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SYM gauge theories: dualities, black holes and all that

Gauge/gravity duality conjecture:

I U(N) gauge theories as a low energy effective theory of N
D-branes

I Dimensionally reduced large-N super Yang-Mills might provide
a nonperturbative formulation of the string/M-theory

I Connection to black p-branes allows studying black hole
thermodynamics through strongly coupled gauge theory:

super Yang-Mills
in (p+1)-dim.

IIA/IIB
superstring on
black p-brane
background

Dp-branes in su-
perstring theory

equivalent

closed string
open string



SYM QM: Motivation

Supersymmetric Yang-Mills quantum mechanics:

I Interesting physics:
I testing gauge/gravity duality,
I thermodynamics of black holes

I Interesting expectations:
I discrete vs. continuous spectrum

(depending on the fermion sector),
I flat directions

I Interesting ’bosonisation’:
I fermion contribution decomposes into fermion sectors,
I allows for a local fermion algorithm,
I structure is the same as for QCD!
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Continuum Model

I Start from N = 1 SYM in d = 4 (or 10) dimensions

I Dimensionally reduce to 1-dim. N = 4 (or 16) SYM QM:

S =
1

g2

∫ β

0

dt Tr

{
(DtXi )

2 − 1

2
[Xi ,Xj ]

2 + ψDtψ − ψσi [Xi , ψ]

}

I covariant derivative Dt = ∂t − i [A(t), ·],
I time component of the gauge field A(t),

I spatial components become bosonic fields Xi (t) with
i = 1, . . . , d − 1,

I anticommuting fermion fields ψ(t), ψ(t),

I σi are the γ-matrices in d dimensions

I all fields in the adjoint representation of SU(N)
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Continuum Model

I Start from N = 1 SYM in d = 4 (or 10) dimensions

I Dimensionally reduce to 1-dim. N = 4 (or 16) SYM QM:

S =
1

g2

∫ β

0

dt Tr

{
(DtXi )

2 − 1

2
[Xi ,Xj ]

2 + ψDtψ − ψσi [Xi , ψ]

}

I covariant derivative Dt = ∂t − i [A(t), ·],
I time component of the gauge field A(t),

I spatial components become bosonic fields Xi (t) with
i = 1, 2, 3 (for N = 4),

I anticommuting fermion fields ψ(t), ψ(t),
(complex 2-component spinors for N = 4)

I σi are the γ-matrices in d dimensions
(Pauli matrices for N = 4)

I all fields in the adjoint representation of SU(N)



Lattice regularisation

I Discretise the bosonic part:

SB =
1

g2

Lt−1∑
t=0

Tr

{
DtXi (t)DtXi (t)− 1

2
[Xi (t),Xj(t)]2

}
with DtXi (t) = U(t)Xi (t + 1)U†(t)− Xi (t)

I Use Wilson term for the fermionic part,

SF =
1

g2

Lt−1∑
t=0

Tr
{
ψ(t)Dtψ(t)− ψ(t)σi [Xi (t), ψ(t)]

}
,

since

∂W =
1

2
(∇+ +∇−)± 1

2
∇+∇− d=1

=⇒ ∇±
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Lattice regularisation and reduced determinant

I Specifically, we have

SF =
1

2g2

Lt−1∑
t=0

[
−ψa

α(t)W ab
αβ(t)e+µLtψb

β(t + 1) + ψ
a

α(t)Φac
αβ(t)ψc

β(t)
]

where W ab
αβ(t) = 2δαβ ⊗ Tr{T aU(t)T bU(t)†}.

I Φ is a 2(N2 − 1)× 2(N2 − 1) Yukawa interaction matrix:

Φac
αβ(t) = (σ0)αβ ⊗ δac − 2 (σi )αβ ⊗ Tr{T a[Xi (t),T c ]}

I Dimensional reduction of determinant at finite density µ 6= 0:

detDp,a[U,Xi ;µ] = det

[
Lt−1∏
t=0

Φ(t)W (t)∓ e+µLt

]
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Fugacity expansion

I Fugacity expansion is easy:

detDp,a[U,Xi ;µ] = det

[
Lt−1∏
t=0

Φ(t)W (t)∓ e+µLt

]

I Charge conjugation ensures symmetry between sectors:
I broken by the Wilson discretisation,
I restored in the continuum.

