Supersymmetric SU(N) Yang-Mills QM

Canonical simulations at fixed fermion number

\author{
Urs Wenger
 Albert Einstein Center for Fundamental Physics University of Bern
 $$
\boldsymbol{u}^{b}
$$
 ```
b
 UNIVERSITÅT
 BERN

``` \\ in collaborations with \\ K. Steinhauer, G. Bergner, H. Liu \\ (1410.0235, 1509.01446, 1612.04291) \\ 1 February 2018, ICTS Bangalore
}

\section*{SYM gauge theories: dualities, black holes and all that}

Gauge/gravity duality conjecture:
- \(U(N)\) gauge theories as a low energy effective theory of \(N\) D-branes
- Dimensionally reduced large- \(N\) super Yang-Mills might provide a nonperturbative formulation of the string/M-theory
- Connection to black p-branes allows studying black hole thermodynamics through strongly coupled gauge theory:


\section*{SYM QM: Motivation}

Supersymmetric Yang-Mills quantum mechanics:
- Interesting physics:
- testing gauge/gravity duality,
- thermodynamics of black holes

\section*{SYM QM: Motivation}

Supersymmetric Yang-Mills quantum mechanics:
- Interesting physics:
- testing gauge/gravity duality,
- thermodynamics of black holes
- Interesting expectations:
- discrete vs. continuous spectrum (depending on the fermion sector),
- flat directions

\section*{SYM QM: Motivation}

Supersymmetric Yang-Mills quantum mechanics:
- Interesting physics:
- testing gauge/gravity duality,
- thermodynamics of black holes
- Interesting expectations:
- discrete vs. continuous spectrum (depending on the fermion sector),
- flat directions
- Interesting 'bosonisation':
- fermion contribution decomposes into fermion sectors,
- allows for a local fermion algorithm,
- structure is the same as for QCD!

\section*{Continuum Model}
- Start from \(\mathcal{N}=1\) SYM in \(d=4\) (or 10 ) dimensions

\section*{Continuum Model}
- Start from \(\mathcal{N}=1\) SYM in \(d=4\) (or 10) dimensions
- Dimensionally reduce to 1 -dim. \(\mathcal{N}=4\) (or 16 ) SYM QM:
\[
S=\frac{1}{g^{2}} \int_{0}^{\beta} d t \operatorname{Tr}\left\{\left(D_{t} X_{i}\right)^{2}-\frac{1}{2}\left[X_{i}, X_{j}\right]^{2}+\bar{\psi} D_{t} \psi-\bar{\psi} \sigma_{i}\left[X_{i}, \psi\right]\right\}
\]

\section*{Continuum Model}
- Start from \(\mathcal{N}=1\) SYM in \(d=4\) (or 10) dimensions
- Dimensionally reduce to 1 -dim. \(\mathcal{N}=4\) (or 16 ) SYM QM:
\[
S=\frac{1}{g^{2}} \int_{0}^{\beta} d t \operatorname{Tr}\left\{\left(D_{t} X_{i}\right)^{2}-\frac{1}{2}\left[X_{i}, X_{j}\right]^{2}+\bar{\psi} D_{t} \psi-\bar{\psi} \sigma_{i}\left[X_{i}, \psi\right]\right\}
\]
- covariant derivative \(D_{t}=\partial_{t}-i[A(t), \cdot]\),
- time component of the gauge field \(A(t)\),

\section*{Continuum Model}
- Start from \(\mathcal{N}=1\) SYM in \(d=4\) (or 10) dimensions
- Dimensionally reduce to 1-dim. \(\mathcal{N}=4\) (or 16) SYM QM:
\[
S=\frac{1}{g^{2}} \int_{0}^{\beta} d t \operatorname{Tr}\left\{\left(D_{t} X_{i}\right)^{2}-\frac{1}{2}\left[X_{i}, X_{j}\right]^{2}+\bar{\psi} D_{t} \psi-\bar{\psi} \sigma_{i}\left[X_{i}, \psi\right]\right\}
\]
- covariant derivative \(D_{t}=\partial_{t}-i[A(t), \cdot]\),
- time component of the gauge field \(A(t)\),
- spatial components become bosonic fields \(X_{i}(t)\) with \(i=1, \ldots, d-1\),

\section*{Continuum Model}
- Start from \(\mathcal{N}=1\) SYM in \(d=4\) (or 10) dimensions
- Dimensionally reduce to 1-dim. \(\mathcal{N}=4\) (or 16) SYM QM:
\[
S=\frac{1}{g^{2}} \int_{0}^{\beta} d t \operatorname{Tr}\left\{\left(D_{t} X_{i}\right)^{2}-\frac{1}{2}\left[X_{i}, X_{j}\right]^{2}+\bar{\psi} D_{t} \psi-\bar{\psi} \sigma_{i}\left[X_{i}, \psi\right]\right\}
\]
- covariant derivative \(D_{t}=\partial_{t}-i[A(t), \cdot]\),
- time component of the gauge field \(A(t)\),
- spatial components become bosonic fields \(X_{i}(t)\) with \(i=1, \ldots, d-1\),
- anticommuting fermion fields \(\bar{\psi}(t), \psi(t)\),

