —I— ,5_3> L — 10 b 2 pB o .
005 .:::. i I 10
i — 10!
L =100, 200, 400, 800 % g0 Inereasing current
““““““““““““ = | : .
02 04 06 08 10 Ly

)= —0zp+ 2,02&,;,5
Large current supported by large density values

The large current is dominated by the non-gradient second term
and is blind to the diverging density gradient.



Optimal profiles

“Deterministic component” “Stochastic component”
....................... SEP-like model

J=—0p+2p(1 —p)Oyp

Large current supported by large momentum gradient

KMP-like model
Jj=—0zp ‘|_2_:028x:5

Large current supported by large density values

Stochastic component plays a dominant role in both cases.

Hydrodynamic description breaks down only when
the stochastic component requires a large gradient
to support a large current fluctuation.

Meerson & Sasorov, Phys. Rev. E 89, 010101 (2014)



Summary and future works

Summary

+ We formulated the large N limit to investigate the possibility of
non-hydrodynamic tail behaviors of current fluctuations.

+ Under the assumption of stationary saddle-point solutions,
we obtained expressions for current CGFs of SEP-like and KMP-like
models.

+ The hydrodynamic description breaks down for the SEP-like model,

but it remains valid for the KMP-like model.

Future works

+ The validity of the stationary saddle-point solution remains to be
established more rigorously.

+ The large N limit might be useful for making minimal models of
nonequilibrium systems.




