Supersymmetric SU(N) Yang-Mills QM Canonical simulations at fixed fermion number

Urs Wenger

Albert Einstein Center for Fundamental Physics University of Bern

in collaborations with K. Steinhauer, G. Bergner, H. Liu (1410.0235, 1509.01446, 1612.04291)

1 February 2018, ICTS Bangalore

SYM gauge theories: dualities, black holes and all that

Gauge/gravity duality conjecture:

- ► U(N) gauge theories as a low energy effective theory of N D-branes
- Dimensionally reduced large-N super Yang-Mills might provide a nonperturbative formulation of the string/M-theory
- Connection to black p-branes allows studying black hole thermodynamics through strongly coupled gauge theory:

Supersymmetric Yang-Mills quantum mechanics:

- Interesting physics:
 - testing gauge/gravity duality,
 - thermodynamics of black holes

Supersymmetric Yang-Mills quantum mechanics:

Interesting physics:

- testing gauge/gravity duality,
- thermodynamics of black holes
- Interesting expectations:
 - discrete vs. continuous spectrum

(depending on the fermion sector),

flat directions

Supersymmetric Yang-Mills quantum mechanics:

Interesting physics:

- testing gauge/gravity duality,
- thermodynamics of black holes
- Interesting expectations:
 - discrete vs. continuous spectrum

(depending on the fermion sector),

- flat directions
- Interesting 'bosonisation':
 - ► fermion contribution decomposes into fermion sectors,
 - allows for a local fermion algorithm,
 - structure is the same as for QCD!

• Start from $\mathcal{N} = 1$ SYM in d = 4 (or 10) dimensions

- ▶ Start from N = 1 SYM in d = 4 (or 10) dimensions
- Dimensionally reduce to 1-dim. $\mathcal{N} = 4$ (or 16) SYM QM:

$$S = \frac{1}{g^2} \int_0^\beta dt \operatorname{Tr}\left\{ (D_t X_i)^2 - \frac{1}{2} [X_i, X_j]^2 + \overline{\psi} D_t \psi - \overline{\psi} \sigma_i [X_i, \psi] \right\}$$

- ▶ Start from N = 1 SYM in d = 4 (or 10) dimensions
- Dimensionally reduce to 1-dim. $\mathcal{N} = 4$ (or 16) SYM QM:

$$S = \frac{1}{g^2} \int_0^\beta dt \operatorname{Tr}\left\{ (D_t X_i)^2 - \frac{1}{2} \left[X_i, X_j \right]^2 + \overline{\psi} D_t \psi - \overline{\psi} \sigma_i \left[X_i, \psi \right] \right\}$$

- covariant derivative $D_t = \partial_t i[A(t), \cdot]$,
- time component of the gauge field A(t),

- ▶ Start from N = 1 SYM in d = 4 (or 10) dimensions
- Dimensionally reduce to 1-dim. $\mathcal{N} = 4$ (or 16) SYM QM:

$$S = \frac{1}{g^2} \int_0^\beta dt \operatorname{Tr}\left\{ (D_t X_i)^2 - \frac{1}{2} \left[X_i, X_j \right]^2 + \overline{\psi} D_t \psi - \overline{\psi} \sigma_i \left[X_i, \psi \right] \right\}$$

- covariant derivative $D_t = \partial_t i[A(t), \cdot]$,
- time component of the gauge field A(t),
- ► spatial components become bosonic fields $X_i(t)$ with i = 1, ..., d 1,

- ▶ Start from N = 1 SYM in d = 4 (or 10) dimensions
- Dimensionally reduce to 1-dim. $\mathcal{N} = 4$ (or 16) SYM QM:

$$S = \frac{1}{g^2} \int_0^\beta dt \operatorname{Tr}\left\{ (D_t X_i)^2 - \frac{1}{2} \left[X_i, X_j \right]^2 + \overline{\psi} D_t \psi - \overline{\psi} \sigma_i \left[X_i, \psi \right] \right\}$$

- covariant derivative $D_t = \partial_t i[A(t), \cdot]$,
- time component of the gauge field A(t),
- ► spatial components become bosonic fields $X_i(t)$ with i = 1, ..., d 1,
- anticommuting fermion fields $\overline{\psi}(t)$, $\psi(t)$,