\section*{Continuum Model}
- Start from \(\mathcal{N}=1\) SYM in \(d=4\) (or 10) dimensions
- Dimensionally reduce to 1-dim. \(\mathcal{N}=4\) (or 16) SYM QM:
\[
S=\frac{1}{g^{2}} \int_{0}^{\beta} d t \operatorname{Tr}\left\{\left(D_{t} X_{i}\right)^{2}-\frac{1}{2}\left[X_{i}, X_{j}\right]^{2}+\bar{\psi} D_{t} \psi-\bar{\psi} \sigma_{i}\left[X_{i}, \psi\right]\right\}
\]
- covariant derivative \(D_{t}=\partial_{t}-i[A(t), \cdot]\),
- time component of the gauge field \(A(t)\),
- spatial components become bosonic fields \(X_{i}(t)\) with \(i=1, \ldots, d-1\),
- anticommuting fermion fields \(\bar{\psi}(t), \psi(t)\),
- \(\sigma_{i}\) are the \(\gamma\)-matrices in \(d\) dimensions

\section*{Continuum Model}
- Start from \(\mathcal{N}=1\) SYM in \(d=4\) (or 10) dimensions
- Dimensionally reduce to 1 -dim. \(\mathcal{N}=4\) (or 16) SYM QM:
\[
S=\frac{1}{g^{2}} \int_{0}^{\beta} d t \operatorname{Tr}\left\{\left(D_{t} X_{i}\right)^{2}-\frac{1}{2}\left[X_{i}, X_{j}\right]^{2}+\bar{\psi} D_{t} \psi-\bar{\psi} \sigma_{i}\left[X_{i}, \psi\right]\right\}
\]
- covariant derivative \(D_{t}=\partial_{t}-i[A(t), \cdot]\),
- time component of the gauge field \(A(t)\),
- spatial components become bosonic fields \(X_{i}(t)\) with \(i=1, \ldots, d-1\),
- anticommuting fermion fields \(\bar{\psi}(t), \psi(t)\),
- \(\sigma_{i}\) are the \(\gamma\)-matrices in \(d\) dimensions
- all fields in the adjoint representation of \(\operatorname{SU}(N)\)

\section*{Continuum Model}
- Start from \(\mathcal{N}=1\) SYM in \(d=4\) (or 10) dimensions
- Dimensionally reduce to 1-dim. \(\mathcal{N}=4\) (or 16) SYM QM:
\[
S=\frac{1}{g^{2}} \int_{0}^{\beta} d t \operatorname{Tr}\left\{\left(D_{t} X_{i}\right)^{2}-\frac{1}{2}\left[X_{i}, X_{j}\right]^{2}+\bar{\psi} D_{t} \psi-\bar{\psi} \sigma_{i}\left[X_{i}, \psi\right]\right\}
\]
- covariant derivative \(D_{t}=\partial_{t}-i[A(t), \cdot]\),
- time component of the gauge field \(A(t)\),
- spatial components become bosonic fields \(X_{i}(t)\) with
\[
i=1,2,3(\text { for } \mathcal{N}=4),
\]
- anticommuting fermion fields \(\bar{\psi}(t), \psi(t)\), (complex 2-component spinors for \(\mathcal{N}=4\) )
- \(\sigma_{i}\) are the \(\gamma\)-matrices in \(d\) dimensions
(Pauli matrices for \(\mathcal{N}=4\) )
- all fields in the adjoint representation of \(\operatorname{SU}(N)\)

\section*{Lattice regularisation}
- Discretise the bosonic part:
\[
S_{B}=\frac{1}{g^{2}} \sum_{t=0}^{L_{t}-1} \operatorname{Tr}\left\{D_{t} X_{i}(t) D_{t} X_{i}(t)-\frac{1}{2}\left[X_{i}(t), X_{j}(t)\right]^{2}\right\}
\]
with \(D_{t} X_{i}(t)=U(t) X_{i}(t+1) U^{\dagger}(t)-X_{i}(t)\)

\section*{Lattice regularisation}
- Discretise the bosonic part:
\[
S_{B}=\frac{1}{g^{2}} \sum_{t=0}^{L_{t}-1} \operatorname{Tr}\left\{D_{t} X_{i}(t) D_{t} X_{i}(t)-\frac{1}{2}\left[X_{i}(t), X_{j}(t)\right]^{2}\right\}
\]
with \(D_{t} X_{i}(t)=U(t) X_{i}(t+1) U^{\dagger}(t)-X_{i}(t)\)
- Use Wilson term for the fermionic part,
\[
S_{F}=\frac{1}{g^{2}} \sum_{t=0}^{L_{t}-1} \operatorname{Tr}\left\{\bar{\psi}(t) D_{t} \psi(t)-\bar{\psi}(t) \sigma_{i}\left[X_{i}(t), \psi(t)\right]\right\}
\]
since
\[
\partial^{\mathcal{W}}=\frac{1}{2}\left(\nabla^{+}+\nabla^{-}\right) \pm \frac{1}{2} \nabla^{+} \nabla^{-} \quad \stackrel{d=1}{\Longrightarrow} \nabla^{ \pm}
\]

