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had, I think, as a model the Ecole Normale Superieure, 
Paris. In my opinion (shared by many), CMI is now 
among the best undergraduate institutions in the world 
in the fields of mathematics and computer science.

Seshadri retired as Director of CMI in 2010, but 
continued to pursue research actively even after 
retirement.

In addition to mathematics, his other great passion was 
music: Seshadri was deeply interested in Carnatic music, 
and was himself an accomplished musician. He had a 
genial personality, and enjoyed interacting with people.

He passed away on 17 July 2020. He leaves behind two 
sons.

Honours and Awards

Seshadri received several prestigious awards and 
honours. He was elected a fellow of the Royal Society, 
London, in 1988 and a Foreign Associate of the US 
National Academy of Sciences, in 2010. He was a Fellow 
of the Indian National Science Academy, the Indian 
Academy of Sciences and the American Mathematical 
Society. He received the Bhatnagar Award in1972, and 
the TWAS Trieste Science Prize for his distinguished 
contributions to science in 2006. He was awarded the 
Padma Bhushan by the President of India in 2009.  
He received Docteur Honoris Causa from Université 
Pierre et Marie Curie (UPMC), Paris in 2013, as well as 
Honorary Doctorates from the University of Hyderabad 
and Banaras Hindu University.

Seshadri’s Mathematical Contributions

The following brief description of his work gives an idea 
of the depth and breadth of his work.

In response to a question of Serre, as to whether every 
vector bundle on the affine space is trivial (equivalently, 
whether every finitely generated projective module 
over a polynomial ring over a field is free), C.S. Seshadri 
proved in 1958 that vector bundles on the affine plane 
are trivial. This work attracted considerable attention and 
made Seshadri's name first known in the mathematical 
community. (The general case was settled by D. Quillen 
and A.A. Suslin about 15 years later.)

In 1965, M.S. Narasimhan and Seshadri proved the 
fundamental result relating stable vector bundles (an 
algebraic concept defined by David Mumford) on a 
compact Riemann surface to unitary representations 
of the (orbifold) fundamental group of the surface. 
This celebrated and influential result, known as the 
Narasimhan-Seshadri theorem, has served as a model 
for a large amount of literature intertwining algebraic 
geometry, differential geometry and topology, and was 
generalised in various directions. This result opened up a 
whole new field of moduli of algebraic vector bundles.

Seshadri (who had earlier constructed the Picard variety 
of a complete variety and proved its universal property) 
also constructed the compact (projective) moduli spaces 
of vector bundles on curves. This work, which introduced 
the notion of what is now known as S-equivalence 
(Seshadri equivalence), inspired and served as a model 
later for several constructions of moduli spaces.

He also introduced and studied the notion of parabolic 
bundles.

Seshadri worked extensively on the construction of 
quotients in algebraic geometry, and also on Geometric 
Invariant Theory, originally motivated by its connection 
with moduli problems. He proved Mumford’s Conjecture 
(that a linear representation of a reductive group is 
geometrically reductive) first in the case of GL(2) and 
then, using global geometric techniques, in the case 
“stable = semi-stable”. In this work he also proved a very 
useful criterion for ampleness of a line bundle, now 
known as Seshadri’s criterion of ampleness, leading to 
the recent vast literature on “Seshadri constants”. The 
Mumford conjecture was proved in full by W. Haboush. 
More recently, Seshadri has given a geometric proof of 
this theorem.

One important series of works, by Seshadri in 
collaboration with V. Lakshmibai, C. Musili, and others, 
is the theory of Standard Monomials, which began 
with a goal of giving characteristic-free descriptions of 
homogeneous coordinate rings of homogeneous spaces 
for classical groups, and ultimately became an important 
technique in representation theory. ■

M.S. Narasimhan is an eminent mathematician, best 
known for the Narasimhan–Seshadri Theorem. He 
was among the main pillars of the famed School of 
Mathematics at TIFR, where he spent most of his 
professional life. He later spent some years building 
mathematics at ICTS, Trieste. He is now associated with 
the Indian Institute of Science and TIFR-Cam, Bangalore.

A group photo of the 1953 BA (Hons) mathematics class, Loyola College, Chennai.

C.S. Seshadri was a deep mathematician and a 
major figure in the field of algebraic geometry. 
His contributions to research and education in 

mathematics in India were invaluable. In particular, 
he played a key role in the development of the School 
of Mathematics of the Tata Institute of Fundamental 
Research (TIFR), Bombay, as a world-renowned centre 
of mathematical research, and in the founding of the 
Chennai Mathematical Institute (CMI).

I knew Seshadri from the days we were students in 
Loyola College, Madras. We joined what was known 
as the ‘Intermediate class’ there together, in 1948, 
and studied for B.A. (Hons) from 1950 to 1953. The 
mathematics students in the Intermediate class were 
divided into two sections; there was a special and 
difficult examination in mathematics, and the person 
who got the first place in each section was awarded 
a prize called the Racine Prize. Seshadri and I were 
studying in different sections, and having topped our 
respective sections, we were both awarded this prize. 
I believe this is how we first came to know about 
each other. The prize was named after Father Racine, 
a French Jesuit priest and mathematics teacher at 
Loyola College, who had a decisive influence on our 
early mathematical formation (and, indeed, on that of 
many young mathematicians of that time). It was Father 
Racine who suggested that both of us apply to the 
newly established TIFR to do our PhD studies.

Our close friendship started when we joined TIFR as 
research students in 1953 (on the same day!). From 
then on, we had parallel academic careers in TIFR, 
progressing up each step of the academic ladder 
together. 

Already as research students we interacted very closely, 
reading and learning together an enormous amount 
of mathematics; this played an important role in our 
future mathematical development. We spent three years 
together in Paris in the late 1950's. In Paris, Seshadri 
came under the influence of, among others, Chevalley 
and Serre, and it is during this period that his definitive 
move to algebraic geometry took place.

We both returned to Bombay and TIFR in 1960. By that 
time, both in topology and differential geometry, fibre 
bundles were very well understood, and it looked as 
though the time was just ripe to go ahead and develop 
the theory of vector bundles in algebraic geometry. 
Around 1963, Seshadri and I started thinking about the 
problem of holomorphic vector bundles on compact 
Riemann surfaces, which resulted in the Narasimhan-
Seshadri theorem, which is considered to be a major 
breakthrough. In retrospect, it looks as though we were 
unconsciously and independently equipping ourselves 
during our Paris days with all the knowledge and tools 
which would play a part in this work, although at that 
time we had no idea that we were going to work on 
this problem. We were also very lucky, because in our 
student days in Bombay, even before going to Paris, 
K.G. Ramanathan had told us about the work of Andre 
Weil on the generalization of abelian functions. He had 
heard about this work from Carl Siegel. For no particular 
reason at all, we had immediately started a seminar 
on this paper, and Seshadri gave some lectures. (So, in 
some sense, we were aware of this problem from our 
student days). This paper of Weil (which was not then 
well known) dealing with unitary bundles, and the work 
of David Mumford on stable bundles, were important 

inputs in our work.

When we first started working on this problem, we 
were initially a bit hesitant, wondering whether our 
capacities were sufficient to enable us to make a 
breakthrough, especially in a domain that many renowned 
mathematicians had already moved into. When we 
succeeded, we felt that our achievement was somehow 
more than commensurate with our powers. In a recent 
conversation, Seshadri and I were reminiscing about 
those days. We wondered how it was that we managed 
to succeed, that too where so many others had faltered. 
Seshadri had a simple explanation: “It was grace!”, he said.

Although we did not formally collaborate after this work 
on bundles, I always profited by his scholarship in algebraic 
geometry and also by his advice on practical matters.

A Biographical Sketch

Seshadri was born in Kanchipuram on 29 February, 1932. 
His childhood and schooldays were spent in Chengalpet. 
He studied in Loyola college, Madras, from 1948 to 1953, 
and obtained his B.A. (Hons) degree in mathematics.

On Racine’s advice, Seshadri joined TIFR as a research 
student in 1953. He received his Ph.D. degree in 1958 
from the Bombay University. His thesis adviser was K. 
Chandrasekharan. He spent three years (1957 to 1960) 
in Paris, and returned to TIFR in 1960. At TIFR, he was a 
member of the mathematics faculty till 1984, when he 
moved to the Institute of Mathematical Sciences, Chennai. 
During his stay in TIFR, an active group in algebraic 
geometry was established. Some of his memorable and 
deep research work was done during this period.

Seshadri was also a good organizer and a successful 
academic entrepreneur. To many people, this came as 
somewhat of a surprise, as he gave the impression of 
being an extremely absent minded person; he was also 
well-known as someone who would often not complete his 
sentences when speaking, but instead trail off, leaving one 
to deduce the rest! However, for those who knew about the 
enormous amount of concentrated effort and energy he 
invested in his mathematical endeavours and the tenacity 
with which he would pursue a problem till a solution was 
found, this would not have come as a surprise.

In 1989, he established the Spic Mathematical Centre, later 
renamed the Chennai Mathematical Institute (CMI). CMI 
has been a success story, and Seshadri was proud of his 
role in its formation. Apart from being a first-rate research 
centre, CMI also runs excellent undergraduate and graduate 
education programmes in mathematics and computer 
science. One of the motivations for the creation of CMI was 
Seshadri’s strong feeling that an undergraduate programme 
intended for training people for research should be taught 
by researchers, and that young undergraduates should 
directly come into contact with those doing research. He 

C. S. SESHADRI
M.S. NARASIMHAN

C.Musili, C.S. Seshadri, M.S.Narasimhan,M.S.Raghunathan and David Mumford at the TIFR Collonade. Credit Chennai Mathematical Institute
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Srinivasa Ramanujan is 
a household name in 
the country; and rightly 

so – he ranks among the greatest 
mathematicians of the twentieth 
century. But that very greatness has 
cast a long shadow on his worthy 

successors – there 
are indeed a few – that has obscured their public 
visibility. One of these was Conjeevaram Srinivasachari 
Seshadri who passed away on 17th July in Chennai at 
the age of 88. 

Seshadri ranks among the greats of the mathematical 
world of the twentieth century. He did pioneering work 
in Algebraic Geometry (some of it in collaboration with 
M. S. Narasimhan, another great mathematician and 
a close friend, also from Chennai). His work has had 
tremendous impact on the very way in which the field 
developed during the last six decades. Despite that 
kind of professional achievement Seshadri remained 
always a pleasant, accessible human being. He was 
certainly aware of the high worth of his work, yet 
he was far from egotistical, and seldom spoke about 
himself. Another manifestation of his humility was 
his transparent enthusiasm for good work by others, 
especially students and colleagues at TIFR. He was one 
of the principal architects behind the rise of the School 
of Mathematics at the Tata institute of Fundamental 
Research (TIFR) from the fledgling thing that it was 
in the fifties to international eminence in a decade 
and a half. His own research contributed a great 
deal to this, but his mentoring of a large number of 
students contributed no less. He won several awards 
and honours, among them the Bhatnagar Prize, Third 
World Academy Prize and the Trieste Science Prize; 
Fellowships of the three national science academies 
and of the Royal Society and Foreign Fellowship of the 
U S National Academy of Sciences. He was awarded the 
Padmabhushan in 2009.