- ▶ Start from N = 1 SYM in d = 4 (or 10) dimensions
- Dimensionally reduce to 1-dim. $\mathcal{N} = 4$ (or 16) SYM QM:

$$S = \frac{1}{g^2} \int_0^\beta dt \operatorname{Tr}\left\{ (D_t X_i)^2 - \frac{1}{2} [X_i, X_j]^2 + \overline{\psi} D_t \psi - \overline{\psi} \sigma_i [X_i, \psi] \right\}$$

- covariant derivative $D_t = \partial_t i[A(t), \cdot]$,
- time component of the gauge field A(t),
- ► spatial components become bosonic fields $X_i(t)$ with i = 1, ..., d 1,
- anticommuting fermion fields $\overline{\psi}(t)$, $\psi(t)$,
- σ_i are the γ -matrices in d dimensions

- ▶ Start from N = 1 SYM in d = 4 (or 10) dimensions
- Dimensionally reduce to 1-dim. $\mathcal{N} = 4$ (or 16) SYM QM:

$$S = \frac{1}{g^2} \int_0^\beta dt \operatorname{Tr}\left\{ (D_t X_i)^2 - \frac{1}{2} \left[X_i, X_j \right]^2 + \overline{\psi} D_t \psi - \overline{\psi} \sigma_i \left[X_i, \psi \right] \right\}$$

- covariant derivative $D_t = \partial_t i[A(t), \cdot]$,
- time component of the gauge field A(t),
- ► spatial components become bosonic fields $X_i(t)$ with i = 1, ..., d 1,
- anticommuting fermion fields $\overline{\psi}(t)$, $\psi(t)$,
- σ_i are the γ -matrices in d dimensions
- ▶ all fields in the adjoint representation of SU(N)

- Start from $\mathcal{N} = 1$ SYM in d = 4 (or 10) dimensions
- Dimensionally reduce to 1-dim. $\mathcal{N} = 4$ (or 16) SYM QM:

$$S = \frac{1}{g^2} \int_0^\beta dt \operatorname{Tr}\left\{ (D_t X_i)^2 - \frac{1}{2} \left[X_i, X_j \right]^2 + \overline{\psi} D_t \psi - \overline{\psi} \sigma_i \left[X_i, \psi \right] \right\}$$

- covariant derivative $D_t = \partial_t i[A(t), \cdot]$,
- time component of the gauge field A(t),
- ► spatial components become bosonic fields $X_i(t)$ with i = 1, 2, 3 (for $\mathcal{N} = 4$),
- anticommuting fermion fields ψ(t), ψ(t), (complex 2-component spinors for N = 4)
- σ_i are the γ-matrices in d dimensions
 (Pauli matrices for N = 4)

• all fields in the adjoint representation of SU(N)

Lattice regularisation

Discretise the bosonic part:

$$S_{B} = \frac{1}{g^{2}} \sum_{t=0}^{L_{t}-1} \operatorname{Tr} \left\{ D_{t} X_{i}(t) D_{t} X_{i}(t) - \frac{1}{2} \left[X_{i}(t), X_{j}(t) \right]^{2} \right\}$$

with $D_t X_i(t) = U(t) X_i(t+1) U^{\dagger}(t) - X_i(t)$

Lattice regularisation

Discretise the bosonic part:

$$S_B = rac{1}{g^2} \sum_{t=0}^{L_t-1} \operatorname{Tr} \left\{ D_t X_i(t) D_t X_i(t) - rac{1}{2} \left[X_i(t), X_j(t)
ight]^2
ight\}$$

with $D_t X_i(t) = U(t) X_i(t+1) U^{\dagger}(t) - X_i(t)$

► Use Wilson term for the fermionic part,

$$S_{F} = \frac{1}{g^2} \sum_{t=0}^{L_t-1} \operatorname{Tr} \left\{ \overline{\psi}(t) D_t \psi(t) - \overline{\psi}(t) \sigma_i \left[X_i(t), \psi(t) \right] \right\} \,,$$

since

$$\partial^{\mathcal{W}} = \frac{1}{2} (\nabla^+ + \nabla^-) \pm \frac{1}{2} \nabla^+ \nabla^- \quad \stackrel{d=1}{\Longrightarrow} \quad \nabla^{\pm}$$