\section*{Lattice regularisation and reduced determinant}
- Specifically, we have
\[
\begin{aligned}
& S_{F}=\frac{1}{2 g^{2}} \sum_{t=0}^{L_{t}-1}\left[-\bar{\psi}_{\alpha}^{a}(t) W_{\alpha \beta}^{a b}(t) e^{+\mu L_{t}} \psi_{\beta}^{b}(t+1)+\bar{\psi}_{\alpha}^{a}(t) \Phi_{\alpha \beta}^{a c}(t) \psi_{\beta}^{c}(t)\right] \\
& \text { where } W_{\alpha \beta}^{a b}(t)=2 \delta_{\alpha \beta} \otimes \operatorname{Tr}\left\{T^{a} U(t) T^{b} U(t)^{\dagger}\right\} .
\end{aligned}
\]

\section*{Lattice regularisation and reduced determinant}
- Specifically, we have
\[
\begin{aligned}
& S_{F}=\frac{1}{2 g^{2}} \sum_{t=0}^{L_{t}-1}\left[-\bar{\psi}_{\alpha}^{a}(t) W_{\alpha \beta}^{a b}(t) e^{+\mu L_{t}} \psi_{\beta}^{b}(t+1)+\bar{\psi}_{\alpha}^{a}(t) \Phi_{\alpha \beta}^{a c}(t) \psi_{\beta}^{c}(t)\right] \\
& \text { where } W_{\alpha \beta}^{a b}(t)=2 \delta_{\alpha \beta} \otimes \operatorname{Tr}\left\{T^{a} U(t) T^{b} U(t)^{\dagger}\right\} .
\end{aligned}
\]
- \(\Phi\) is a \(2\left(N^{2}-1\right) \times 2\left(N^{2}-1\right)\) Yukawa interaction matrix:
\[
\Phi_{\alpha \beta}^{a c}(t)=\left(\sigma_{0}\right)_{\alpha \beta} \otimes \delta^{a c}-2\left(\sigma_{i}\right)_{\alpha \beta} \otimes \operatorname{Tr}\left\{T^{a}\left[X_{i}(t), T^{c}\right]\right\}
\]

\section*{Lattice regularisation and reduced determinant}
- Specifically, we have
\[
\begin{aligned}
& S_{F}=\frac{1}{2 g^{2}} \sum_{t=0}^{L_{t}-1}\left[-\bar{\psi}_{\alpha}^{a}(t) W_{\alpha \beta}^{a b}(t) e^{+\mu L_{t}} \psi_{\beta}^{b}(t+1)+\bar{\psi}_{\alpha}^{a}(t) \Phi_{\alpha \beta}^{a c}(t) \psi_{\beta}^{c}(t)\right] \\
& \text { where } W_{\alpha \beta}^{a b}(t)=2 \delta_{\alpha \beta} \otimes \operatorname{Tr}\left\{T^{a} U(t) T^{b} U(t)^{\dagger}\right\} .
\end{aligned}
\]
- \(\Phi\) is a \(2\left(N^{2}-1\right) \times 2\left(N^{2}-1\right)\) Yukawa interaction matrix:
\[
\Phi_{\alpha \beta}^{a c}(t)=\left(\sigma_{0}\right)_{\alpha \beta} \otimes \delta^{a c}-2\left(\sigma_{i}\right)_{\alpha \beta} \otimes \operatorname{Tr}\left\{T^{a}\left[X_{i}(t), T^{c}\right]\right\}
\]
- Dimensional reduction of determinant at finite density \(\mu \neq 0\) :
\[
\operatorname{det} \mathcal{D}_{p, a}\left[U, X_{i} ; \mu\right]=\operatorname{det}\left[\prod_{t=0}^{L_{t}-1} \Phi(t) W(t) \mp e^{+\mu L_{t}}\right]
\]

\section*{Fugacity expansion}
- Fugacity expansion is easy:
\[
\operatorname{det} \mathcal{D}_{p, a}\left[U, X_{i} ; \mu\right]=\operatorname{det}\left[\prod_{t=0}^{L_{t}-1} \Phi(t) W(t) \mp e^{+\mu L_{t}}\right]
\]

\section*{Fugacity expansion}
- Fugacity expansion is easy:
\[
\begin{aligned}
\operatorname{det} \mathcal{D}_{p, a}\left[U, X_{i} ; \mu\right] & =\operatorname{det}\left[\prod_{t=0}^{L_{t}-1} \Phi(t) W(t) \mp e^{+\mu L_{t}}\right] \\
& =\sum_{n_{f}=0}^{2\left(N^{2}-1\right)}\left(\mp e^{\mu L_{t}}\right)^{n_{f}} \operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]
\end{aligned}
\]

\section*{Fugacity expansion}
- Fugacity expansion is easy:
\[
\begin{aligned}
\operatorname{det} \mathcal{D}_{p, a}\left[U, X_{i} ; \mu\right] & =\operatorname{det}\left[\prod_{t=0}^{L_{t}-1} \Phi(t) W(t) \mp e^{+\mu L_{t}}\right] \\
& =\sum_{n_{f}=0}^{2\left(N^{2}-1\right)}\left(\mp e^{\mu L_{t}}\right)^{n_{f}} \operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]
\end{aligned}
\]
- Charge conjugation ensures symmetry between sectors:
- broken by the Wilson discretisation,
- restored in the continuum.