Seshadri had his early education in Chengalpattu, a 
small town in Tamil Nadu about 60 kilometres from 
Chennai, where his father practised as an advocate. 
The family originates from the temple town of 
Kanchipuram (Conjeevaram is the anglicised version). 
He went to College in Chennai and secured a B A 
(Honours) degree in mathematics from the venerable 
Loyola College. Seshadri had a good record of 
performance at school and college, but it was by no 
means exceptional. In Loyola College he came under 
the influence of Rev. Fr Racine, a fine mathematician; 
and it was on Racine’s recommendation rather than 

C. S. SESHADRI: GREAT MATHEMATICIAN,  
INSTITUTION BUILDER AND  
AFFABLE FRIEND 
M.S. RAGHUNATHAN

... continued on Page 11 ...

his performance in the B A (Honours) examination that 
TIFR called him for a selection interview for a research 
studentship. Apparently he performed brilliantly 
and was selected. It was one of the shortest among 
the interviews of candidates who were eventually 
successful. He joined TIFR as a Research Scholar in 
TIFR in 1953. Some interesting early work resulted 
in his securing a post-doctoral position in Paris even 
while retaining his job as a “Research Assistant” in 
TIFR. In Paris he made the first dent in a problem 
posed by J.P. Serre which had attracted wide attention; 
with that and some more interesting work he became 
well known in the international mathematical 
community. During his 3-year stay in France he 
benefitted immensely by his association with some 
eminent mathematicians, particularly, C Chevalley and 
A Grothendieck. On his return to TIFR in 1960, he ran 
a seminar on Algebraic Geometry which introduced 
to his colleagues and students the then recent 
developments initiated by Grothendieck. 

It is in the mid-sixties that Narasimhan and Seshadri 

came up with their path breaking work on “Modulii 

of vector bundles on a compact Riemann surface”. 

This work brought out a connection between 

certain purely algebraic geometric entities and 

some transcendental constructions (devised by 

them). In the next decade Seshadri concentrated 

on questions connected with this work and came 

up with many interesting and important results, 

some in collaboration with colleagues. Later Seshadri 

turned his attention to another sub-area of Algebraic 

Geometry, the study of algebraic homogeneous 

spaces. Here again he did path-breaking work: 

his “Standard Monomial Theory” enabled 

one to get a good understanding of algebraic 

homogeneous spaces (which was earlier confined 

to Grassmanians). He continued working in this 

sub-area till the end, a good part of it in collaboration 

with his students C S Musili and Lakshmibhai. 

Seshadri left TIFR in 1984 for personal reasons and 
joined the Institute of Mathematical Sciences (IMSc) 
where E C G Sudarshan had recently been appointed 
as Director. He had a 5-year stint at the institute 
during which he managed to gather a viable group 
of good mathematicians there. However he left IMSc 
because of differences with the director; also he 
wanted to implement a long cherished idea of his: 
to get undergraduates taught by active research 

mathematicians. Shri A. C. Muthiah, then Chairman 

SPIC, got that company to support Seshadri’s idea 

by setting up a “School of Mathematics” within its 

“SPIC Science Foundation”. Eventually this “School” 

became an autonomous independent institution 

– The Chennai Mathematics Institute. For many 

years during his TIFR days Seshadri avoided taking 

an active role in the administration. However, he 

did at some point take on the responsibilities of the 

Dean, School of Mathematics, and that too, during 

a difficult period; and he displayed one important 

(From left) M. S. Narasimhan, C. S. Seshadri, S. Ramanan and M. S. Raghunathan

TO MY GOOD FRIEND,  
C. S. SESHADRI 
DAVID MUMFORD

Seshadri, as I called him because this is his given 
name in the Indian tradition, was not only my 
mathematical colleague but one of my closest 

friends. Our connection began when, sometime in the 
early 60’s, I received a letter with exotic Indian stamps 
on it. The letter was from Seshadri, whose work on 
Serre’s conjecture I knew, but India, little more than 
a dozen years after independence, still seemed an 
exotic very distant place. The mathematical world 
was small in those days, largely concentrated in 
Cambridge, Princeton and Paris, and jet plane travel 
was just starting. I was thrilled to learn that he and 
M. S. Narasimhan, halfway around the world, had 
found exactly the same class of vector bundles on an 
algebraic curve as I had, a class for which a compact 
moduli space could be constructed. This was amazing 
because their method was totally different from mine, 
the sort of unexpected link that makes you fall in love 
with math.

We got together, first his visiting Harvard in 1966, 
then I went in 1967 with my family to Bombay, as the 
city was called then. The Tata Institute had just been 
built, standing like a mirage facing the Arabian Sea 
with manicured lawns and seriously air conditioned. I 
had to keep a sweater in my office. The Institute had 
a world class library, at the far end of whose stacks, 
I, like everyone else, did Saraswati Puja, the Hindu 
worship of the goddess of learning and music, on her 
sacred day. But best of all, working at the Institute was 
a powerful group of algebraic geometers who were 
rapidly uncovering the secrets of moduli spaces. We 
would talk daily, at morning coffee, lunch or afternoon 
tea, often in the West Canteen. The brass fittings in 
the elevator were “polished up so carefullee” just as 
in the Gilbert and Sullivan song. Fresh flowers were 
brought to my office every day too from the abundant 
gardens that Homi Bhabha, the Tata Institute’s founder, 

had considered an essential part of a modern science 
institute. Bhabha and the Institute were the 20th century 
version of Kubla Khan and the “stately pleasure dome” 
in Coleridge's poem. Bhabha was similarly revered but 
sadly recently deceased.

Curiously, Seshadri and I never wrote any joint papers 
but instead, our research intertwined for many years. I 
recently found a letter written in 1970 where I wrote 
“Thanks for your letter which is beautiful and very 
encouraging. I was personally getting quite discouraged 
about extending my result when your letter arrived. The 
blowing up trick is marvelous…” This may be an odd 
thing to say but the wonderful thing he did led, with 
many twists and turns, to making my book “Geometric 
Invariant Theory” irrelevant! He went deeper than 
me and realized that the key thing you needed was a 
powerful criterion for ampleness and, bingo, you have a 
projective moduli space. My approach had been based 
exclusively on quotient spaces but, when extended from 
curves to surfaces, the method encountered baroque 
complexities, as shown when David Gieseker tackled 
this issue. Seshadri cut through all of this, one big piece 
being the “trick” (more precisely, an ingenious, startling 
idea) referred to in that letter. And, as time went on, in 
the hands of Janos Kollar and many others, his work led 
to a deep construction and understanding of many more 
moduli spaces.

Seshadri and his family also intertwined with me 
and my family during all the decades since then. Our 
boys played together, he became the godfather of 
my daughter Suchitra, and his family lived next door 
to us one year when he was visiting Harvard and 
Northeastern. I was truly honored when he came all the 
way from Chennai to Cambridge for my 80th birthday 
– as well as for the more significant Hindu milestone 
of a 1000th full moon. He opened his doors to all my 
children as they grew older and travelled on their own.

But what I really want to describe, the thing that 
made the deepest impression on me, was the way 
he integrated so fully and naturally his love of 
traditional Indian teachings and customs and his 
full awareness of the energy and force of Western 
culture. Unlike his fellow Tamilian mathematician 
S. Ramanujan who subsisted on boiled potatoes in 
Cambridge University, when Seshadri came to the 
West, Paris in his case, he sampled its food and drink 
and enjoyed all the pleasures of French culture. 
In all his visits to the West, he was comfortable 
wearing appropriate Western garb at the office 
and relaxing in his lungi when he got home. He 
lived in the most unpretentious way, resisting 
the Western impulse for the latest gadgets and 
for collecting expensive ornaments. Yet he could 
fly to Delhi and argue effectively with high-up 
officials and ministers for funding for mathematics. 
His great passion, almost as strong as his love of 
mathematics, was singing classical South Indian 
Ragas which he performed at a professional level. 
As the eldest son, he could haul out his sacred 
thread when rituals demanded this symbol. Walking 
with me once in some quiet Maine woods, uncut 
for a century with no houses or roads nearby, 
he remarked that this experience helped him 
understand the early Indian sages whose woods are 
now long gone, replaced by villages and fields. I will 
miss him for as long a time as is allotted to me. ■

David Mumford is a distinguished mathematician 
known for his path-breaking work in algebraic 
geometry and his research into vision and pattern 
theory. He is currently a University Professor 
Emeritus in the Division Of Applied Mathematics at 
Brown University. Mumford has had close contact 
with C. S. Seshadri and his work over the years. He 
even spent a year at TIFR, Mumbai.

C.S. Seshadri with David Mumford, S. Ramanan and others. 1994

(From left) M.S. Narasimhan, C.S. Seshadri, Sundari Seshadri, Jenifer Mumford and their children (1967)

C.S. Seshadri with David Mumford
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traits in his musical discipline as in his mathematical 
ones. He meticulously did riyaaz and his repertoire in 
Muthuswamy Dikshitar’s kritis and Shyama Sastry’s 
kritis was noteworthy. I have had several occasions 
of listening to his music which can be described as a 
royal gait profoundly suited to expressing Dikshitar’s 
kritis. While singing, a distinctly spiritual side of his 
used to come to the fore. By a spiritual side, I do not 
mean anything religious, but a musical one which bore 
the stamp of an immense sadhana, where every nuance 
was expressed with a spiritual feeling which was way 
beyond religious emotion. 

I close with lines from W.H. Auden (Hymn to the United 
Nations): 

Like music when  
Begotten notes, New notes beget.  

Making the flowing of time a growing. 
T’is what it could be ...  

When even sadness, Is a form of gladness. 

Seshadri’s mathematics in brief outline

Seshadri’s doctoral thesis entitled "Generalised 
multiplicative meromorphic functions on a complex 
analytic manifold" gave an independent proof of the 
so-called Birkhoff-Grothendieck theorem on vector 
bundles on the projective line. 

Historically: Grothendieck proved this for arbitrary 
principal bundles, while the result on vector bundles 
goes back to Dedekind, R. and H. Weber (1882). Theorie 
der algebraischen Functionen einer Veränderlichen. J. 
reine und angew. Math. 92, 181–290. (2) 

Seshadri shot to fame early during his visit to 
Paris. Serre posed the following problem: Over 
n-dimensional affine space, are there non-trivial vector 
bundles? In other words, is the following statement 
true? Is any projective Noetherian module over 
K[T1,...,Tn], where K is a field, free? For n = 1, the ring 
K[T ] is an integral principal ideal ring. Therefore, any 
Noetherian torsion-free K[T ]-module (in particular, any 
projective Noetherian module) is free (see for example 
Lang’s Algebra). For n = 2, there are no non-trivial 
bundles, either and this theorem is due to Seshadri. 