Lattice regularisation and reduced determinant

Specifically, we have

$$S_{F} = \frac{1}{2g^{2}} \sum_{t=0}^{L_{t}-1} \left[-\overline{\psi}_{\alpha}^{a}(t) W_{\alpha\beta}^{ab}(t) e^{+\mu L_{t}} \psi_{\beta}^{b}(t+1) + \overline{\psi}_{\alpha}^{a}(t) \Phi_{\alpha\beta}^{ac}(t) \psi_{\beta}^{c}(t) \right]$$

where $W^{ab}_{\alpha\beta}(t) = 2\delta_{\alpha\beta} \otimes \text{Tr}\{T^a U(t)T^b U(t)^{\dagger}\}.$

Lattice regularisation and reduced determinant

Specifically, we have

$$S_{F} = \frac{1}{2g^{2}} \sum_{t=0}^{L_{t}-1} \left[-\overline{\psi}_{\alpha}^{a}(t) W_{\alpha\beta}^{ab}(t) e^{+\mu L_{t}} \psi_{\beta}^{b}(t+1) + \overline{\psi}_{\alpha}^{a}(t) \Phi_{\alpha\beta}^{ac}(t) \psi_{\beta}^{c}(t) \right]$$

where $W^{ab}_{\alpha\beta}(t) = 2\delta_{\alpha\beta} \otimes \text{Tr}\{T^a U(t)T^b U(t)^{\dagger}\}.$

• Φ is a $2(N^2 - 1) \times 2(N^2 - 1)$ Yukawa interaction matrix:

$$\Phi^{ac}_{\alpha\beta}(t) = (\sigma_0)_{\alpha\beta} \otimes \delta^{ac} - 2(\sigma_i)_{\alpha\beta} \otimes \mathsf{Tr}\{T^a[X_i(t), T^c]\}$$

Lattice regularisation and reduced determinant

Specifically, we have

$$S_{F} = \frac{1}{2g^{2}} \sum_{t=0}^{L_{t}-1} \left[-\overline{\psi}_{\alpha}^{a}(t) W_{\alpha\beta}^{ab}(t) e^{+\mu L_{t}} \psi_{\beta}^{b}(t+1) + \overline{\psi}_{\alpha}^{a}(t) \Phi_{\alpha\beta}^{ac}(t) \psi_{\beta}^{c}(t) \right]$$

where $W^{ab}_{\alpha\beta}(t) = 2\delta_{\alpha\beta} \otimes \text{Tr}\{T^a U(t)T^b U(t)^{\dagger}\}.$

• Φ is a $2(N^2 - 1) \times 2(N^2 - 1)$ Yukawa interaction matrix:

$$\Phi^{ac}_{\alpha\beta}(t) = (\sigma_0)_{\alpha\beta} \otimes \delta^{ac} - 2(\sigma_i)_{\alpha\beta} \otimes \operatorname{Tr}\{T^a[X_i(t), T^c]\}$$

• Dimensional reduction of determinant at finite density $\mu \neq 0$:

$$\det \mathcal{D}_{\rho,a}[U,X_i;\mu] = \det \left[\prod_{t=0}^{L_t-1} \Phi(t)W(t) \mp e^{+\mu L_t}\right]$$

• Fugacity expansion is easy:

$$\det \mathcal{D}_{p,a}[U, X_i; \mu] = \det \left[\prod_{t=0}^{L_t - 1} \Phi(t) W(t) \mp \frac{e^{+\mu L_t}}{e^{+\mu L_t}} \right]$$

• Fugacity expansion is easy:

$$\det \mathcal{D}_{p,a}[U, X_i; \mu] = \det \left[\prod_{t=0}^{L_t - 1} \Phi(t) W(t) \mp e^{+\mu L_t} \right]$$
$$= \sum_{n_t = 0}^{2(N^2 - 1)} (\mp e^{\mu L_t})^{n_t} \det \mathcal{D}_{n_t}[U, X_i]$$

Fugacity expansion is easy:

$$\det \mathcal{D}_{p,a}[U, X_i; \mu] = \det \left[\prod_{t=0}^{L_t - 1} \Phi(t) W(t) \mp e^{+\mu L_t} \right]$$
$$= \sum_{n_t = 0}^{2(N^2 - 1)} (\mp e^{\mu L_t})^{n_f} \det \mathcal{D}_{n_f}[U, X_i]$$

- Charge conjugation ensures symmetry between sectors:
 - broken by the Wilson discretisation,
 - restored in the continuum.