\section*{Fugacity expansion}
- Fugacity expansion is easy:
\[
\begin{aligned}
\operatorname{det} \mathcal{D}_{p, a}\left[U, X_{i} ; \mu\right] & =\operatorname{det}\left[\prod_{t=0}^{L_{t}-1} \Phi(t) W(t) \mp e^{+\mu L_{t}}\right] \\
& =\sum_{n_{f}=0}^{2\left(N^{2}-1\right)}\left(\mp e^{\mu L_{t}}\right)^{n_{f}} \operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]
\end{aligned}
\]
- Charge conjugation ensures symmetry between sectors:
- broken by the Wilson discretisation,
- restored in the continuum.
- Canonical determinants are real: \(\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]=\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]^{*}\)

\section*{Fugacity expansion}
- Fugacity expansion is easy:
\[
\begin{aligned}
\operatorname{det} \mathcal{D}_{p, a}\left[U, X_{i} ; \mu\right] & =\operatorname{det}\left[\prod_{t=0}^{L_{t}-1} \Phi(t) W(t) \mp e^{+\mu L_{t}}\right] \\
& =\sum_{n_{f}=0}^{2\left(N^{2}-1\right)}\left(\mp e^{\mu L_{t}}\right)^{n_{f}} \operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]
\end{aligned}
\]
- Charge conjugation ensures symmetry between sectors:
- broken by the Wilson discretisation,
- restored in the continuum.
- Canonical determinants are real: \(\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]=\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]^{*}\)
- For \(n_{f}=0\) and \(n_{f}=2\left(N^{2}-1\right) \equiv n_{f}^{\max }\) (quenched):
\[
\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right] \geq 0 \quad \text { positive }
\]

\section*{Fugacity expansion and transfer matrices}
- Canonical determinants are expressed in terms of elementary symmetric functions \(S_{k}\) of order \(k\) of \(\left\{\tau_{i}\right\}\) :
\[
\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]=S_{n_{f}^{\text {max }}-n_{f}}(\mathcal{T})
\]
where
\[
S_{k}(\mathcal{T}) \equiv S_{k}\left(\left\{\tau_{i}\right\}\right)=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n_{f}^{\max }} \prod_{j=1}^{k} \tau_{i j}
\]

\section*{Fugacity expansion and transfer matrices}
- Canonical determinants are expressed in terms of elementary symmetric functions \(S_{k}\) of order \(k\) of \(\left\{\tau_{i}\right\}\) :
\[
\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]=S_{n_{f}^{\text {max }}-n_{f}}(\mathcal{T})
\]
where
\[
S_{k}(\mathcal{T}) \equiv S_{k}\left(\left\{\tau_{i}\right\}\right)=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n_{f}^{\max }} \prod_{j=1}^{k} \tau_{i j} .
\]

Crucial object:
\[
\mathcal{T} \equiv \prod_{t=0}^{L_{t}-1} \Phi(t) W(t) \quad \Leftrightarrow \quad \text { product of transfer matrices }
\]

\section*{Fugacity expansion and transfer matrices}
- Canonical determinants are expressed in terms of elementary symmetric functions \(S_{k}\) of order \(k\) of \(\left\{\tau_{i}\right\}\) :
\[
\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]=S_{n_{f}^{\text {max }}-n_{f}}(\mathcal{T})
\]
where
\[
S_{k}(\mathcal{T}) \equiv S_{k}\left(\left\{\tau_{i}\right\}\right)=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n_{f}^{\max }} \prod_{j=1}^{k} \tau_{i j} .
\]

Crucial object:
\[
\mathcal{T} \equiv \prod_{t=0}^{L_{t}-1} \Phi(t) W(t) \quad \Leftrightarrow \quad \text { product of transfer matrices }
\]
- Proof via fermion loop formulation:

\section*{Fermion loop formulation \(\Leftrightarrow\) all order hopping expansion}
- Configurations can be classified according to the number of propagating fermions \(n_{f}\) :


\section*{Fermion loop formulation \(\Leftrightarrow\) all order hopping expansion}
- Configurations can be classified according to the number of propagating fermions \(n_{f}\) :
\[
n_{f}=1 \quad \cdots \quad n_{f}=2\left(N^{2}-1\right)
\]


\section*{Fermion loop formulation \(\Leftrightarrow\) all order hopping expansion}
- Configurations can be classified according to the number of propagating fermions \(n_{f}\) :
\[
n_{f}=0 \quad n_{f}=1 \quad \cdots \quad n_{f}=2\left(N^{2}-1\right)
\]