The affirmative answer in all dimensions (Any 
projective Noetherian K[T1,...,Tn]-module is free) 
is due to A. Suslin and D. Quillen which was done 
independently by them in the 1970’s. Much work arose 
inspired by Seshadri’s ideas, beginning with the work 
of Pavaman Murthy (Seshadri’s first doctoral student) 
leading to a large body of very impressive work from 
TIFR. 

Seshadri worked broadly in an area of mathematics 
called Algebraic Geometry. Around the time that he 
finished his doctoral work, the subject itself was 
undergoing a unique revolution in the hands of 
a French mathematical giant by name Alexandre 
Grothendieck. Seshadri went to Paris in 1957 and 
very quickly entered the sanctum of this new temple 
of algebraic geometry. This provided a distinctively 
unifying perspective which connected it to all 
branches of mathematics at some level. André Weil had 

published striking conjectures linking number theory 
to topology, two very distinct branches of mathematics 
and this was one of the driving forces behind the 
renaissance in Algebraic Geometry in the hands of 
Serre-Grothendieck and several others. Algebraic 
Geometry was somewhat mysterious in that it provided 
a wonderful synthesis of ideas by the process of 
providing a powerful language for the expression. 
Seshadri gave three talks in the Chevalley seminar one 
on Picard varieties and their compactifications and one 
on Cartier operations. 

It is in this setting that one could view one of 
Seshadri’s deepest researches, which began in 
collaboration with his friend and colleague M. S. 
Narasimhan. This work had its roots in the work of 
André Weil on "generalization of Abelian functions" 
(1938) and its foundations were closely linked to the 
work of Poincaré on the so-called "uniformization 
theorem". I quote from the paper of Atiyah-Bott (1982) 

The connection between holomorphic and unitary 
structures was already apparent in Weil’s paper, and 
in the classical case of line bundles it is essentially 
equivalent to the identification between holomorphic 
and harmonic 1-forms, which in turn was the starting 
point for Hodge’s general theory of harmonic forms. 

The Narasimhan-Seshadri theorem sets up a 
correspondence between two basic classes of 
objects, namely "irreducible unitary representations 
of fundamental groups of Riemann surfaces" and "a 
class of geometric objects called vector bundles on 
algebraic curves". The first class of objects was what 
could be termed "topological" and the second "algebro-
geometric". Let me be a bit more precise. 

The non-abelian version of the Jacobian needed 
to tackle several basic obstructions. The first paper 
of Narasimhan-Seshadri (1964) handled the non-

abelian structure of the fundamental group of 𝑋. 
They showed that the space of irreducible unitary 
representations of the fundamental group of a 
compact Riemann surface 𝑋 was naturally a complex 
manifold. 

On the side of bundles, the basic issue was that 
any decent topology on the space of bundles of a 
given degree and rank is necessarily non-separated. 
Moreover, such bundles are not "bounded" i.e. 
they cannot be parametrized by a finite number of 
varieties. Thus to obtain a "projective moduli space", 
one has to restrict oneself to a suitable subclass of 
bundles which would give separatedness. 

In early 60’s David Mumford had revived and newly 
built the Geometric Invariant Theory of Hilbert into a 
superstructure, laying out strategies for construction 
of "compactifications of moduli problems". One of his 
examples where he applied GIT was in constructing 
moduli space of bundles. His GIT naturally gave him 
the correct subclass and he defined slope-stability of 
bundles and he constructed moduli of stable vector 
bundles of degree d and rank r on curves as a quasi-
projective variety. Recall that to every vector bundle 
V on a smooth projective curve, Mumford defines 
the slope 𝜇(𝑉 ) := deg(𝑉 )/rank(𝑉 ) and a bundle 
is Mumford-stable if the slope 𝜇 strictly decreases 
when we restrict to a proper sub-bundle. 

Narasimhan and Seshadri showed that irreducible 
unitary representations of the fundamental group of 
𝑋 correspond precisely to stable bundles of degree 
0 on 𝑋. These were two of the scripts of a trilingual 
inscription à la the Rosetta stone, the third came up 
in the work of Donaldson in 1986. What followed was 
spectacular. Many subtle and beautiful aspects of 
differential geometry, topology, mathematical physics 
and number theory got unravelled miraculously. 

Alexander Grothendieck, C.S. Seshadri and Emile BorelC.S. Seshadri

C.S.SESHADRI, A MATHEMATICAL 
LUMINARY 
VIKRAMAN BALAJI

the US National Academy of Sciences, 2010. In 2013, 
Seshadri was awarded Docteur Honoris Causa of the 
Université Pierre et Marie Curie in Paris. 

He passed away on the 17th July in his home in 
Mandaveli, Chennai (1). He is survived by his sons 
Narasimhan and Giridhar and four grandchildren 
Sanjana, Rangasai, Dev and Anant. Seshadri had been 
suffering from Parkinson’s for the past several months 
and after the passing of his wife Sundari in October 
2019, his condition had been deteriorating. 

Seshadri, the person 

I have known Seshadri as his doctoral student since 
1984 and later as his collaborator and colleague at the 
Chennai Mathematical Institute. I vividly remember 
his lectures. Notes were prepared with utmost 
meticulousness and the talks were quite spartan but 
always insightful. Every lecture had something as a 
take-away for an aspiring researcher. Getting praise 
from him was something of a rarity. This used to come 
only as an award for something which he considered 
insightful and this was hard to come by for most of us. 
Many years later, when I was in my forties, after I felt I 
had done something really significant, he came up to 
me and said "There is meat in your work. Now I can say 
you are a mathematician!" 

I have witnessed his personality from close quarters 
for over three decades. As a mathematical personality, 
I saw someone unique in his vision and insight, an 
uncanny ability to consistently strike gold in a vast 
world of mathematics. He was extraordinarily generous 
with his ideas and shared his insights with one and 
all and this extreme generosity was his human side 
as well. His only caveat was that the listeners go back 
and pursue the ideas to the best of their abilities. There 
was a complete awareness of his own stature while 
being modest and humble at the same time. A unique 
sense of humour and sympathy was the hallmark 
of his personality, with interests ranging widely 
from mathematics, philosophy, politics and music. 
He was confident of his insights and this made him 
unperturbed during several moments of crisis that the 
institute faced. I quote Professor K Chandrasekharan, 
who in a letter to Seshadri on 10 Feb 2013 writes “I 
cherish the values that inspired the creation of CMI and 
your unswerving commitment to those values". Seshadri 
will be remembered for these values. 

Seshadri was also an accomplished exponent of the 
Carnatic Music and till a few days before his passing, he 
continued to share his musical knowledge and insights 
with a young musical student Maitreyi from CMI. 
Seshadri was trained by his grandmother who herself 
was a student of Nainapillai. Seshadri showed the same 

Conjeevaram Srirangachari 
Seshadri was a mathematical 
luminary of the 20th 

Century in post-independent India. 
Seshadri was born on February 
29th, 1932, in Kanchipuram. He 

was the eldest among twelve children of his parents, 
Sri C. Srirangachari (a well-known advocate in 
Chengleput, a town 60 kms south of Chennai) and 
Srimati Chudamani. Seshadri’s entire schooling was 
in Chengleput. He joined the Loyola College, Chennai 
in 1948, and he graduated from there in 1953 with a 
BA (Hons) degree in mathematics. Seshadri married 
Sundari in 1962. 

During his years at college, Prof. S.Narayanan and  
Fr. C. Racine played a decisive role in Seshadri’s taking 
up mathematics as a profession. 

Seshadri joined the Tata Institute of Fundamental 
Research, Mumbai in 1953 as a student. He received 
his Ph.D. degree in 1958 from the Bombay University 
for his thesis entitled “Generalised multiplicative 
meromorphic functions on a complex manifold”. His 
thesis adviser was Professor K. Chandrasekaran who 
shaped the mathematical career of Seshadri as he did 
for many others. 

Seshadri spent the years 1957–60 in Paris, where 
he came under the influence of many great 
mathematicians of the French school, like Chevalley, 
Cartan, Schwartz, Grothendieck and Serre. 

He returned to the TIFR in 1960 and was a member 
of the faculty of the School of Mathematics until 
1984, where he was responsible for establishing an 
active school of algebraic geometry. He moved to the 
Institute of Mathematical Sciences, Chennai in 1984. 

In 1989, Seshadri became the director of the 
Chennai Mathematical Institute, then called the SPIC 
Mathematical Institute, founded by A.C. Muthiah. 

Seshadri is a recipient of numerous distinctions. He 
received the Bhatnagar Prize in 1972 and was elected 
a fellow of the Royal Society, London in 1988. He has 
held distinguished positions in various centres of 
mathematics, all over the world. In 2006, Seshadri was 
awarded the TWAS Science Prize along with Jacob Palis 
for his distinguished contributions to science. 

In the past five years since he received the National 
Professorship, Seshadri has been awarded the 
H.K. Firodia Award for Excellence in Science and 
Technology, Pune, 2008, the Rathindra Puraskar from 
Shantiniketan’s Visva-Bharati University, Kolkata, 2008, 
the Padma Bhushan by the President of India, 2009. 
More recently, he was elected a Foreign Associate of 

quality of a good administrator – the ability to 

delegate responsibilities to the right people. His 

talent for administration came to the fore especially 

with the creation of CMI. CMI which today has 

grown into a leading institution for undergraduate 

mathematics education in the country, stands 

witness to Seshadri’s vision as an academic as well as 

an institution-builder. 

Seshadri was affable and easy to get along with, both 
at the personal and the professional levels. He was 
a good listener and would seldom hold forth on any 
subject. He had a self-effacing charm that won him 
friends instantly. He had a deep interest in music, 
almost rivalling his passion for mathematics and had 
a large number of friends in music circles. He was 
almost a professional concert-level performer. Many of 
us at TIFR enjoyed good personal relationships with 
Seshadri and his wife Sundari. They would have people 
over quite often and their gracious hospitality and 
Sundari’s culinary talents were much talked about in 
our circles. Sundari passed away last October, and that 
loss may well have hastened his own end. 

Sesahdri’s passing away is of course a great loss 
to mathematics and the country; and the loss is 
the greater for his personal friends. I had a long 
association with him from my student days. His 
encouragement was a great source of strength for 
me at that time as well as later when I became a 
colleague. My family and Seshadri’s were close to each 
other; his death (as was Sundari’s, earlier) is for us a 
grievous loss indeed. ■

M. S. Raghunathan is a distinguished mathematician, 
who has played a pivotal role in the enormous success 
of the School of Mathematics at TIFR. He has made 
foundational contributions to the theory of Lie groups, 
algebraic groups and their subgroups. He is currently 
a distinguished visiting professor, DAE-MU Centre for 
Excellence in Basic Sciences, Mumbai. 

RAGHUNATHAN | continued from Page 5 ...

