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SYM gauge theories: dualities, black holes and all that

Gauge/gravity duality conjecture:

» U(N) gauge theories as a low energy effective theory of N
D-branes

» Dimensionally reduced large-N super Yang-Mills might provide
a nonperturbative formulation of the string/M-theory

» Connection to black p-branes allows studying black hole
thermodynamics through strongly coupled gauge theory:

Dp-branes in su-
perstring theory

. closed string
open string

IIA/1IB
superstring on
black p-brane
background

super Yang-Mills equivalent

in (p+1)-dim.
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» Interesting physics:
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SYM QM: Motivation

Supersymmetric Yang-Mills quantum mechanics:

» Interesting physics:
> testing gauge/gravity duality,
» thermodynamics of black holes

» Interesting expectations:
» discrete vs. continuous spectrum

(depending on the fermion sector),
» flat directions

» Interesting 'bosonisation’:

» fermion contribution decomposes into fermion sectors,

» allows for a local fermion algorithm,
>
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Continuum Model

» Start from (or 10) dimensions
» Dimensionally reduce to 1-dim. (or 16) SYM QM:
I 2 1 2, = —
S= o dtTr 4 (DeXi)” = 5 [Xi XiI™ + ¥ Detp — o [Xi, ]
Jo

» covariant derivative D; = 9; — i[A(t), -],
» time component of the gauge field A(t),

» spatial components become bosonic fields X;(t) with
» anticommuting fermion fields ¥(t), 1(t),

» o, are the y-matrices in d dimensions

» all fields in the adjoint representation of SU(N)



» Discretise the bosonic part:
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» Discretise the bosonic part:

_ i2 Z_ {DtXi(t)DtX,-(t) - % [X,.(t),Xj(t)]z}
t=0

with D:X;(t) = U(t)Xi(t + 1)UT(t) — Xi(t)

» Use Wilson term for the fermionic part,

Li—

pe Z Tr {0 (t)Detp(t) — (t)o: [Xi(t), (D]}

since

1 1 _
W= (VI V)£ VIV S



» Specifically, we have

TR = .
5¢ = 573 ; [—Pa (Wb () bt + 1) + D)0 (2)us(1)]

where W25(t) = 25,5 @ TH{T2U(t) TU(1)'}.
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Lattice regularisation and reduced determinant

» Specifically, we have

Le—1

1 —a b
St = g3 O [ OA(OWEL D) LU (e + 1) + T (002005 (0

t=0
where W25(t) = 2605 @ Tr{T2U(t) TPU(t)"}.
» ®is a 2(N? — 1) x 2(N? — 1) Yukawa interaction matrix:

25(t) = (00)ap ® 07 = 2(07)ap @ TH{ T?[X(t), T}
» Dimensional reduction of determinant at finite density . # 0:
Li—1

det D, ,[U, X;; p] = det | [T ®()W(t) T et™
t=0
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Fugacity expansion

» Fugacity expansion is easy:
L—1
det Dy o[U, Xi; ] = det | [ o(e)W(t) T e+"
=0
2(N%-1)
= Z (Felt)" det Dy, [U, Xi]

anO

» Charge conjugation ensures symmetry between sectors:
» broken by the Wilson discretisation,
» restored in the continuum.

» Canonical determinants are real:

» For nf =0 and nf = 2(N? — 1) = n®* (quenched):
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» Canonical determinants are expressed in terms of
elementary symmetric functions Sy of order k of {7;}:

det Dy, [U, Xi] = Sy, (T)
where

k
Sk(T) = Sk({T,'}) = Z HTiJ .