\section*{Transfer matrices}
- Propagation of fermions described by transfer matrices:
\(T_{n_{f}}^{\phi}(t) \Rightarrow\) sums up local vacuum contributions,
\(T_{n_{f}}^{W}(t) \Rightarrow\) projects onto gauge invariant states

\section*{Transfer matrices}
- Propagation of fermions described by transfer matrices: \(T_{n_{f}}^{\Phi}(t) \Rightarrow\) sums up local vacuum contributions, \(T_{n_{f}}^{W}(t) \Rightarrow\) projects onto gauge invariant states

\section*{Explicitly:}
\[
\begin{array}{ll}
\left(T_{n_{f}}^{\Phi}\right)_{A B}=(-1)^{p(A, B)} \operatorname{det} \Phi^{B A} & \text { cofactor } C_{B A}(\Phi) \\
\left(T_{n_{f}}^{W}\right)_{A B}=\operatorname{det} W^{A B} & \text { minor } M_{A B}(W)
\end{array}
\]

\section*{Transfer matrices}
- Propagation of fermions described by transfer matrices: \(T_{n_{f}}^{\Phi}(t) \Rightarrow\) sums up local vacuum contributions, \(T_{n_{f}}^{W}(t) \Rightarrow\) projects onto gauge invariant states

\section*{Explicitly:}
\[
\begin{array}{ll}
\left(T_{n_{f}}^{\Phi}\right)_{A B}=(-1)^{p(A, B)} \operatorname{det} \Phi^{B A} & \text { cofactor } C_{B A}(\Phi) \\
\left(T_{n_{f}}^{W}\right)_{A B}=\operatorname{det} W^{A B} & \text { minor } M_{A B}(W)
\end{array}
\]
- Size of \(T_{n_{f}}^{\Phi, W}\) is given by \(N_{\text {states }}=n_{f}^{\max !} /\left(n_{f}^{\max }-n_{f}\right)!\cdot n_{f}\) !

\section*{Transfer matrices}
- Propagation of fermions described by transfer matrices: \(T_{n_{f}}^{\Phi}(t) \Rightarrow\) sums up local vacuum contributions, \(T_{n_{f}}^{W}(t) \Rightarrow\) projects onto gauge invariant states

\section*{Explicitly:}
\[
\begin{array}{ll}
\left(T_{n_{f}}^{\Phi}\right)_{A B}=(-1)^{p(A, B)} \operatorname{det} \Phi^{R A} & \text { cofactor } C_{B A}(\Phi) \\
\left(T_{n_{f}}^{W}\right)_{A B}=\operatorname{det} W^{A B} & \text { minor } M_{A B}(W)
\end{array}
\]
- Size of \(T_{n_{f}}^{\Phi, W}\) is given by \(N_{\text {states }}=n_{f}^{\max !} /\left(n_{f}^{\max }-n_{f}\right)!\cdot n_{f}\) !
- Fermion contribution to the partition function is simply
\[
\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]=\operatorname{Tr}\left[\prod_{t=0}^{L_{t}-1} T_{n_{f}}^{\Phi}(t) \cdot T_{n_{f}}^{W}(t)\right]
\]

\section*{Transfer matrices and canonical determinants}
- Fermion contribution to the partition function is simply
\[
\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]=\operatorname{Tr}\left[\prod_{t=0}^{L_{t}-1} T_{n_{f}}^{\phi}(t) \cdot T_{n_{f}}^{W}(t)\right]
\]

\section*{Transfer matrices and canonical determinants}
- Fermion contribution to the partition function is simply
\[
\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]=\operatorname{Tr}\left[\prod_{t=0}^{L_{t}-1} T_{n_{f}}^{\phi}(t) \cdot T_{n_{f}}^{W}(t)\right]
\]
- Use Cauchy-Binet formula (and some algebra):
\[
\left(\prod_{t=0}^{L_{t}-1}\left[T_{n_{f}}^{\Phi}(t) \cdot T_{n_{f}}^{W}\right]\right)_{A B}=(-1)^{p(A, B)} \operatorname{det} \mathcal{T}^{A B}=C_{A B}(\mathcal{T})
\]

\section*{Transfer matrices and canonical determinants}
- Fermion contribution to the partition function is simply
\[
\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]=\operatorname{Tr}\left[\prod_{t=0}^{L_{t}-1} T_{n_{f}}^{\phi}(t) \cdot T_{n_{f}}^{W}(t)\right]
\]
- Use Cauchy-Binet formula (and some algebra):
\[
\left(\prod_{t=0}^{L_{t}-1}\left[T_{n_{f}}^{\Phi}(t) \cdot T_{n_{f}}^{W}\right]\right)_{A B}=(-1)^{p(A, B)} \operatorname{det} \mathcal{T}^{A B}=C_{A B}(\mathcal{T})
\]

Sum over principal minors:
\[
\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]=\sum_{B} \operatorname{det} \mathcal{T}^{\& R}
\]