I Canonical determinants are real: detDnf [U,Xi ] = detDnf [U,Xi ]
∗

I For nf = 0 and nf = 2(N2 − 1) ≡ nmax
f (quenched):

detDnf [U,Xi ] ≥ 0 positive
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Fugacity expansion and transfer matrices

I Canonical determinants are expressed in terms of
elementary symmetric functions Sk of order k of {τi}:

detDnf [U,Xi ] = Snmax
f −nf (T )

where

Sk(T ) ≡ Sk({τi}) =
∑

1≤i1<···<ik≤nmax
f

k∏
j=1

τij .

Crucial object:

T ≡
Lt−1∏
t=0

Φ(t)W (t) ⇔ product of transfer matrices

I Proof via fermion loop formulation:

⇒ explicit construction in each fermion sector
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Fermion loop formulation ⇔ all order hopping expansion

I Configurations can be classified according to the number of
propagating fermions nf :

nf = 1
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Fermion loop formulation ⇔ all order hopping expansion

I Configurations can be classified according to the number of
propagating fermions nf :

nf = 0 nf = 1 . . .

. . .

nf = 2(N2 − 1)



Transfer matrices

I Propagation of fermions described by transfer matrices:

TΦ
nf

(t) ⇒ sums up local vacuum contributions,

TW
nf

(t) ⇒ projects onto gauge invariant states

Explicitly:

(
TΦ
nf

)
AB

= (−1)p(A,B) det Φ \B\A cofactor C \B\A(Φ)(
TW
nf

)
AB

= detW AB minor MAB(W )

I Size of TΦ,W
nf is given by Nstates = nmax

f !/(nmax
f − nf )! · nf !

I Fermion contribution to the partition function is simply

detDnf [U,Xi ] = Tr

[
Lt−1∏
t=0

TΦ
nf (t) · TW

nf (t)

]
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Transfer matrices and canonical determinants

I Fermion contribution to the partition function is simply

detDnf [U,Xi ] = Tr
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nf (t) · TW
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]

I Use Cauchy-Binet formula (and some algebra):(
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= (−1)p(A,B) det T \A \B = C \A \B(T )

Sum over principal minors:

detDnf [U,Xi ] =
∑
B

det T \B \B

I Finally one can proof by linear algebra∑
B

det T \B \B = Snmax
f −nf (T ) .
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Summary . . . so far

I Canonical determinants are directly given by transfer matrices

detDnf [U,Xi ] = Tr

[
Lt−1∏
t=0

TΦ
nf

(t) · TW
nf

(t)

]
=
∑
B

det T \B \B

constructed from reduced matrix

T ≡
Lt−1∏
t=0

Φ(t)W (t) .

I Proof is applicable to QCD, algebraic structure is the same!

I Remarks:
I T describes the dimensionally reduced effective action for W ,

I our result allows for local fermion algorithm,

I allows canonical simulations at fixed nf .
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Canonical simulations at fixed nf

I Evaluation of the sum of principal minors

Znf =

∫
DU DX e−S[U,X ]

∑
B

det T [U,X ]ABAB

I number of principal minors of order nf ∼ nmax
f /2 grows

factorially with the size nmax
f of T

I Efficient stochastic evaluation of
∑

B :

I treat index set B as dynamical degree of freedom
I update B → B ′ using Fisher-Yates reshuffling
I new random set B ′ is accepted with probability

pB→B′ = min[1,AB→B′ ] with AB→B′ =

∣∣∣∣∣det T [U,X ]AB
′
AB

′

det T [U,X ]ABAB

∣∣∣∣∣ .
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I Efficient stochastic evaluation of
∑

B :
I treat index set B as dynamical degree of freedom

I update B → B ′ using Fisher-Yates reshuffling
I new random set B ′ is accepted with probability

pB→B′ = min[1,AB→B′ ] with AB→B′ =

∣∣∣∣∣det T [U,X ]AB
′
AB

′

det T [U,X ]ABAB

∣∣∣∣∣ .
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Metropolis update algorithm

I Calculation of T :
I after each change of Φ(t) or W (t)

I efficient binary tree data structure:
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Metropolis update algorithm

I Calculation of T :
I after each change of Φ(t) or W (t)
I efficient binary tree data structure:

⇒ only O(log Lt) matrix multiplications



Canonical simulations at fixed nf

I Simulations for N = 2 with nmax
f = 2(N2 − 1) = 6:

I SU(2) adjoint ⇒ sectors nf = {0, 1, . . . , 6}

I Measure moduli of Polyakov loop and scalar field:

P =

∣∣∣∣∣TrF

[∏
t

U(t)

]∣∣∣∣∣ , R2 ≡ |X |2 = X a
i X

a
i

I Open questions:

I sign problem: detDnf [U,Xi ] ≥ 0 ∀nf ?