AMIT APTE has been selected for the 

SERB-VAJRA faculty scheme along with Amarjit 
Budhiraja of University of North Carolina at 
Chapel Hills, USA as overseas faculty.

ARCHAK PURKAYASTHA, a former 

doctoral student at ICTS, has been awarded the 

prestigious Marie Skłodowska-Curie Actions 

Individual Fellowship.

VISHAL VASAN was selected as an associate 

of the Indian Academy of Sciences.

BETWEEN THE 
SCIENCE
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bases which implied a remarkable character formula 
now termed the LS character formula. 

There was a second aspect to these conjectures which 
constructed bases for the usual Demazure modules 
associated to the Schubert varieties. Peter Littelmann 
proved these conjectures by bringing in fresh inputs 
and new ideas from the theory of Quantum groups. 

Seshadri’s contribution to mathematics 
education 

The Chennai Mathematical Institute in its present form 
was founded in 1998 but its roots go back to 1989 
when Seshadri founded a new institute, then called 
the School of Mathematics, SPIC Science Foundation. 
The Chennai Mathematical Institute (CMI) is a unique 
institution in India which attempts to integrate 
undergraduate education with research; it grew out 

of Seshadri’s vision that higher learning can be had 
only in an atmosphere of active research amidst the 
presence of masters in the subject. It was a brave 
venture in the face of extraordinary opposition and 
skepticism even from his very close friends and well-
wishers. It was his dream to build a center of learning 
which can compare itself with the great centers 
such as the École Normale in Paris, the Oxford and 
Cambridge Universities in England and the Harvard 
University in the U.S. It opens up opportunities for 
the gifted students in India to learn in this unique 
academic atmosphere and also gives possibilities for 
the active researchers to participate in this experiment 
which one believes will leave an everlasting influence 
on the development of mathematics in India. 

It would not be an exaggeration to say that the 
Chennai Mathematical Institute is now rated as one 

of the best schools in the world for under-graduate 
studies in mathematics. This is indeed a first big step 
in its stride and much still needs to be done to fulfill 
Seshadri’s dream. ■

FOOTNOTES
[1]	 He was with his family when this happened. I dedicate this 

article to his family, his son Giridhar, daughter-in-law Padma, 

grandsons Ranga Sai and Anant and Seshadri-Sundari’s 

daughter-helper over the years, Vadivu, whose devotion to 

both of them was exemplary. 
[2]	 http://wwwmath.uni-muenster.de/u/scharlau/scharlau/

grothendieck/Grothendieck.pdf for a nice historical outline. 

Vikraman Balaji is professor of mathematics at the 
Chennai Mathematical Institute. He is one of C. S. 
Seshadri’s most eminent students and has known him 
closely for decades.

Prof. C.S. Seshadri was a 
true inspiration. While 
he was an incredible 

mathematician, he was an even 
more incredible human being. 
His fundamental contributions to 

mathematics were only exceeded by his generosity 
(with his ideas, and with his time and resources) 
and the training he gave to a new generation 
of students - including through his visionary 
establishment of the Chennai Mathematical 
Institute (CMI). His love of music and history were 
on par with his love of mathematics and teaching 
- he was indeed a master of many arts - and he 
employed these passions to excite students of all 
ages.

In the long term, his greatest contribution may 
be CMI. It is rare for someone of such academic 
stature in their discipline to also go out and 
build an educational institution of the calibre of 
CMI. CMI was set up with such thought, care, and 
attention to detail - and the results confirm this. 
CMI has become one of the premier (if not the 
premier) institutes for undergraduates to study 
mathematics in India in a multidisciplinary manner. 
CMI has already graduated hundreds of students, 
so many of whom have gone on to become leading 
professional mathematicians and teachers in their 
own right. That is a gargantuan and permanent 

contribution to the country that India and the world 
will never forget.

The best way we can continue his remarkable 
legacy is to ensure that CMI's noble mission 
continues with great energy, vigour, and adequate 
resources. We must make sure to support his 
institute, and create and foster others like it across 
subjects and across the country, so that future 
generations may continue to benefit from his vision.

On a more personal note, I always made it a point 
to visit Prof. Seshadri whenever I was in Chennai. 
His enthusiasm, optimism, brilliance, and deep 
knowledge made every moment with him a joy. We 
shared many common interests from music and 
history to literature and mathematics. We could talk 
for hours on all topics despite being generations 
apart. His childlike enthusiasm for all subjects was 
contagious. His generosity and desire to create 
outstanding opportunities for the education of 
young people inspired me.  I will miss him deeply. ■

Manjul Bharagava is a world-renowned 
mathematician and Brandon Frad Professor 
of Mathematics at Princeton University. He is 
best known for his path breaking and seminal 
contributions to number theory. He has been 
associated with ICTS from its inception.

‘We must ensure 
CMI’s noble mission 
continues with 
great energy’
MANJUL BHARGAVA

the square is the goal. These ideas are central to the 
major developments by Kollar and Keel and Mori on 
“Quotients" in the nineties. 

I now come to Seshadri’s contributions to Geometric 
Invariant Theory (GIT). In his paper on "Unitary 
bundles" Seshardri relates unitary bundles to 
the natural compactification arising from GIT 
construction of the moduli space. This is important 
as much of the subsequent work revolves around the 
study of compact moduli spaces. Irreducible unitary 
bundles are the "simple" objects of this theory. Two 
bundles are 𝑆-equivalent if they have the same 
Jordan-Hölder decomposition. The points of the 
compact moduli space are then the 𝑆-equivalence 
classes of bundles of degree zero and rank 𝑟. The 
beautiful convergence of two lines of thought about 
these fundamental concepts of (semi)stable bundles 
was well expressed by Mumford on the occasion of 
Seshadri’s seventieth birthday: 

"But I guess what thrilled both of us – it certainly 
thrilled me – was when our work on vector bundles 
on curves arrived at the same idea from two such 
different directions. What a strange thing it was that 
three people (you, me, M.S.) on opposite sides of 
the world (which, by the way, seemed a lot bigger in 
those days) using totally different techniques should 
construct the same compact moduli space." 

I will very briefly touch on a few other papers of 
Seshadri in the subject of GIT. This will give a feeling 
for the breadth and depth of his contributions. The 
first one was Mumford’s conjecture for 𝐺𝐿(2) which 
apart from proving the conjecture gave a restricted 
"valuative criterion" which predates the famous 
Langton criterion. This approach of Seshadri’s became 
the standard prototype for all moduli constructions, 
the most general one being the one by Simpson in 
the early nineties. 

Let me define geometric reductivity of a group 𝐺. Let 
𝐺 be a reductive algebraic group over an algebraically 
closed field 𝑘. Then 𝐺 is geometrically reductive if, for 
every finite-dimensional rational G-module 𝑉 and a 
G-invariant point 𝑣 ∈ 𝑉 , 𝑣 ≠ 0, there is a G-invariant 
homogeneous polynomial 𝐹 on 𝑉 of positive degree 
such that 𝐹(𝑣)  ≠ 0. 

Mumford’s conjecture says the following: Reductive 
algebraic groups are geometrically reductive. 
This was first proved for the case of SL(2) (hence 
GL(2)) in characteristic 2 by Tadao Oda, and in all 
characteristics by Seshadri. W. Haboush proved 
the conjecture for a general reductive G in the 
1974. Haboush’s proof uses in an essential way 
the irreducibility of the Steinberg representation. A 
germ of this idea can perhaps be traced back to the 
appendix to Seshadri’s paper by Raghunathan!

There is also a different approach to the problem 
due to Formanek and Procesi, à priori for the full 
linear group, but the general case can be deduced 
from this. Seshadri in the late 70’s finally extended 
geometric reductivity over general excellent rings 

which is a basic tool for constructing moduli in mixed 
characteristics. Seshadri’s paper on "Quotients modulo 
reductive groups" which has already been referred to 
before, has several beautiful ideas. He introduces the 
notion of "𝐺-properness" which under some simple 
conditions shows that 4 quotients, if they exist, are 
"proper and separated". One of the basic results in this 
paper is the following: Let 𝑋 be a projective variety on 
which there is given an action of a reductive algebraic 
group 𝐺 with respect to an ample line bundle L on 𝑋 
. Let 𝑋𝑆𝑆 and 𝑋𝑆 denote respectively the semi-stable 
locus and the stable locus of the action of 𝐺 on (𝑋, 
𝐿). Suppose that 𝑋 is normal, 𝑋𝑆𝑆 = 𝑋𝑆 , and 𝐺 acts 
freely on 𝑋 . Then the geometric quotient 𝑋𝑆/𝐺 exists 
as a normal projective variety. Loosely put, this is 
Mumford’s conjecture when "semistable = stable". 
Seshadri then gives a general technique to ensure 
the condition 𝑋𝑆𝑆 = 𝑋𝑆 can be made to hold. These 
have played a central role in several subsequent 
developments. 

Seshadri (in the late 60’s) wanted to prove the general 
Mumford conjecture using the geometric approach 
which was roughly equivalent to showing that the 
set 𝑌 of equivalence classes of semi-stable points 
for a linear action of 𝐺 on a projective scheme 𝑋 
has a canonical structure of a projective scheme. The 
first difficulty is getting a natural scheme theoretic 
structure on 𝑌. The second one, more difficult is to 
prove its projectivity. When "stable = semi-stable” 
Seshadri showed that 𝑌 is a proper scheme and the 
proof reduces to checking the Nakai-Moishezon 
criterion for 𝐿 on 𝑌. This process led to Seshadri’s 
ampleness criterion and Seshadri constants. 

Around 2009, Seshadri and Pramath Sastry completed 
Seshadri’s old argument. The key new ingredient (work 
of Sean Keel) was to be able to prove that under some 
conditions, line bundles which are "nef" and "big" are 
semi-ample. It was a recursive property for "nef" line 
bundles to become semi-ample, in a sense a "Nakai-
Moisezon" for semi-ampleness. 

I now turn to give a very brief account of his work on 
standard monomial theory much of which in its later 
developments was a collaboration with V. Lakshmibai 
and C. Musili. The modern standard monomial theory 
was initiated by C. S. Seshadri in the early 1970’s which 
was a vast generalisation of the classical theory of 
Hodge for the Grassmannians. 

The broad aim of this theory was the construction 
of bases for the space of sections of line bundles 
on Schubert varieties which reflects the intrinsic 
geometry of the Schubert variety and the intricate 
combinatorics of the Weyl group. The theory has led 
to very fundamental developments in the fields of 
Representation theory, Geometry and Combinatorics. 

Following a series of basic papers written in 
collaboration with V. Lakshmibai and being guided 
by careful analysis and a study of Schubert varieties 
for exceptional groups, Lakshmibai and Seshadri 
formulated the LS conjectures. The key point of the 
conjectures was that it gave an indexing of the SMT 

They do more, they show how this can be extended 
to the case when the degree need not be zero. This 
case was a precursor to "parabolic bundles" which 
Seshadri later developed along with Mehta. Mehta 
and Seshadri prove the analogue of the Narasimhan-
Seshadri theorem for unitary representations of 
more general Fuchsian groups by relating these to 
parabolic bundles on 𝑋. 