\section*{Transfer matrices and canonical determinants}
- Fermion contribution to the partition function is simply
\[
\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]=\operatorname{Tr}\left[\prod_{t=0}^{L_{t}-1} T_{n_{f}}^{\phi}(t) \cdot T_{n_{f}}^{W}(t)\right]
\]
- Use Cauchy-Binet formula (and some algebra):
\[
\left(\prod_{t=0}^{L_{t}-1}\left[T_{n_{f}}^{\Phi}(t) \cdot T_{n_{f}}^{W}\right]\right)_{A B}=(-1)^{p(A, B)} \operatorname{det} \mathcal{T}^{A B}=C_{A B}(\mathcal{T})
\]

Sum over principal minors:
\[
\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]=\sum_{B} \operatorname{det} \mathcal{T}^{B R}
\]
- Finally one can proof by linear algebra
\[
\sum_{B} \operatorname{det} \mathcal{T}^{R R}=S_{n_{f}^{\text {max }}-n_{f}}(\mathcal{T})
\]

\section*{Summary ...so far}
- Canonical determinants are directly given by transfer matrices
\[
\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]=\operatorname{Tr}\left[\prod_{t=0}^{L_{t}-1} T_{n_{f}}^{\Phi}(t) \cdot T_{n_{f}}^{W}(t)\right]=\sum_{B} \operatorname{det} \mathcal{T}^{\mathcal{B}}
\]
constructed from reduced matrix
\[
\mathcal{T} \equiv \prod_{t=0}^{L_{t}-1} \Phi(t) W(t)
\]

\section*{Summary ...so far}
- Canonical determinants are directly given by transfer matrices
\[
\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]=\operatorname{Tr}\left[\prod_{t=0}^{L_{t}-1} T_{n_{f}}^{\Phi}(t) \cdot T_{n_{f}}^{W}(t)\right]=\sum_{B} \operatorname{det} \mathcal{T}^{\mathcal{B}}
\]
constructed from reduced matrix
\[
\mathcal{T} \equiv \prod_{t=0}^{L_{t}-1} \Phi(t) W(t)
\]
- Proof is applicable to QCD, algebraic structure is the same!

\section*{Summary ...so far}
- Canonical determinants are directly given by transfer matrices
\[
\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right]=\operatorname{Tr}\left[\prod_{t=0}^{L_{t}-1} T_{n_{f}}^{\Phi}(t) \cdot T_{n_{f}}^{W}(t)\right]=\sum_{B} \operatorname{det} \mathcal{T}^{\mathcal{B} B}
\]
constructed from reduced matrix
\[
\mathcal{T} \equiv \prod_{t=0}^{L_{t}-1} \Phi(t) W(t)
\]
- Proof is applicable to QCD, algebraic structure is the same!
- Remarks:
- \(\mathcal{T}\) describes the dimensionally reduced effective action for \(W\),
- our result allows for local fermion algorithm,
- allows canonical simulations at fixed \(n_{f}\).

\section*{Canonical simulations at fixed \(n_{f}\)}
- Evaluation of the sum of principal minors
\[
Z_{n_{f}}=\int \mathcal{D} U \mathcal{D} X e^{-S[U, X]} \sum_{B} \operatorname{det} \mathcal{T}[U, X]^{k \varepsilon}
\]

\section*{Canonical simulations at fixed \(n_{f}\)}
- Evaluation of the sum of principal minors
\[
Z_{n_{f}}=\int \mathcal{D} \cup \mathcal{D} X e^{-S[U, X]} \sum_{B} \operatorname{det} \mathcal{T}[U, X]^{\mathbb{R} \mathcal{R}}
\]
- number of principal minors of order \(n_{f} \sim n_{f}^{\max } / 2\) grows factorially with the size \(n_{f}^{\max }\) of \(\mathcal{T}\)

\section*{Canonical simulations at fixed \(n_{f}\)}
- Evaluation of the sum of principal minors
\[
Z_{n_{f}}=\sum_{B} \int \mathcal{D} U \mathcal{D} X e^{-S[U, X]} \operatorname{det} \mathcal{T}[U, X]^{\mathbb{R} \hat{B}}
\]
- number of principal minors of order \(n_{f} \sim n_{f}^{\max } / 2\) grows factorially with the size \(n_{f}^{\max }\) of \(\mathcal{T}\)
- Efficient stochastic evaluation of \(\sum_{B}\) :
- treat index set \(B\) as dynamical degree of freedom

\section*{Canonical simulations at fixed \(n_{f}\)}
- Evaluation of the sum of principal minors
\[
Z_{n_{f}}=\sum_{B} \int \mathcal{D} U \mathcal{D} X e^{-S[U, X]} \operatorname{det} \mathcal{T}[U, X]^{\mathbb{R} \hat{B}}
\]
- number of principal minors of order \(n_{f} \sim n_{f}^{\max } / 2\) grows factorially with the size \(n_{f}^{\max }\) of \(\mathcal{T}\)
- Efficient stochastic evaluation of \(\sum_{B}\) :
- treat index set \(B\) as dynamical degree of freedom
- update \(B \rightarrow B^{\prime}\) using Fisher-Yates reshuffling
- new random set \(B^{\prime}\) is accepted with probability
\[
p_{B \rightarrow B^{\prime}}=\min \left[1, A_{B \rightarrow B^{\prime}}\right] \quad \text { with } \quad A_{B \rightarrow B^{\prime}}=\left|\frac{\operatorname{det} \mathcal{T}[U, X]^{k^{\prime} k^{\prime}}}{\operatorname{det} \mathcal{T}[U, X]]^{k} \varepsilon}\right| .
\]