I flat directions?
⇒ regularize with a term ∝ m2X 2
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Canonical determinants for SU(2)

I No sign problem in sectors nf = 0, 2, 3, 4 and 6:
I detDnf > 0 for nf = 0 and nf = 6,

I e.g. for nf = 3 at β = 1.2 on Lt = 24:
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Canonical determinants for SU(2)

I No sign problem in sectors nf = 0, 2, 3, 4 and 6:
I sign of minor at β = 2.0 at nf = 2 and nf = 4:
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I continuum limit at mLt → 0 at β = 2.0 at nf = 2 and nf = 4:



Canonical determinants for SU(2)

I Significant negative contributions in sectors nf = 1 and 5:

I absolutely crucial for reweighting to other sectors,

I e.g. for nf = 1 at β = 1.2 on Lt = 24:
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Canonical determinants for SU(2)

I Significant negative contributions in sectors nf = 1 and 5:
I absolutely crucial for reweighting to other sectors,
I distribution remains fixed in the continuum limit Lt →∞
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Canonical determinants for SU(2)

I Significant negative contributions in sectors nf = 1 and 5:
I sign of minor at β = 2.0 at nf = 1 and nf = 5:
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Canonical determinants for SU(2)

I Significant negative contributions in sectors nf = 1 and 5:
I gets better towards higher temperatures,
I nf = 1 at Lt = 48 and β = 0.6:
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Flat directions and metastabilities

I System may suffer from running away along flat directions,
where [Xi ,Xj ] ∼ 0:

I there exist metastable states along the flat directions
I X 2 can become arbitrarily large, gauge field freezes
I algorithm suffers from critical slowing down in those

metastable states

I Multiplicative random walk update:
I update X collectively by rescaling with a random factor R:
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Flat directions and metastabilities

I Metastable phase along flat directions may persist for small
m:

I X 2 diverges in the limit m→ 0

I Simulations starting from small random field configurations
seem stable:

I X 2 well behaved in the limit m→ 0
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Canonical simulations at fixed nf for SU(2)

Moduli of X 2 at β = 2.0 at nf = 0 and nf = 6:
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Canonical simulations at fixed nf for SU(2)

Continuum limit at mLt → 0 at β = 2.0 at nf = 0 and nf = 6:



Canonical simulations at fixed nf for SU(2)

Moduli of X 2 at β = 2.0 at nf = 1 and nf = 5:



Canonical simulations at fixed nf for SU(2)

Continuum limit at mLt → 0 at β = 0.5 at nf = 1 and nf = 5:



Canonical simulations at fixed nf for SU(2)

Moduli of X 2 at β = 2.0 at nf = 2 and nf = 4: sectors degenerate
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Canonical simulations at fixed nf for SU(2)

Continuum limit at mLt → 0 at β = 2.0 at nf = 2 and nf = 4:



Canonical simulations at fixed nf for SU(2)

Moduli of X 2 at β = 2.0 for periodic and thermal b.c.:
⇒ divergent contributions from nf = 2, 3, 4 cancel in detDp



Canonical simulations at fixed nf for SU(2)

Continuum limit in the limit mLt → 0 at β = 2.0 for (a-)per. b.c.:



Canonical simulations at fixed nf for SU(2)

Other quantities remain finite, e.g. EB at β = 0.5:
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Conclusions

I Supersymmetric Yang-Mills SU(N) gauge theories on the
lattice:

I N = 4 in d = 0 + 1 well understood & under control
I nonperturbative quantitative statements possible

I Complete description of the phase structure including flat
directions

⇒ study mass spectra in each sector next

I Interpretation of the divergencies:
I thermodynamics of black holes (evaporation,. . . ?)
I large-N limit

Canonical formulation is crucial:

I solves (or avoids) the fermion sign problem

I formalism and techniques also applicable to QCD!
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