Very recently, in a paper which appeared in 2015, 
Seshadri and I completed the picture by setting up 
the correspondence for homomorphisms of these 
Fuchsian groups to the maximal compact subgroups 
of semisimple groups. Parahoric torsors are the 
objects which extend parabolic bundles. 

I now take up two papers of Seshadri, the first 
entitled "Some results on the quotient space by an 
algebraic group of automorphisms" and the second 
being "Quotient spaces modulo reductive algebraic 
groups" to which I will return later. The aspect that I 
wish to highlight here is somewhat general and does 
not really require the group to be reductive or even 
affine. 

Question: Let X be a scheme on which a connected 
algebraic group acts properly. Then does the 
geometric quotient X/G exist? 

Recall that a 𝐺-morphism 𝑓:𝑋→𝑌 is called a good 
quotient if (1) 𝑓 is a surjective affine G-invariant 
morphism, (2) 𝑓∗ (𝒪𝑋)𝐺 = 𝒪𝑌 and (3) 𝑓 sends closed 
G-stable subsets to closed subsets and separates 
disjoint closed G-stable subsets of 𝑋. The quotient 𝑓 
is called a geometric quotient if it is a good quotient 
and moreover for each 𝑥 ∈ 𝑋, the 𝐺-orbit 𝐺.𝑥 is 
closed in 𝑋. 

It is known that the question as stated above fails in 
general but Seshadri gave some basic criteria under 
which it holds. He proved the following theorem: 
let 𝑋 be a normal scheme of finite type (or more 
generally a normal algebraic space of finite type 
over 𝑘) and 𝐺 a connected affine algebraic group 
acting properly on 𝑋. Then the geometric quotient 
𝑋/𝐺 exists as a normal algebraic space of finite type. 
When the action is proper, a geometric quotient is 
simply a topological quotient with the property 𝑓∗ 
(𝒪𝑋)𝐺 = 𝒪𝑌 . 

Seshadri developed the important technique of 
elimination of finite isotropies which goes as follows. 
Let 𝑋 be an irreducible excellent scheme over 𝑘 and 
𝐺 affine algebraic group acting properly on 𝑋. Then 
there is a diagram: 

where 𝑌 is irreducible and 𝐺 acts properly on 
𝑌. Further, 𝑝 is a Zariski locally trivial principal 
𝐺-bundle and 𝑞 a finite dominant 𝐺-morphism with 
𝑌/𝑋 Galois with Galois group Γ whose action on 𝑌 
commutes with the 𝐺-action. In a sense completing 
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bundles on compact Riemann surfaces, how did you 
arrive at working on this problem? Was there some 
natural development that led to that theorem?

CSS: Narasimhan was running a seminar which I also 
joined. We had an excellent seminar on Hermann Weyl's 
old book, which covered the uniformization theorem in 
depth.  Another catalyst for our work on vector bundles 
was our older colleague Professor Ramanathan who 
used to talk about Carl Ludwig Siegel, and André Weil's 
work on the generalization of abelian functions or theta 
functions to higher rank, non-abelian analogues. André 
Weil’s paper Généralisation des fonctions abéliennes 
was a famous paper and that was the starting point of 
the seminar and led to really great problems. 

Another thing that happened was that Narasimhan was 
in the hospital when we were visiting Paris. We were 
there for three years. He used to read Kodaira-Spencer 
and I was beginning to study algebraic geometry with 
Chevalley. We started asking questions about unitary 
vector bundles; questions like what is the "tangent space 
of the moduli?". Nowadays one uses Schlessinger's 
theory to understand the tangent space of moduli 
problem, but its study started with Kodaira-Spencer and 
the question, `if you have a moduli problem, what is the 
tangent space?' We started in this way. Then [eventually] 
the connection with Mumford's work, etc, led to our 
work. 

MSN: I think I should explain the atmosphere in Tata 
Institute then that made this possible. The person 
who was starting the culture was K. Chandrasekharan 
[KC], helped by KG Ramanathan [KGR]. For those who 
don’t know about KC, he spent some time in Princeton 
and had been an assistant of Hermann Weyl. He was 
on very good personal terms with Weyl, Siegel, Von 
Neumann and of course Bochner as well. So he and KGR 
understood how mathematical research was carried out 
in the USA and as well as in Germany. They were open to 
a much wider scenario.

Now as Seshadri mentioned, you will be surprised but 
there were no graduate courses in India at that time. So 
the first graduate course we had was by Ambrose. The 
students of the course, who didn’t know to start what 
a topological space was, at the end of three months 
knew Haar measure, spectral theorem for bounded self 
-adjoint operators, Peter-Weyl theorem and so on. Then 
next year, in 1955, Samuel Eilenberg visited and gave an 
excellent course on algebraic topology. I still have with 
me my hand written copy of his lectures.  He taught that 
whole course from the functorial point of view without 
once mentioning the word category or a functor. At that 
time those concepts were new and we were exposed to 
functorial way of thinking (and to Eilenberg -Steenrod 
axioms by Eilenberg himself). Then there was the course 
of Laurent Schwartz on complex analytic manifolds, 
which dealt with, among other things, currents, de Rham 
theorem, harmonic forms and Kahler manifolds. This 
course had a profound influence on the future work of 
Seshadri and myself.

This was one background of the work culture at the 
Tata Institute at that time. The second thing was that 

students were given complete freedom to read and 
work on whatever topic they wanted, as long as KC and 
KGR were convinced that the student was capable and 
serious.

CSS: Let me add here – we never knew what field we 
were working on. [Laughs]

MSN: Yes.

Then we were also exposed to what was happening 
elsewhere in mathematics at the highest level. For 
example, the Cartan Seminars were published by some 
small institution in Paris and it was very hard to procure 
copies, but TIFR library had them all. In fact, I once asked 
Chandrasekharan how he had got them. He said, ‘Andre 
told me to get them, so I got them’. Andre, of course, was 
Andre Weil.

So you see, we were aware of what exactly was going on 
in mathematical research. And also, later when we were 
worked on research, it was somewhat important to be 
away from big centres, not to be too much influenced or 
overpowered by very strong personalities. So this was 
the atmosphere.

CSS: I would say we were encouraged to work with a 
certain kind of originality. In India now, the students 
during their undergraduate years, want to go abroad 
and do their PhD. In my institution also there are such 
people and we don’t discourage them. But then when 
a few excellent people are thrown together in a place, 
even in India, something big can be built. They need to 
work together and select their problems. I believe CV 
Raman also said something similar like that – you chose 
your problems. 

Narasimhan and I agree that sometimes very good 
people get absorbed into the very big places in the 
United States and are a bit lost. I am not saying there 
is anything wrong with these places. That’s why places 
like the Tata Institute with individual character, excellent 
standards and excellent people coming together is very 
important. And that is exactly what was happening in 
India at that time. And there were two such places in 
India then – the Tata Institute and the Indian Statistical 
Institute.

Rajesh Gopakumar: Was it very common at the time 
for mathematicians to be collaborating?

MSN: We never thought of it as a collaboration. 
Honestly we were learning things together. There 
were some great people, meetings that were exciting, 
excellent seminars and so on. So yes, it was a 
collaborative effort but not with the purpose of writing 
papers. It was a process of learning. We never thought of 
it as a collaboration.

Around the mid-50s, early 60s, by that time the topology 
of fibre bundles was quite well understood. There was 
already the classic book by Steenrod on this topic. At 
the same time, there was the work of Elie Cartan on 
differential geometry of fibre bundles, with modern 
expositions which were easier to understand. It was 
apparently influenced by general relativity. So from 

MS Narasimhan: Let me start by saying that the 

historical conditions at the time of independence played 

a very important role [the success of the School of 
Mathematics at TIFR]. Of course that’s not enough and 
you will hear about the other things that happened. 

Soon after Independence, Jawaharlal Nehru became the 
first Prime Minister. He understood the importance of 
science, particularly of mathematics and what role it 
played in science and general economic development. 
He also understood the importance of mathematics 
as an intellectual activity. He has written about all 
this. And at the same time he gave support to some 
well-known scientists like Homi Bhabha. The time saw 
how politicians, very good scientists and also high 
level administrators came together and made it their 
mission to build science. I think the third point is very 
important. I also had to deal with some of these people 
later and they gave complete support. This was the 
historical background. Then many brilliant young people 
came together. And everyone wanted to do something 
important. 

CS Seshadri: As Narasimhan was saying, the historical 
context is very important. At the time when India got 
independence, there was a certain minority that was 
somewhat idealistic. And it so happened that there was 
a person like Homi Bhabha, who had a broad overall 
view, including that of the importance of mathematics. 
He was a physicist but understood the importance of 
mathematics. And, of course, finally the stature of the 
Prime Minister – we were very lucky to have someone 
like that.

Before the Tata Institute came up, there was an effort to 
build a school of mathematics in Chennai. But that didn’t 
go through so well. Then after independence, with the 
creation of the Tata Institute of Fundamental Research, 
India could show that there was a group of people 
and not just one person of the highest ability. Tata 
Institute also attracted some of the very best students 
in the country. K. Chandrasekharan [KC] played a very 
important role here.  He invited the very best people 
from abroad, people he thought we should interact with. 
He believed we should not be only working on existing 
problems in arithmetic or number theory – most of the 
people then were working on analytical number theory.  
Of course, he understood that Ramanujan’s work also 
required a greater culture in number theory.

At that time, the Institute had a host of brilliant people 
like Ramanan, C. P. Ramanujam, Raghavan Narasimhan, 
Ramanathan and a host of other people. Ramanathan 
was the person who followed our work in vector 
bundles. 

So, you see, several things happened together. By 
chance and also by some deliberation. Here we were a 
group of people who were engaged in great work. And 
fortunately, we came up with some basic results – one 
of which was our vector bundles. We still have excellent 
people working at the Tata Institute. 

Spenta Wadia: I would like to ask a question to both 
Narasimhan and Seshadri – your famous work on vector 
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TIFR,  
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Carlos Simpson, Rukmini Dey and Pranav Pandit. C.S. Seshadri joined in the discussion via video conference from 
Chennai.
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Princeton. The tailor asked them, ‘Do you know von 
Neumann and Chandrasekharan?’ He said, ‘Yes.’ And 
the tailor said they were the only two people who knew 
how to dress.

SW: He also always dressed in a suit.

MSR: You haven’t seen Chandrasekharan. He always 
dressed immaculately - there’s no question about it.

MSN: In any case, KC built up the school of 
mathematics in the Tata Institute in 15 years and 
changed the landscape of mathematics in India. Just 
remember that he was there only for 15 years.

CSS: He left in 1965.

RG: By then there was a large number of people?

MSN: I would say around 20ish. But very good people.