\section*{Metropolis update algorithm}
- Calculation of \(\mathcal{T}\) :
- after each change of \(\Phi(t)\) or \(W(t)\)

\section*{Metropolis update algorithm}
- Calculation of \(\mathcal{T}\) :
- after each change of \(\Phi(t)\) or \(W(t)\)
- efficient binary tree data structure:


\section*{Metropolis update algorithm}
- Calculation of \(\mathcal{T}\) :
- after each change of \(\Phi(t)\) or \(W(t)\)
- efficient binary tree data structure:
\(\Rightarrow\) only \(\mathcal{O}\left(\log L_{t}\right)\) matrix multiplications


\section*{Canonical simulations at fixed \(n_{f}\)}
- Simulations for \(N=2\) with \(n_{f}^{\max }=2\left(N^{2}-1\right)=6\) :
- SU(2) adjoint \(\Rightarrow\) sectors \(n_{f}=\{0,1, \ldots, 6\}\)

\section*{Canonical simulations at fixed \(n_{f}\)}
- Simulations for \(N=2\) with \(n_{f}^{\max }=2\left(N^{2}-1\right)=6\) :
- \(\operatorname{SU}(2)\) adjoint \(\Rightarrow\) sectors \(n_{f}=\{0,1, \ldots, 6\}\)
- Measure moduli of Polyakov loop and scalar field:
\[
P=\left|\operatorname{Tr}_{F}\left[\prod_{t} U(t)\right]\right|, \quad R^{2} \equiv|X|^{2}=X_{i}^{a} X_{i}^{a}
\]

\section*{Canonical simulations at fixed \(n_{f}\)}
- Simulations for \(N=2\) with \(n_{f}^{\max }=2\left(N^{2}-1\right)=6\) :
- \(\operatorname{SU}(2)\) adjoint \(\Rightarrow\) sectors \(n_{f}=\{0,1, \ldots, 6\}\)
- Measure moduli of Polyakov loop and scalar field:
\[
P=\left|\operatorname{Tr}_{F}\left[\prod_{t} U(t)\right]\right|, \quad R^{2} \equiv|X|^{2}=X_{i}^{a} X_{i}^{a}
\]

\section*{- Open questions:}
- sign problem: \(\operatorname{det} \mathcal{D}_{n_{f}}\left[U, X_{i}\right] \geq 0 \quad \forall n_{f}\) ?
- flat directions?
\(\Rightarrow\) regularize with a term \(\propto m^{2} X^{2}\)

\section*{Canonical determinants for \(\mathrm{SU}(2)\)}
- No sign problem in sectors \(n_{f}=0,2,3,4\) and 6 :
- \(\operatorname{det} \mathcal{D}_{n_{f}}>0\) for \(n_{f}=0\) and \(n_{f}=6\),

\section*{Canonical determinants for \(\mathrm{SU}(2)\)}
- No sign problem in sectors \(n_{f}=0,2,3,4\) and 6 :
- \(\operatorname{det} \mathcal{D}_{n_{f}}>0\) for \(n_{f}=0\) and \(n_{f}=6\),
- e.g. for \(n_{f}=3\) at \(\beta=1.2\) on \(L_{t}=24\) :


\section*{Canonical determinants for \(\mathrm{SU}(2)\)}
- No sign problem in sectors \(n_{f}=0,2,3,4\) and 6 :
- sign of minor at \(\beta=2.0\) at \(n_{f}=2\) and \(n_{f}=4\) :


\section*{Canonical determinants for \(\mathrm{SU}(2)\)}
- No sign problem in sectors \(n_{f}=0,2,3,4\) and 6 :
- continuum limit at \(m L_{t} \rightarrow 0\) at \(\beta=2.0\) at \(n_{f}=2\) and \(n_{f}=4\) :


\section*{Canonical determinants for \(\mathrm{SU}(2)\)}
- Significant negative contributions in sectors \(n_{f}=1\) and 5:
- e.g. for \(n_{f}=1\) at \(\beta=1.2\) on \(L_{t}=24\) :


\section*{Canonical determinants for \(\mathrm{SU}(2)\)}
- Significant negative contributions in sectors \(n_{f}=1\) and 5:
- absolutely crucial for reweighting to other sectors,
- e.g. for \(n_{f}=1\) at \(\beta=1.2\) on \(L_{t}=24\) :


\section*{Canonical determinants for \(\mathrm{SU}(2)\)}
- Significant negative contributions in sectors \(n_{f}=1\) and 5:
- absolutely crucial for reweighting to other sectors,
- distribution remains fixed in the continuum limit \(L_{t} \rightarrow \infty\)