1<iy <o < i <P j=1

Le—1
T= H o(t)W(t) <« product of transfer matrices
t=0

» Proof via fermion loop formulation:

= explicit construction in each fermion sector



» Configurations can be classified according to the number of
propagating fermions ny:

nf:1

~ o9



Fermion loop formulation <> all order hopping expansion

» Configurations can be classified according to the number of
propagating fermions ns:

nf:1 nf:2(N2—].)
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Fermion loop formulation <> all order hopping expansion

» Configurations can be classified according to the number of
propagating fermions ns:
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» Propagation of fermions described by transfer matrices:

T,‘,t(t) = sums up local vacuum contributions,

Tnva(t) = projects onto gauge invariant states

(T as = (—1)P*B) det SR cofactor Cgy(®)
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Transfer matrices

» Propagation of fermions described by transfer matrices:

T,i(t) = sums up local vacuum contributions,

T,,va(t) = projects onto gauge invariant states

Explicitly:
(Trj;)AB = (*1)P(A’B) det EA cofactor Cgu(®)
(Tor') g = det WAE minor Mag(W)

> Size of T is given by Neates = n11/(n — )1 - nfl
» Fermion contribution to the partition function is simply

L—1

det D, [U, X =Tr | [] To(t)- T2 (1)
t=0
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Transfer matrices and canonical determinants

» Fermion contribution to the partition function is simply
Li—1

det Dy, [U, X = Tr | [ To(t)- T (1)
t=0

» Use Cauchy-Binet formula (and some algebra):

Li—1
(Trz0 1)~ oo —cum
AB

t=0

Sum over principal minors:

det D, [U, X;] = > det TH"
B

» Finally one can proof by linear algebra

> det THE = Spoc_ (7).
B



» Canonical determinants are directly given by transfer matrices

= Z det TEE
B
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» Canonical determinants are directly given by transfer matrices

= Z det TEE
B

Li—1

II ™=@ Y

t=0

det D, [U, X{] = Tr

constructed from reduced matrix

Li—1

T= ][] e(W(y).
t=0

» Proof is applicable to QCD, algebraic structure is the same!
» Remarks:
» T describes the dimensionally reduced effective action for W/,
» our result allows for local fermion algorithm,

» allows canonical simulations at fixed nr.
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> treat index set B as dynamical degree of freedom



Canonical simulations at fixed nf

» Evaluation of the sum of principal minors

Zn = /DUDX elUX

» number of principal minors of order ng ~ nf"® /2 grows
factorially with the size n"® of T

» treat index set B as dynamical degree of freedom
» update B — B’ using Fisher-Yates reshuffling
» new random set B’ is accepted with probability

PB—B = min[l,ABﬁBl] with Ag_p =

det TU, X]E'&
det T[U, X]BR |



» Calculation of T
» after each change of ®(t) or W(t)
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» Calculation of T

» after each change of ®(t) or W(t)
» efficient binary tree data structure:
= only O(log L;) matrix multiplications
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» Simulations for N = 2 with nf"®* = 2(N2 -1)=6:
» SU(2) adjoint = sectors nf = {0,1,...,6}

» Measure moduli of Polyakov loop and scalar field:
Tre |J:[ U(t)]
t

P= , R* = |X|* = X/ X}

» Open questions:
» sign problem: det D, [U,X;] >0 Vn¢?

» flat directions?
= regularize with a term oc m?X?
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» No sign problem in sectors nf = 0,2,3,4 and 6:
» detD,, > 0 for nf =0 and nr =6,
» eg.fornf=3at f=120n L, =24:
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0.08 NH _ log[det D, _/20]|
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— log[M, _(T)]
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» No sign problem in sectors nf = 0,2,3,4 and 6:
» sign of minor at 5 =2.0 at nf =2 and nf = 4:

sign M




» No sign problem in sectors nf = 0,2,3,4 and 6:
» continuum limit at mL; — 0 at 8 = 2.0 at nf = 2 and nf = 4:

sign M, B=2.00, SU{(2}, mL=0.0
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» Significant negative contributions in sectors ns = 1 and b:

» eg.fornf=1atf=12o0n L, =24:

0.3 . T . T . T . T . T .
- detD,_/6

0.25+ . — MM 7

0.2 f H _

0.15 —

0.1 —

0.05 -




» Significant negative contributions in sectors ns = 1 and b:

» absolutely crucial for reweighting to other sectors,

» eg.fornf=1atf=12o0n L, =24:

0.3

0.2

0.1

0.05

~ detD, 6
— MM

n=1




» Significant negative contributions in sectors ns = 1 and b:

» absolutely crucial for reweighting to other sectors,

» distribution remains fixed in the continuum limit L; — oo

0.3

0.2
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0.1

~ detD,_/6
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» Significant negative contributions in sectors ns = 1 and b:
» sign of minor at 5 =2.0 at nf =1 and nf =5:

0.2

sign M




» Significant negative contributions in sectors ns = 1 and b:
» continuum limit at mL; — 0 at 8 =2.0at nf =1 and nf = 5:

sign M, B=2.00, SU{(2}, mL=0.0
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Canonical determinants for SU(2)

» Significant negative contributions in sectors ns = 1 and b:
» gets better towards higher temperatures,
» nf=1at L, =48 and § =0.6:

0.08 T T T T T T T T T
| — HMC |
— Metropolis
0.06 — —
0.04 - —
0.02 — —
0 |
-40 -20 0 20 40



Flat directions and metastabilities

» System may suffer from running away along flat directions,
where [X;, X;] ~ 0:

> there exist along the flat directions
» X2 can become arbitrarily large, gauge field freezes
» algorithm suffers from in those

metastable states

SU(2), L=8, B=2.0, n=1 SU(2), L =8, B=2.0, n=1
3000 T
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2000 - - 0996
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Flat directions and metastabilities

» System may suffer from running away along flat directions,
where [X;, X;] ~ 0:

> there exist along the flat directions
» X2 can become arbitrarily large, gauge field freezes
» algorithm suffers from in those

metastable states
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Flat directions and metastabilities

» System may suffer from running away along flat directions,
where [X;, Xj] ~ 0:

> there exist along the flat directions
» X2 can become arbitrarily large, gauge field freezes
» algorithm suffers from in those

metastable states

» Multiplicative random walk update:
» update X collectively by rescaling with a random factor R:

SU(2), L=8, p=2.0, n=1 SU(2), L,=8, B=2.0, n=1

3000 T 0.008 T T T
— tandard — standard
— MRWO8 — MRWO38
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1 0 200 400 600 800
MC time /10" X
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Flat directions and metastabilities

» Metastable phase along flat directions may persist for small
m:
» X2 diverges in the limit m — 0

» Simulations starting from small random field configurations
seem stable:

» X2 well behaved in the limit m — 0

SU(2), L=8, n=1, B=2.0 SU(2), L=8, n=1, p=2.0
10000 T T T T T T T T 0.086 T T T T T T T

©—© small random field e o small random field| |
= _fat direction 0.084 °_flatdirection

100~ — 0.082 —

x 4 0.080 -

c/Lm)’* + ¢ /(Lm)

= - 0.078}~
o
o
e P! 0.076 c+ ¢, (Lm) +c, (Lm)° —
0.01 L L L L 0.074 L L L L
0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1



Moduli of X2 at 5 = 2.0 at nf =0 and nf = 6:




Continuum limit at mL; — 0 at 5 =2.0 at nf =0 and nsr = 6:
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Moduli of X2 at 8 =2.0 at nf =1 and nf = 5:
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Continuum limitat mL; - 0at 5=05at nf =1 and nf =5:
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Moduli of X2 at 8 = 2.0 at nf = 2 and nf = 4: sectors degenerate
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Continuum limit at mL; — 0 at 5 =2.0 at nf =2 and nr = 4:

X%, B=2.00, SU(2), mL= 0.0
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Moduli of X? at 3 = 2.0 for periodic and thermal b.c.:
= divergent contributions from nf = 2,3,4 cancel in det D,
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Continuum limit in the limit mL; — 0 at § = 2.0 for (a-)per. b.c.:

X%, B=2.00, SU(2), mL=0.0

200 T T T T T T T
| o periodic be. i
o antiperiodic b.c.
150 — —
e 100 .

divergence ~ (L{a)M

0.20




Other quantities remain finite, e.g. Eg at 8 = 0.5:

46 : , :
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Conclusions

» Supersymmetric Yang-Mills SU(N) gauge theories on the
lattice:

» N=4ind=0+1 well understood & under control
» nonperturbative quantitative statements possible
» Complete description of the phase structure including flat
directions
= study mass spectra in each sector next

» Interpretation of the divergencies:

» thermodynamics of black holes (evaporation,...?)
> large-N limit

Canonical formulation is crucial:

» solves (or avoids) the fermion sign problem

» formalism and techniques also applicable to QCD!
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