MSR: It was close to 30.

SW: Why did he leave?

MSN: I don’t know. There are theories. There were 

some disagreements with Bhabha. The second thing 
was probably some personal reason. And sometimes 
he used to say things like, ‘You guys can now take care 
of it.’ I mean not in as many words. I suppose that he 
meant that the school of mathematics can carry on 
without his guidance

MSR: As long as he was there, he ran the place. And 

ran it like an autocrat, no question about that. He did 
the right things, no doubt about that. But his views were 
always final. Of course, he used to listen to good advice 
as well. He didn’t socialize much, only with very senior 
people in the institute. Bhabha and a few others and 
maybe Narasimhan and Seshadri. That’s it.

RG: But TIFR mathematics did not grow in the 
directions that he might have wanted?

MSN: Yes, in fact that is the greatness.

MSR: Yes, he didn’t push anybody towards any field, 
including his.

MSN: At that time France was the centre of 
mathematics. One of the US mathematicians said, 
‘France is our teacher.’ So Chandrasekharan somehow 
saw that that is where the future was. He made contact 
with French mathematicians and induced them to come 
to TIFR. Laurent Schwartz came and lectured for two 
months. Some other eminent French mathematicians 
also came and lectured. And that was the direction 
he set. The only person who worked in his field was 
Raghavan Narasimhan, (who also worked on several 
complex variables).  There was complete freedom. I 
wish to say another thing – he had great humility as far 
as mathematics was concerned. He never thought he 
was a great mathematician. He really appreciated good 
mathematics.

CSS: I think Chandrasekharan’s relationship with 

France began with Laurent Schwartz’s visit to the 
institute. Schwartz actually told people that there was 
a very good place here and he himself visited Tata 
Institute many times. I was working on some number 
theory, some periodic functions, giving seminars on 
topological vectors, all sorts of things. And then Laurent 
Schwartz was so wonderful, that I thought this is what I 
want to do. Coming back to the point, I don’t think it was 
decided from the initial days that Chandrasekharan will 
send the students or have such a close relationship with 
France. Probably, it was the result of the visit of Laurent 
Schwartz. It was him who convinced people to come to 
the Tata Institute and then Narasimhan and I went to 
France for three years.

MSR: In some unpublished reminiscences, Schwarz has 
referred to KC as a ‘great mathematician’.

MSN: The connection with France at this time was 
very important. There was a constant flow of French 
mathematicians to the institute. They gave high level 
lectures on topics of current interest. The notes were 
taken down by the young students. The students would 
then also come in direct contact with these French 
mathematicians. And it’s amazing how just after one year 
after some of these lecturers very good work would be 
done by young mathematicians at TIFR. My work with 
Ramanan was because he had attended Koszul’s lectures 
on differential geometry. Raghavan Narasimhan’s 
famous work on several complex variables followed 
after a course given by Malgrange on this topic. And 
similarly from Germany there were many lecturers. Soon 
after a course of lectures by Siegel came Ramachandra’s 
work. So you see how immediately this kind of contact 
worked.

The role of the French contacts was immense. And as 
Seshadri said Schwartz played an important role. He 
is supposed to have told his French colleagues: ‘The 
students there are the salt of the earth, we should help 
them.’

So some of us went to Paris and many famous French 
mathematicians visited TIFR. And I can give you at 
least five instances where there has been a correlation 
between some very good work done at TIFR and an 
interaction with these great mathematicians.

RG: So coming to the mid-60s and you mentioned a 
lot of students getting into this area, can you talk about 
how the subject and the different directions the school 
of mathematics evolved in?

MSN: There was a very good work being done 

on number theory, among others by KC, Raghavan 
Narasimhan and KGR. This was perhaps a direct 
influence of Siegel. So that was one direction.  The 
othermajor field cultivated in TIFR was algebraic 
geometry. In this area, apart from the work of Seshadri, 
Ramanan, Ramanathan and myself on moduli,there were 
basic contributions by C.P. Ramanujam.

Seshadri was working also on another interesting 
direction – standard monomials, which is a very 
exclusive way of doing representation theory. Seshadri 

significant. I remember telling KC, ‘I think we have done 
something important.’ [Laughs]

RG: So you could see it could become a theory.

MSN: We could see there was a big possibility of a 
theory. Then many mathematicians from outside TIFR 
started working in this field and developed the subject.

Incidentally, Raghunathan’s thesis was indirectly coming 
from our work. And Ramanan’s thesis on homogeneous 
vector bundles too is related to our work.

MSR: Seshadri’s construction of Picard variety was also 
an influence, right?

MSN: There was no direct relationship. But Seshadri’s 
insight and background in algebraic geometry helped.

MSR: There is another unexpected happening, a nice 
coincidence. Narasimhan suggested a thesis problem 
of deformation of connections. And I ended up showing 
that it’s the same as deformations of representations 
of discrete groups. At the same time, they were working 
on the representations of the finite groups on Riemann 
surfaces. It was a happy coincidence.

SW: So what was it like to be a student of Narasimhan?

MSR: The first time I saw Narasimhan, he was wearing 
a suit. He had just come back from Paris. That already 
scared me. Because at that time the formal dress was 
a bit intimidating. But after a few conversations, I was 
completely comfortable with him. He made me feel at 
ease. At that time Borel was lecturing and apparently 
he made a mathematical comment that people couldn’t 
figure out. We were discussing this outside. I came up 
with a solution to the problem, and Narasimhan came 
and congratulated me on that. That, of course, made me 
feel great.

PPD: These Paris return people were quite 
intimidating, I can tell you that.

CSS: What did Divakaran say?

MSN: Divakaran says that the people who returned 
from Paris, were both intimidating. [Laughter]

MSR: To digress a bit – here’s one more story about 
Chandrasekharan. Apparently Bhabha had gone to the 
US to recruit people for the Tata Institute. He went to 
Princeton where he met Chandrasekharan and offered 
a Readership at TIFR to him and Chandrasekharan 
accepted. Then one day Bhabha, Yukawa and Einstein 
were taking a walk, and behind them Von Neumann and 
Chandrasekharan were also taking a walk. Apparently 
Von Neumann asked Chadrasekharan, ‘So, I heard this 
man walking there has offered you a job; are you taking 
it up?’ Chandrasekharan replied that, ‘Yes I think I am 
taking it up.’ Then Von Neumann told him, ‘He is as 
good a physicist as any, don’t let him intimidate you, 
stand up to him.’ [Laughter]

MSN: There was another story. Raghunathan along 

with Raghavan Narasimhan went to a tailor’s shop in 
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soon realised that the essential problem was to find 
an algebraic characterisation of holomorphic bundles 
on a compact Riemann surface which arise from 
unitary representations of the fundamental group of 
the surface. We even felt that if only one could guess 
what the characterisation was, then it can be proved 
by the so-called continuity method, envisaged by Klein 
and Poincare to prove the uniformisation theorem for 
compact Riemann surfaces. (They did not quite succeed 
in making this method work and the uniformisation 
theorem was proved by some other method)

MS Ragunathan: I wanted to make a few comments. 
First about Jawaharlal Nehru – there is a passage in the 
Discovery of India, just two pages long, about Indian 
mathematics. And if you wanted to write about Indian 
mathematics in two pages, you can’t do better than that. 
It’s done remarkably well.

MSN: He sent some messages about mathematics 

to Tata Institute. In one of the messages he writes, 
‘Mathematics is the vehicle today of exact scientific 
thought. Mathematical research has widened the horizon 
of the human mind tremendously and has helped to 
the understanding, to some extent, of nature and the 
physical world.’ He thought about these things.

To continue with what I was saying earlier, it was very 
clear to us that the whole problem was to find some 
algebraic characterisation of “unitary bundles”. Then 
Mumford, in his ICM 1962 lecture, defined stable vector 
bundles (a purely algebraic notion) and announced that 
he could construct the moduli space of stable bundles as 
a quasi projective variety. It turned out that the notion 
of a stable bundle was the algebraic concept we were 
looking for. Using the continuity method, Seshadri and I 
proved that stable bundles of degree zero on a compact 
Riemann surface are precisely those vector bundles 
which arise from irreducible unitary representation of 
the fundamental group. There was also a generalisation 
to stable bundles not necessarily of degree zero.

It helped that we were familiar with many fields.

RG: So do I understand correctly that this paper by Weil 
on abelian theta function at first sight had nothing to do 
with vector bundles?

MSN: It had. Although it doesn’t mention the word 
vector bundle at all. I think soon people realized that 
Weil was really studying holomorphic vector bundles on 
compact Riemann surfaces.

MSR: Chandrasekharan joined Tata Institute in 1949, 
just two years after Independence. He then started 
the graduate school and built it. The other comment I 
want to make is that Narasimhan said that he learnt set 
topology in four lectures and also remarked whether I am 
a Bourbaki follower or not – I am very much a Bourbaki 
follower and I learnt all my set topology only from 
Bourbaki. [Laughs]

MSN: Including filters?

MSR: Yes, filters also. Narasimhan said he learnt set 
topology in four lectures, I learnt deformation theory of 
complex structures a la Kodaira-Spencer from him in 
walks at the seashore in two days.

PP Divakaran: Many informal seminars were given on 
walks by the seashore, either from the Old Yacht Club 
to Radio Club or up to Mahim if the problems were big, 
all the way to Malabar Hills and back. I have myself 
benefited enormously from these. I learnt many things 
from those walks.

CSS: Coming back to Andre Weil – his definition of 
vector bundles is in, what is called adelic language. 
Chevalley introduced the adelic language and Andre 
Weil used it. He also realized through it the modern 
theory of vector bundles. He had a certain wonderful way 
of understanding what things mean. He had a brilliant 
intuitive computation of the dimension of the moduli 
space – intuitive in the sense that there was no real 
proof. Then he asked "What would be the role of theta 
functions on this moduli space?" That eventually led to 
the Verlinde formula, etc. One can say that he had this 
astounding overall view.

MSN: I wanted to make a remark on this paper 
of Weil. He says that bundles coming from unitary 
representations should play an important role. No one 
really had an idea what that meant exactly. Our theorem 
justified this remark.

MSN: Then Seshadri first constructed compact moduli 
spaces of (semi-stable) bundles. Many of us felt that a 
whole new field, namely the theory of algebraic vector 
bundles, was opening up. So a group of us – Ramanan, 
me, Seshadri, A.Ramanathan and others – started 
studying these moduli spaces in depth. And that’s why it 
became a theory, otherwise it would have stayed as one 
nice theorem.

RG: You had already felt that there was something 
important?

MSN: Yes, we did feel we were doing something very 

the point of differential geometry and topology, fibre 
bundles were well understood. This was a mathematical 
background to our work. There were the H.Cartan 
seminars as well. There were also seminars on sheaf 
theory, which were just being developed that time.

 So we used to have seminars on these different kinds 
of topics. All these things were very exciting for people 
like me. KC and KGR encouraged these activities.