Fugacity expansion is easy:

$$\det \mathcal{D}_{p,a}[U, X_i; \mu] = \det \left[\prod_{t=0}^{L_t - 1} \Phi(t) W(t) \mp e^{+\mu L_t} \right]$$
$$= \sum_{n_t = 0}^{2(N^2 - 1)} (\mp e^{\mu L_t})^{n_f} \det \mathcal{D}_{n_f}[U, X_i]$$

- Charge conjugation ensures symmetry between sectors:
 - broken by the Wilson discretisation,
 - restored in the continuum.
- ► Canonical determinants are real: det $\mathcal{D}_{n_f}[U, X_i] = \det \mathcal{D}_{n_f}[U, X_i]^*$

• Fugacity expansion is easy:

$$\det \mathcal{D}_{p,a}[U, X_i; \mu] = \det \left[\prod_{t=0}^{L_t - 1} \Phi(t) W(t) \mp e^{+\mu L_t} \right]$$
$$= \sum_{n_t = 0}^{2(N^2 - 1)} (\mp e^{\mu L_t})^{n_f} \det \mathcal{D}_{n_f}[U, X_i]$$

- Charge conjugation ensures symmetry between sectors:
 - broken by the Wilson discretisation,
 - restored in the continuum.
- ► Canonical determinants are real: det $\mathcal{D}_{n_f}[U, X_i] = \det \mathcal{D}_{n_f}[U, X_i]^*$

• For
$$n_f = 0$$
 and $n_f = 2(N^2 - 1) \equiv n_f^{\text{max}}$ (quenched):

 $\det \mathcal{D}_{n_f}[U, X_i] \ge 0 \quad \text{positive}$

Fugacity expansion and transfer matrices

Canonical determinants are expressed in terms of elementary symmetric functions S_k of order k of {\u03c4_i}:

$$\det \mathcal{D}_{n_f}[U, X_i] = \frac{S_{n_f^{\max} - n_f}(\mathcal{T})}{$$

where

$$S_k(\mathcal{T}) \equiv S_k(\{\tau_i\}) = \sum_{1 \leq i_1 < \cdots < i_k \leq n_f^{\max}} \prod_{j=1}^k \tau_{i_j}.$$

Fugacity expansion and transfer matrices

Canonical determinants are expressed in terms of elementary symmetric functions S_k of order k of {\u03c4_i}:

$$\det \mathcal{D}_{n_f}[U, X_i] = \frac{S_{n_f^{\max} - n_f}}{T}$$

where

$$S_k(\mathcal{T}) \equiv S_k(\{\tau_i\}) = \sum_{1 \le i_1 < \cdots < i_k \le n_i^{\max}} \prod_{j=1}^k \tau_{i_j}.$$

Crucial object:

$$\mathcal{T} \equiv \prod_{t=0}^{L_t-1} \Phi(t) W(t) \quad \Leftrightarrow \quad \text{product of transfer matrices}$$

Fugacity expansion and transfer matrices

► Canonical determinants are expressed in terms of elementary symmetric functions S_k of order k of {τ_i}:

$$\det \mathcal{D}_{n_f}[U, X_i] = \frac{S_{n_f^{\max} - n_f}}{T}$$

where

$$S_k(\mathcal{T}) \equiv S_k(\{\tau_i\}) = \sum_{1 \le i_1 < \cdots < i_k \le n_i^{\max}} \prod_{j=1}^k \tau_{i_j}.$$

Crucial object:

$$\mathcal{T}\equiv\prod_{t=0}^{L_t-1}\Phi(t)W(t) \quad \Leftrightarrow \quad ext{ product of transfer matrices}$$

Proof via fermion loop formulation:

 \Rightarrow explicit construction in each fermion sector

Fermion loop formulation \Leftrightarrow all order hopping expansion

Configurations can be classified according to the number of propagating fermions n_f:

Fermion loop formulation \Leftrightarrow all order hopping expansion

Configurations can be classified according to the number of propagating fermions n_f:

Fermion loop formulation \Leftrightarrow all order hopping expansion

Configurations can be classified according to the number of propagating fermions n_f:

Propagation of fermions described by transfer matrices:

 $T^{\Phi}_{n_f}(t) \Rightarrow$ sums up local vacuum contributions, $T^W_{n_f}(t) \Rightarrow$ projects onto gauge invariant states

Propagation of fermions described by transfer matrices:

 $T^{\Phi}_{n_f}(t) \Rightarrow$ sums up local vacuum contributions, $T^W_{n_f}(t) \Rightarrow$ projects onto gauge invariant states

Explicitly:

$$(T^{\Phi}_{n_f})_{AB} = (-1)^{p(A,B)} \det \Phi^{B^{A}}$$
 cofactor $C_{B^{A}}(\Phi)$
 $(T^{W}_{n_f})_{AB} = \det W^{AB}$ minor $M_{AB}(W)$

Propagation of fermions described by transfer matrices:

 $T^{\Phi}_{n_f}(t) \Rightarrow$ sums up local vacuum contributions, $T^W_{n_f}(t) \Rightarrow$ projects onto gauge invariant states

Explicitly:

$$\begin{array}{l} \left(T^{\Phi}_{n_{f}}\right)_{AB} = (-1)^{p(A,B)} \det \Phi^{\mathcal{B}^{A}} & \text{cofactor } C_{\mathcal{B}^{A}}(\Phi) \\ \left(T^{W}_{n_{f}}\right)_{AB} = \det W^{AB} & \text{minor } M_{AB}(W) \end{array}$$

• Size of $T_{n_f}^{\Phi,W}$ is given by $N_{\text{states}} = n_f^{\max!} / (n_f^{\max} - n_f)! \cdot n_f!$

Propagation of fermions described by transfer matrices:

 $T^{\Phi}_{n_{f}}(t) \Rightarrow$ sums up local vacuum contributions, $T^{W}_{n_{f}}(t) \Rightarrow$ projects onto gauge invariant states

Explicitly:

$$\begin{array}{l} \left(T^{\Phi}_{n_{f}}\right)_{AB} = (-1)^{p(A,B)} \det \Phi^{\mathcal{B}^{A}} & \text{cofactor } C_{\mathcal{B}^{A}}(\Phi) \\ \left(T^{W}_{n_{f}}\right)_{AB} = \det W^{AB} & \text{minor } M_{AB}(W) \end{array}$$

• Size of $T_{n_f}^{\Phi,W}$ is given by $N_{\text{states}} = n_f^{\max}!/(n_f^{\max} - n_f)! \cdot n_f!$

Fermion contribution to the partition function is simply

$$\det \mathcal{D}_{n_f}[U, X_i] = \mathsf{Tr} \left[\prod_{t=0}^{L_t-1} \mathcal{T}^{\Phi}_{n_f}(t) \cdot \mathcal{T}^{W}_{n_f}(t) \right]$$

Transfer matrices and canonical determinants

Fermion contribution to the partition function is simply

$$\det \mathcal{D}_{n_f}[U, X_i] = \operatorname{Tr} \left[\prod_{t=0}^{L_t-1} \mathcal{T}^{\Phi}_{n_f}(t) \cdot \mathcal{T}^{W}_{n_f}(t) \right]$$

Transfer matrices and canonical determinants

▶ Fermion contribution to the partition function is simply

$$\det \mathcal{D}_{n_f}[U, X_i] = \mathsf{Tr} \left[\prod_{t=0}^{L_t-1} \mathcal{T}^{\Phi}_{n_f}(t) \cdot \mathcal{T}^{W}_{n_f}(t) \right]$$

► Use Cauchy-Binet formula (and some algebra):

$$\left(\prod_{t=0}^{L_t-1} \left[\mathcal{T}^{\Phi}_{n_f}(t) \cdot \mathcal{T}^{W}_{n_f} \right] \right)_{AB} = (-1)^{p(A,B)} \det \mathcal{T}^{A\!R} = C_{A\!R}(\mathcal{T})$$