\section*{Canonical determinants for \(\mathrm{SU}(2)\)}
- Significant negative contributions in sectors \(n_{f}=1\) and 5:
- sign of minor at \(\beta=2.0\) at \(n_{f}=1\) and \(n_{f}=5\) :


\section*{Canonical determinants for \(\mathrm{SU}(2)\)}
- Significant negative contributions in sectors \(n_{f}=1\) and 5:
- continuum limit at \(m L_{t} \rightarrow 0\) at \(\beta=2.0\) at \(n_{f}=1\) and \(n_{f}=5\) :


\section*{Canonical determinants for \(\mathrm{SU}(2)\)}
- Significant negative contributions in sectors \(n_{f}=1\) and 5:
- gets better towards higher temperatures,
- \(n_{f}=1\) at \(L_{t}=48\) and \(\beta=0.6\) :


\section*{Flat directions and metastabilities}
- System may suffer from running away along flat directions, where \(\left[X_{i}, X_{j}\right] \sim 0\) :
- there exist metastable states along the flat directions
- \(X^{2}\) can become arbitrarily large, gauge field freezes
- algorithm suffers from critical slowing down in those metastable states



\section*{Flat directions and metastabilities}
- System may suffer from running away along flat directions, where \(\left[X_{i}, X_{j}\right] \sim 0\) :
- there exist metastable states along the flat directions
- \(X^{2}\) can become arbitrarily large, gauge field freezes
- algorithm suffers from critical slowing down in those metastable states



\section*{Flat directions and metastabilities}
- System may suffer from running away along flat directions, where \(\left[X_{i}, X_{j}\right] \sim 0\) :
- there exist metastable states along the flat directions
- \(X^{2}\) can become arbitrarily large, gauge field freezes
- algorithm suffers from critical slowing down in those metastable states
- Multiplicative random walk update:
- update \(X\) collectively by rescaling with a random factor \(R\) :



\section*{Flat directions and metastabilities}
- Metastable phase along flat directions may persist for small \(m\) :
- \(X^{2}\) diverges in the limit \(m \rightarrow 0\)
- Simulations starting from small random field configurations seem stable:
- \(X^{2}\) well behaved in the limit \(m \rightarrow 0\)



\section*{Canonical simulations at fixed \(n_{f}\) for \(\operatorname{SU}(2)\)}

Moduli of \(X^{2}\) at \(\beta=2.0\) at \(n_{f}=0\) and \(n_{f}=6\) :


\section*{Canonical simulations at fixed \(n_{f}\) for \(\mathrm{SU}(2)\)}

Continuum limit at \(m L_{t} \rightarrow 0\) at \(\beta=2.0\) at \(n_{f}=0\) and \(n_{f}=6\) :


\section*{Canonical simulations at fixed \(n_{f}\) for \(\mathrm{SU}(2)\)}

Moduli of \(X^{2}\) at \(\beta=2.0\) at \(n_{f}=1\) and \(n_{f}=5\) :


\section*{Canonical simulations at fixed \(n_{f}\) for \(\mathrm{SU}(2)\)}

Continuum limit at \(m L_{t} \rightarrow 0\) at \(\beta=0.5\) at \(n_{f}=1\) and \(n_{f}=5\) :


\section*{Canonical simulations at fixed \(n_{f}\) for \(\mathrm{SU}(2)\)}

Moduli of \(X^{2}\) at \(\beta=2.0\) at \(n_{f}=2\) and \(n_{f}=4\) : sectors degenerate


\section*{Canonical simulations at fixed \(n_{f}\) for \(\mathrm{SU}(2)\)}

Continuum limit at \(m L_{t} \rightarrow 0\) at \(\beta=2.0\) at \(n_{f}=2\) and \(n_{f}=4\) :


\section*{Canonical simulations at fixed \(n_{f}\) for \(\mathrm{SU}(2)\)}

Moduli of \(X^{2}\) at \(\beta=2.0\) for periodic and thermal b.c.:
\(\Rightarrow\) divergent contributions from \(n_{f}=2,3,4\) cancel in \(\operatorname{det} D_{p}\)


\section*{Canonical simulations at fixed \(n_{f}\) for \(\mathrm{SU}(2)\)}

Continuum limit in the limit \(m L_{t} \rightarrow 0\) at \(\beta=2.0\) for (a-)per. b.c.:


\section*{Canonical simulations at fixed \(n_{f}\) for \(\mathrm{SU}(2)\)}

Other quantities remain finite, e.g. \(E_{B}\) at \(\beta=0.5\) :


\section*{Conclusions}
- Supersymmetric Yang-Mills \(\operatorname{SU}(N)\) gauge theories on the lattice:
- \(\mathcal{N}=4\) in \(d=0+1\) well understood \& under control
- nonperturbative quantitative statements possible
- Complete description of the phase structure including flat directions
\(\Rightarrow\) study mass spectra in each sector next
- Interpretation of the divergencies:
- thermodynamics of black holes (evaporation,... ?)
- large- \(N\) limit

\section*{Canonical formulation is crucial:}
- solves (or avoids) the fermion sign problem
- formalism and techniques also applicable to QCD!```