We were all in the end Bourbaki enthusiasts. Not sure 
about Raghunathan, though. [Laughs] Anyway, we never 
bothered about the controversies regarding Bourbaki; 
for people like us in India, who were away from big 
mathematical centres, these books by Bourbaki told 
us how mathematics was done at a higher level and 
how first rate mathematicians were thinking. Many of 
us followed Bourbaki approach to mathematics as it 
enabled us to acquire a unified view of a large area of 
mathematics. And I think this was very important.

In fact, we used to wait for these books by Bourbaki in 
the same manner that children do these days for Harry 
Potter. And I am not exaggerating – it was the same 
level of enthusiasm.

At that time complex analytic fibre bundles were 
coming in some way. For example, Grothendieck 
classified vector bundles on the projective line and 
Seshadri independently did it in his thesis.

Andre Weil also wrote some papers on vector bundles 
around this time. But surprisingly an earlier 1938 paper 
of his on “generalization of abelian functions” was 
not so well known, except for a reference in a paper 
of Atiyah. In fact, it seems that even Mumford did not 
know this work. Luckily for us, KGR told us about this 
paper. KGR had heard about this work from Siegel. 
Without any particular reason, we had a seminar on 
this paper and Seshadri gave some lectures. So already 
the topic was on our minds. And we really started 
working after the Kodaira-Spencer theory came. We 

(From left) Rajesh Gopakumar, Carlos Simpson, M. S. Raghunathan
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central extensions in the entire mathematics and 
physics literature.

MSN: It’s also very popular among mathematicians.

PPD:Hyman Bass was visiting TIFR.Someone told me 
to talk to him, he might help. But Narasimhan said I 
should talk to Raghunathan. So I went and talked to 
him. It is the key result of the general characterization 
of universal central extensions and how they lead 
to projective representations. It is for me the key to 
understanding quantum theory.

MSN: Another thing that I told him was about Borel 
Density Theorem.

PPD:Yes, yes! Then I got him interested in discrete 
spacetimes. And of course at the West Canteen coffee 
table I asked, ‘Do you know how does one deal with 
the discreteness of spacetime from the point of view of 
the invariance group -- Lorentz group and the Poincare 
group. He immediately said go and talk to Raghunathan. 
Then he took me to the Borel Density Theorem, which 
says something about how irreducible representations 
of certain noncompact groups behave. And that’s a 
preprint – it’s actually not really dead. I am still working 
on it. 

SW: About this mathematics-physics interaction I gave 
a course on quantum mechanics for mathematicians.

PPD: Yes, I remember.

MSR: I just wanted to make one comment. There are 
two papers by Narasimhan that have made big impacts 
in two completely different fields. One is on differential 
equations – he has a joint paper with a Japanese 
mathematician Kotake. The second is on representation 
theory – again with a Japanese mathematician named 
Okamoto, which is about the realization of discrete 
fields. Both these areas he just went into it, proved 

some outstanding theorems, comes out and then does 
something else.

PPD: That’s the discrete series?

MSN: Yes.

PPD: That’s the one in which there is a story about 
Harish-Chandra?

MSN: [Laughs] There is a story but not in the paper! 

I was in Princeton and collaborating with K.Okamoto. 
Okamoto used to talk to Harish-Chandra during this 
period (An unpublished work of Harish-Chandra, 
which he communicated to us, was very useful in our 
work). Now Harish-Chandra somehow did not seem 
to like some modern notions like vector bundles. As I 
said Okamoto used to have discussions with Harish-
Chandra. So I asked Okamoto how he managed to 
do it. He said that when he talked to Harish-Chandra 
he talked about induced representations and when 
he talked to me he talked about sections of vector 
bundles.

PPD: I have written on the very sleek introduction 

on the representations of Poincare group – I say use 
representations, then I add in brackets you can think of 
it as sections of vector bundles.

RG: Prof. Seshadri, I wanted to ask about your thoughts 
on this physics-mathematics interface that has grown 
– some of it from your work, some in other ways.

CS: My contribution or contact with physics is nil... I 
will say. But I had contact with representation theory, 
where my interest lay in the theory of standard 
monomials.  Standard monomials means that you 
construct canonical bases of finite-dimensional 
representations. That is the subject. Therefore I have 
been involved in that. You can call it a generalization 

On the other hand, the physicists, working in conformal 
field theory, defined something called conformal blocks, 
using Kac-Moody algebras. Generalised theta functions 
and conformal blocks were supposed to be the same. 
But there was no proof.

I sort of started learning these topics. In this context I 
wanted to find out whether there was a good version 
of the Borel-Weil theorem for Kac-Moody algebras. 
There were some versions and I was not happy with 
them. So one day I asked Shrawan Kumar, in a tea table 
conversation at TIFR, whether he knew a good version 
of Borel-Weil theorem for Kac-Moody. He said yes, 
pointed to himself, and said, “I have proved it”. So that’s 
how it started, sitting around at the tea table. Then, 
in collaboration with A. Ramanathan, we proved that 
generalized theta functions and conformal blocks are 
the same. It turned out that independently and at the 
same time two other set of people proved this result.

By the way, the referee’s report on this paper of 
ours said, “This paper provides a rigorous proof of 
a result that is very important for mathematics and 
mathematical physics. The physicists apparently 
consider this result as obvious.” So much for interaction 
between mathematicians and physicists!

Pranav Pandit: Were there joint seminars between 
physics and math at the Tata Institute?

PPD: You know there were two or three of us, you know 
the mathematicians are very difficult to move.

MSN: I think Spenta thanks me for some conversations.

PPD: No earlier, there was Ashok Raina and I - we 

had very close contact with especially Narasimhan. I 
had very special contact with Raghunathan and even 
with Seshadri. In fact, there is one paper of mine in 
which I thanked Narasimhan and Seshadri for entirely 
different kinds of help. I will tell you what they are – I 
was working on the question of how to construct a 
theory of gauge invariant things from gauge theory. The 
idea was that hadrons are described by these invariant 
things, so it should be a good theory. So I was talking 
about this on one of those walks along the seaside with 
Seshadri. And I asked Seshadri if he could help me with 
this. He told me to go read Procesi’s paper Fundamental 
Theorems for Invariants in One Matrices. It was actually 
the key. The idea is that in the end you get a manifold, 
the invariants form a manifold, and it is functions from 
spacetime into that manifold. Then I said how do I 
understand this? What you get is the exact non-linear 
sigma model of hadrons. So I was in Japan after that. 
I wrote a letter to Narasimhan from there telling him 
that I was stuck with these problems. He told me that 
what you need is the homotopy exact sequence for this. 
He did it and sent it to me. And that is an appendix to 
our paper. Of course, Raghunathan has been incredibly 
helpful in everything I have done.

MSN: He has written an appendix to a paper of yours.

PPD: He has written the appendix to one of my papers, 
which is probably the only readable account of universal 

(From left) M. S. Narasimhan, Pranav Pandit
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a contribution to the Waring problem.  The Waring 
problem is the following question: given an integer K 
is there a positive integer g(K) such that every integer 
is the sum of g(K) of Kth powers of integers. This was 
solved by Hilbert. Then Siegel generalised it to number 
fields, but the formulation becomes a bit technical. 
Siegel also made a conjecture connected with this 
and Ramanujam proved it to be true. His elegant proof 
appeared in a short (14-page paper). This was his thesis 
– it was probably the shortest thesis in the history of 
the Tata Institute.  

MSN: By the way, there was a problem on the 
fundamental group of a projective variety. What was it, 
Raghunathan?

MSR:Serre had asked the question whether the 
fundamental group of a projective variety is residually 
finite.

MSN: An important input is what Raghunathan did. 
Perhaps he didn’t realise the connection. By the way, he 
never told me about this, I heard about it from someone 
else.

MSR: I did some work on torsion in co-compact 
lattices in Lie Groups which turned out to be a key 
ingredient in the construction of a projective variety 
with a fundamental group that is not residually finite. 
The construction was done by Domingo Toledo. Yes, I 
was not aware of this question of Serre’s when Toledo 
announced his result in 1990 at the Tokyo Congress. 
In fact, as soon as we heard about it at TIFR, Madhav 
Nori came up with a construction (also using my result) 
which turned out to be lot more elegant than Toledo’s.

PPD: You still give lectures on the subject year after 
year?

MSR: No.

SW: Carlos, do you have a perspective on how this 
theorem went forward?

Carlos Simpson: Yes, I was just curious about a 
historical question, which is Mumford came to visit Tata 
Institute, right? When did he come? Was it after your 
work?

MSN: When did Mumford come, Seshadri?

PPD: He came in 1970.

MSN: Our paper was in 1964-65.

CS: So one of the reasons he came to visit your 
institute was your paper, right.

MSN: Yes, I think so.

PPD: You know I think he came probably earlier for 

a short visit. But the year that he spent at the Tata 
Institute was 1970-71. Bhaskara was already built and 
we were all living there. He stayed there, his kids went 
to school in Bombay.

MSN: He said that his kids learnt how to spell English 
words properly when they went to school in Bombay.

RG: Carlos, we also wanted to talk about how the 
subject grew and its ramifications elsewhere. You said 
that for a while it was dormant?

CS:  I don’t know ,dormant to what extent…There was 
Mehta-Seshadri for example, dealing with the case of 
open curves. The Gieseker-Maruyama construction of the 
moduli space of bundles on a higher dimensional space 
was motivated by it.

I think the aspects of the relationship between analysis 
and algebraic geometry was maybe less explored. 
So when I got to graduate school, everybody was all 
excited about gauge theory, because of Donaldson and 
Donaldson invariants. One of the first papers [during 
that time] was Donaldson's new proof of the theorem of 
Narasimhan and Seshadri. 

RG: So this new incarnation of your theorem through 
gauge theory – I believe that was the time when you 
started working with Ramadas.

MSN: This was because of the work I did with Ramanan 
on the existence of universal connections. I was aware 
in a way that gauge theory was theory of connections 
on principal bundles. The paper with Ramadas, was an 
attempt to understand this relationship better and to 
understand mathematically questions like gauge fixing, 
Coulomb gauge and the like.

Rukmini Dey: When did you get interested in 
conformal field theory?

MSN: I found that physicists were using my work 

with Ramanan on universal connections and my work 
with Seshadri. I was curious and tried to read some 
relevant papers. It was difficult for me to understand 
the language and physical motivation and relate to 
their work. But luckily Divakaran and I were friends. 
We used to play bridge together. We used to often 
discuss mathematics and physics, for example what is 
gauge theory from a physicist’s point of view. For the 
first few months, communication was difficult but after 
sometime we could understand each other. (Incidentally 
Divakaran asked me to give some lectures on gauge 
theory and Ramadas was his student. Ramadas wrote 
up my lectures). Coming to the question regarding my 
interest in conformal field theory: Physicists working in 
a theory called Chern-Simons theory associated certain 
finite dimensional vector spaces to a compact Riemann 
surface. I could see that these spaces should be the 
space of sections of holomorphic line bundles on moduli 
spaces of vector bundles on the surface. But there were 
some serious technical problems, for instance due to 
the presence of singularities in the moduli spaces. So 
I started working with a young French mathematician, 
Drezet, and we made a thorough study of line bundles 
on these moduli spaces and one could define rigorously 
the vector spaces defined in this theory as sections 
of these line bundles. These sections are now called 
generalised theta functions.

was very much interested in that. Why? You can ask him.