Transfer matrices and canonical determinants

▶ Fermion contribution to the partition function is simply

$$\det \mathcal{D}_{n_f}[U, X_i] = \mathsf{Tr}\left[\prod_{t=0}^{L_t-1} \mathcal{T}^{\Phi}_{n_f}(t) \cdot \mathcal{T}^{W}_{n_f}(t)\right]$$

Use Cauchy-Binet formula (and some algebra):

$$\left(\prod_{t=0}^{L_t-1} \left[\mathcal{T}^{\Phi}_{n_f}(t) \cdot \mathcal{T}^{W}_{n_f} \right] \right)_{AB} = (-1)^{p(A,B)} \det \mathcal{T}^{A\!R} = \mathcal{C}_{A\!R}(\mathcal{T})$$

Sum over principal minors:

$$\det \mathcal{D}_{n_f}[U,X_i] = \sum_B \det \mathcal{T}^{\mathcal{RB}}$$
Transfer matrices and canonical determinants

► Fermion contribution to the partition function is simply

$$\det \mathcal{D}_{n_f}[U, X_i] = \mathsf{Tr}\left[\prod_{t=0}^{L_t-1} \mathcal{T}^{\Phi}_{n_f}(t) \cdot \mathcal{T}^{W}_{n_f}(t)\right]$$

Use Cauchy-Binet formula (and some algebra):

$$\left(\prod_{t=0}^{L_t-1} \left[\mathcal{T}^{\Phi}_{n_f}(t) \cdot \mathcal{T}^{W}_{n_f} \right] \right)_{AB} = (-1)^{p(A,B)} \det \mathcal{T}^{A\!R} = \mathcal{C}_{A\!R}(\mathcal{T})$$

Sum over principal minors:

$$\det \mathcal{D}_{n_f}[U, X_i] = \sum_B \det \mathcal{T}^{RB}$$

Finally one can proof by linear algebra

$$\sum_{B} \det \mathcal{T}^{\mathcal{R}\mathcal{B}} = S_{n_{f}^{\max} - n_{f}}(\mathcal{T}).$$

Summary ... so far

Canonical determinants are directly given by transfer matrices

$$\det \mathcal{D}_{n_f}[U, X_i] = \operatorname{Tr}\left[\prod_{t=0}^{L_t-1} \mathcal{T}^{\Phi}_{n_f}(t) \cdot \mathcal{T}^{W}_{n_f}(t)\right] = \sum_{B} \det \mathcal{T}^{R_i}$$

constructed from reduced matrix

$$\mathcal{T}\equiv\prod_{t=0}^{L_t-1}\Phi(t)W(t)$$
.

Summary ... so far

Canonical determinants are directly given by transfer matrices

$$\det \mathcal{D}_{n_f}[U, X_i] = \operatorname{Tr}\left[\prod_{t=0}^{L_t-1} \mathcal{T}^{\Phi}_{n_f}(t) \cdot \mathcal{T}^{W}_{n_f}(t)\right] = \sum_B \det \mathcal{T}^{R_i}$$

constructed from reduced matrix

$$\mathcal{T}\equiv\prod_{t=0}^{L_t-1}\Phi(t)W(t)$$
.

Proof is applicable to QCD, algebraic structure is the same!

Summary ... so far

Canonical determinants are directly given by transfer matrices

$$\det \mathcal{D}_{n_f}[U, X_i] = \operatorname{Tr} \left[\prod_{t=0}^{L_t-1} \mathcal{T}^{\Phi}_{n_f}(t) \cdot \mathcal{T}^{W}_{n_f}(t) \right] = \sum_{B} \det \mathcal{T}^{R_i}$$

constructed from reduced matrix

$$\mathcal{T} \equiv \prod_{t=0}^{L_t-1} \Phi(t) W(t).$$

- Proof is applicable to QCD, algebraic structure is the same!
- Remarks:
 - \mathcal{T} describes the dimensionally reduced effective action for W,
 - our result allows for local fermion algorithm,
 - allows canonical simulations at fixed n_f .

Evaluation of the sum of principal minors

$$Z_{n_f} = \int \mathcal{D}U \mathcal{D}X \ e^{-S[U,X]} \sum_{B} \det \mathcal{T}[U,X]^{k_F}$$

Evaluation of the sum of principal minors

$$Z_{n_f} = \int \mathcal{D}U \mathcal{D}X \ e^{-S[U,X]} \sum_{B} \det \mathcal{T}[U,X]^{k_F}$$

▶ number of principal minors of order $n_f \sim n_f^{\max}/2$ grows factorially with the size n_f^{\max} of T

Evaluation of the sum of principal minors

$$Z_{n_f} = \sum_{B} \int \mathcal{D}U \mathcal{D}X \ e^{-S[U,X]} \det \mathcal{T}[U,X]^{k_F}$$

- number of principal minors of order $n_f \sim n_f^{\max}/2$ grows factorially with the size n_f^{\max} of T
- Efficient stochastic evaluation of \sum_B :
 - ► treat index set *B* as dynamical degree of freedom

Evaluation of the sum of principal minors

$$Z_{n_f} = \sum_{B} \int \mathcal{D}U \mathcal{D}X \ e^{-S[U,X]} \det \mathcal{T}[U,X]^{k_F}$$

- number of principal minors of order $n_f \sim n_f^{\max}/2$ grows factorially with the size n_f^{\max} of T
- Efficient stochastic evaluation of \sum_B :
 - treat index set B as dynamical degree of freedom
 - update $B \rightarrow B'$ using Fisher-Yates reshuffling
 - new random set B' is accepted with probability

$$p_{B o B'} = \min[1, A_{B o B'}] \quad \text{with} \quad A_{B o B'} = \left| \frac{\det \mathcal{T}[U, X]^{[k']}}{\det \mathcal{T}[U, X]^{[k]}} \right|$$

Metropolis update algorithm

- ► Calculation of *T*:
 - after each change of $\Phi(t)$ or W(t)

Metropolis update algorithm

- Calculation of \mathcal{T} :
 - after each change of $\Phi(t)$ or W(t)
 - efficient binary tree data structure:

Metropolis update algorithm

- Simulations for N = 2 with $n_f^{\text{max}} = 2(N^2 1) = 6$:
 - SU(2) adjoint \Rightarrow sectors $n_f = \{0, 1, \dots, 6\}$

- Simulations for N = 2 with $n_f^{\text{max}} = 2(N^2 1) = 6$:
 - SU(2) adjoint \Rightarrow sectors $n_f = \{0, 1, \dots, 6\}$
- Measure moduli of Polyakov loop and scalar field:

$$P = \left| \operatorname{Tr}_{F} \left[\prod_{t} U(t) \right] \right|, \qquad R^{2} \equiv |X|^{2} = X_{i}^{a} X_{i}^{a}$$

- Simulations for N = 2 with $n_f^{\text{max}} = 2(N^2 1) = 6$:
 - SU(2) adjoint \Rightarrow sectors $n_f = \{0, 1, \dots, 6\}$
- Measure moduli of Polyakov loop and scalar field:

$$P = \left| \operatorname{Tr}_{F} \left[\prod_{t} U(t) \right] \right|, \qquad R^{2} \equiv |X|^{2} = X_{i}^{a} X_{i}^{a}$$

• Open questions:

- ► sign problem: det $\mathcal{D}_{n_f}[U, X_i] \ge 0 \quad \forall n_f$?
- flat directions?

 \Rightarrow regularize with a term $\propto m^2 X^2$

- No sign problem in sectors $n_f = 0, 2, 3, 4$ and 6:
 - det $\mathcal{D}_{n_f} > 0$ for $n_f = 0$ and $n_f = 6$,

- No sign problem in sectors $n_f = 0, 2, 3, 4$ and 6:
 - det $\mathcal{D}_{n_f} > 0$ for $n_f = 0$ and $n_f = 6$,
 - e.g. for $n_f = 3$ at $\beta = 1.2$ on $L_t = 24$:

• No sign problem in sectors $n_f = 0, 2, 3, 4$ and 6:

• sign of minor at $\beta = 2.0$ at $n_f = 2$ and $n_f = 4$:

• No sign problem in sectors $n_f = 0, 2, 3, 4$ and 6:

• continuum limit at $mL_t \rightarrow 0$ at $\beta = 2.0$ at $n_f = 2$ and $n_f = 4$:

sign M, β=2.00, SU(2), mL= 0.0

• Significant negative contributions in sectors $n_f = 1$ and 5:

• e.g. for
$$n_f = 1$$
 at $\beta = 1.2$ on $L_t = 24$:

- Significant negative contributions in sectors $n_f = 1$ and 5:
 - absolutely crucial for reweighting to other sectors,
 - e.g. for $n_f = 1$ at $\beta = 1.2$ on $L_t = 24$:

- Significant negative contributions in sectors $n_f = 1$ and 5:
 - absolutely crucial for reweighting to other sectors,
 - distribution remains fixed in the continuum limit $L_t
 ightarrow \infty$

- Significant negative contributions in sectors $n_f = 1$ and 5:
 - sign of minor at $\beta = 2.0$ at $n_f = 1$ and $n_f = 5$:

- Significant negative contributions in sectors $n_f = 1$ and 5:
 - continuum limit at $mL_t \rightarrow 0$ at $\beta = 2.0$ at $n_f = 1$ and $n_f = 5$:

• Significant negative contributions in sectors $n_f = 1$ and 5:

gets better towards higher temperatures,

•
$$n_f = 1$$
 at $L_t = 48$ and $\beta = 0.6$:

- ► System may suffer from running away along flat directions, where [X_i, X_j] ~ 0:
 - there exist metastable states along the flat directions
 - X^2 can become arbitrarily large, gauge field freezes
 - algorithm suffers from critical slowing down in those metastable states

- ► System may suffer from running away along flat directions, where [X_i, X_j] ~ 0:
 - there exist metastable states along the flat directions
 - X^2 can become arbitrarily large, gauge field freezes
 - algorithm suffers from critical slowing down in those metastable states

- ► System may suffer from running away along flat directions, where [X_i, X_j] ~ 0:
 - there exist metastable states along the flat directions
 - X^2 can become arbitrarily large, gauge field freezes
 - algorithm suffers from critical slowing down in those metastable states
- Multiplicative random walk update:
 - update *X* collectively by rescaling with a random factor *R*:

- Metastable phase along flat directions may persist for small m:
 - X^2 diverges in the limit $m \to 0$
- Simulations starting from small random field configurations seem stable:

• X^2 well behaved in the limit $m \to 0$

Moduli of X^2 at $\beta = 2.0$ at $n_f = 0$ and $n_f = 6$:

Continuum limit at $mL_t \rightarrow 0$ at $\beta = 2.0$ at $n_f = 0$ and $n_f = 6$:

Moduli of X^2 at $\beta = 2.0$ at $n_f = 1$ and $n_f = 5$:

Continuum limit at $mL_t \rightarrow 0$ at $\beta = 0.5$ at $n_f = 1$ and $n_f = 5$:

Moduli of X^2 at $\beta = 2.0$ at $n_f = 2$ and $n_f = 4$: sectors degenerate

Continuum limit at $mL_t \rightarrow 0$ at $\beta = 2.0$ at $n_f = 2$ and $n_f = 4$:

Moduli of X^2 at $\beta = 2.0$ for periodic and thermal b.c.:

 \Rightarrow divergent contributions from $n_f = 2, 3, 4$ cancel in det D_p

Continuum limit in the limit $mL_t \rightarrow 0$ at $\beta = 2.0$ for (a-)per. b.c.:

Canonical simulations at fixed n_f for SU(2)

Other quantities remain finite, e.g. E_B at $\beta = 0.5$:

Conclusions

- Supersymmetric Yang-Mills SU(N) gauge theories on the lattice:
 - ▶ $\mathcal{N} = 4$ in d = 0 + 1 well understood & under control
 - nonperturbative quantitative statements possible
- Complete description of the phase structure including flat directions

 \Rightarrow study mass spectra in each sector next

- Interpretation of the divergencies:
 - thermodynamics of black holes (evaporation,...?)
 - ► large-*N* limit

Canonical formulation is crucial:

- solves (or avoids) the fermion sign problem
- formalism and techniques also applicable to QCD!