There was also a strong school of algebraists.

Now Raghunathan can talk about the development of 
some other fields in TIFR.

MSR: My thesis in a sense came out of the theory of 
deformations of complex structures which Narasimhan 
had taught me and he had proposed that I do 
something similar for connections. So my thesis was 
on ‘Deformations of connections’ and it connected 
them with Deformations of Representations of discrete 
subgroups of Lie groups. I joined TIFR in August 1960. 
There had been in January that year an International 
Colloquium at TIFR. Where Atle Selberg had announced 
some very exciting results about Deformations of 
discrete groups of SL(n,R). That and a paper by Andre 
Weil on discrete subgroups of Lie groups had close 
connections with my thesis and led me to the theory 
of Discrete Subgroups of Lie groups which has been 
the mainstay of much of my research. I worked on 
the problem of arithmeticity of lattices and made 
considerable progress but was pipped to the post by the 
Fields Medalist G.A. Margulis. I had a series of students 
working on different aspects of the theory and we had 
by the seventies a fairly strong group of researchers at 
TIFR. But the group around Seshadri and Narasimhan 
was a lot stronger – Ramanan, RamanathanVikram 
Mehta.  

MSN: I wanted to mention again one more name here 
– CP Ramanujam.

CSS: Yes, I was also thinking of that.

MSN: He was one of the most brilliant mathematicians 
I have known. Unfortunately, due to some problems, he 
committed suicide. But he was one of the few people, 
except perhaps Seshadri, who were completely at home 
with the work of Grothendieck in algebraic geometry. 
He has two famous works. One is his vanishing theorem 
which he proved for surfaces. Inspired and motivated 
by this result, it was generalised by Kawamata and 
Viehweg and plays a crucial role in the so-called 
minimal model programme in algebraic geometry. This 
theorem was known as the Ramanujam –Kawamata- 
Viehweg vanishing theorem, but in recent literature 
Ramanujam’s name is missing!

CSS: There is a beautiful characterization of C2.

MSN: That a smooth affine complex surface X, which 

is contractible and simply connected at infinity, is 
isomorphic to the complex plane C2.

MSR: He also gave an example to show that the 
condition at infinity is important. Later, some people 
at Tata Institute went into problems closely related 
to this work of Ramanujam’s. Gurjar was one person. 
Ramanujam proved two important theorems in Number 
Theory – one was about cubic forms over number 
fields which was proved simultaneously by Birch and 
Ramanujam. They proved that any cubic form with 
54 variables has a non-trivial zero. He also made 
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CSS: No, no I was mentioning that in the moduli 

of vector bundles, you do not have to go through 
the procedure to construct an object, where first 
you pass to the completion and then prove it is 
projective ;everything comes immediately. Now 
it is familiar because everybody is used to it but 

Satake’s compactification and Mumford’s theory of 
compactification are very similar. 

CS: This is crucial for the Hitchin fibration, to have 
a proper fibration, because the moduli space is not 
compact. ■

MSN: That’s a whole big question for another day.

RD: Did you ever meet Grothendieck?

MSN: Yes. When I first met him I was not doing 
algebraic geometry. I was a student of Laurent 
Schwartz, and I had started reading Kodaira-Spencer. 
At that time someone told me that Grothendieck had 
new way of looking at the Kodaira-Spencer theory of 
deformations. I asked Grothendieck if he could explain 
to me his approach and he explained it to me in three 
hours.

PPD: Where was this, Narasimhan?

MSN: This was in Paris. But he was amazing. Here he 
was talking someone whom he didn’t know and he was 
seriously talking for three hours explaining everything 
in detail. That was the first time I met him.

PP: Did he come to TIFR?

MSN: Yes, he did. He announced his famous “Standard 
Conjectures” in an International Colloquium at 
TIFR. Many famous results were published in the 
proceedings of international colloquia held in TIFR.

MSR: Probably the only written account on the 
Selberg Trace Formula by Selberg himself is his 
announcement in the Tata Institute Colloquium 1956 
Proceedings.

MSN: There are two famous results by Selberg, the 
Selberg trace formula and his result on rigidity of 
discrete groups. Both are in Tata Institute publications. 

MSR: Selberg published very little. Another famous 
result is on moduli of Hodge structures by Griffiths.

MSN: By the way, attending these famous lectures 
in these international colloquia formed a part of our 
mathematical culture.

MSR: There is absolutely no question about it. 
Learning and talking about problems happen 
simultaneously.

CSS: By the way, let me also say that the Satake 
compactification -- Satake came to the Tata Institute 
Colloquium -- was also at the back of my mind while 
working on in this compactification of the moduli of 
vector bundles. Usually in the Satake compactification 
you will have something first compactified 
topologically and then Bailey came and later added 
complex structures. But in Mumford’s theory what was 
fascinating for any mathematician was that at one 
stroke you get everything.

MSN: Seshadri, you are giving it a bit too much credit. 
See, you gave a very good example – Satake had only 
topological structure and afterwards Bailey brought 
in the complex structure. It’s exactly the same, there 
was the compact topological space of all unitary 
representations and you endowed this space with an 
algebraic structure.

PROGRAMS
Due to the unprecedented COVID-19 situation, a few 
programs had to be cancelled. However, we were also 
able to organize several programs online.

Fluctuations in Nonequilibrium Systems: Theory 
and Applications  
9—19 March 2020 ✦ Organisers — Urna Basu and 
Anupam Kundu

Gravitational Wave Astrophysics (Online) 
18—22 May 2020 ✦ Organisers —  
Parameswaran Ajith, K. G. Arun, Sukanta Bose, Bala 
R. Iyer, Resmi Lekshmi and B Sathyaprakash

Bangalore School on Statistical Physics – XI 
(Online)  
29 June—10 July 2020 ✦ Organisers — Abhishek Dhar 
and Sanjib Sabhapandit

Recent Developments in S-Matrix Theory 
(Online) 
20—31 July 2020 ✦ Organisers — Alok Laddha, Song 
He and Yu-tin Huang

Zariski-Dense Subgroups and Number-Theoretic 
Techniques in Lie Groups and Geometry (Online)  
30 July 2020 ✦ Organisers — Gopal Prasad, Andrei 
Rapinchuk, B. Sury and Aleksy Tralle

DISCUSSION MEETINGS
Discussion Meeting on Zero Mean Curvature 
Surfaces (Online) 

7—15 July 2020 ✦ Organisers — C.S. Aravinda and 
Rukmini Dey 

LECTURES
KAAPI WITH KURIOSITY  
There have been two Kaapi with Kuriosity lectures 
(temporarily renamed Kuriosity during Kuarantine), 

livestreamed through the ICTS YouTube channel.

Soft and Squishy Materials and How to Think 
About Them 
19 July 2020 ✦ Speaker — Gautam Menon (Ashoka 
University and IMSc)  

Automating Mathematics? 
17 May 2020 ✦ Speaker — Siddhartha Gadgil (Indian 
Institute of Science, Bangalore) 

objects.  Andre Weil wanted to construct Jacobians

in characteristic p. He could not construct it as a 
projective variety. Therefore, then, this led to the 
definition of an abstract algebraic variety. The moduli 
problem also suggests generalized objects of algebraic 
geometry. Therefore, quotient spaces throw up objects 
which are not part of  "classical algebraic geometry", 
but are generalizations of objects thereof, and which 
are used in moduli problems. One of the things that 
arose from all this is Mumford’s conjecture. I was very 
interested in this conjecture. I made some progress 
but it was solved by Haboush. And recently I found a 
proof which is longer than the short proof of Haboush, 
but done in a completely different way. I do not 
know whether physicists would be interested in this. 
Probably they would be interested in quotient spaces, 
because they define algebraic objects which are not 
defined by algebraic equations, but are defined in some 
functorial or categorical way. This has played a great 
role now, and unfortunately I have not been following 
the latest things.

Anyway, what I wanted to say is that I had been quite 
interested in constructing quotients. Quotients throw 
up objects which are not part of the classical theories 
of algebraic geometry. 

CS: You have a paper in Advances in Math, right?

CSS: I was talking about the paper in the Ramanujan 
Mathematical Society which I wrote very recently. 
There I have a proof of Mumford’s conjecture without 
representation theory, following my old approach in 
my work on quotient spaces for actions of reductive 
algebraic groups, where I proved Mumford’s conjecture 
for stable points. I believe this might be of some 
interest to others.

CS: One of the courses scheduled for tomorrow and 
Friday by Daniel Halpern-Leistner is about that type of 
question.

CSS: Yes, I was interested in listening to him.

MSN: Let me make two comments on what Seshadri 
said. The Mumford conjecture – Seshadri could only 
partially solve it long ago. Then it was solved by 
Haboush. And I am sure that Seshadri was bothered 
all these years, ‘C’mon, why am I not able to solve this!’ 
[Laughter] No, I am serious. This shows his tenacity and 
also his way of thinking. Then after almost 30-40 years 
he does something and he finished it. I am sure he is 
very happy.

And the second thing I wanted to say is about the 
impact of our paper which I am not sure we realise. 
See, Mumford constructed only the space of stable 
bundles. You have to compactify this space. Our 
theorem suggests a natural compactification, namely 
the space of all unitary bundles. Seshadri introduced 
a structure of a projective variety on this space 
by introducing a equivalence relation, now called 
S-equivalence (Seshadri equivalence) on (semi-stable) 
vector bundles. This method of constructing compact 
moduli spaces using S-equivalence relation on sheaves 
is now the standard way of constructing projective 
moduli spaces of (semi-stable) coherent sheaves on 
higher dimensional varieties.

MSR: Also about Mumford conjecture Seshadri says 
he did something – he made the first dent in the 
problem. Afterwards it was solved by Haboush. But that 
first dent was crucial. Similarly, he made the first dent 
in another famous problem: Serre’s conjecture about 
projective models. The year I joined it was big news at 
the Tata Institute – everyone was excited about it. It 
was known to be true for one variable for a long time, 
Seshadri gave the solution for two variables. Then it 
stayed like that for another 20 years before Quillen 
proved the full theorem.

MSN: Some people called it the Serre conjecture. 

He was not happy originally for it to be called a 
conjecture. Then Seshadri proved it for two variables, 
then somebody proved it for three. Then he didn’t mind 
it being called Sere conjecture.

MSR: It also generated a lot of interest in the Tata 
Institute. Lots of people, including me, worked on it.

CSS: Let me also tell you that the three variable 

case was proved by Murthy, one of the Tata Institute 
people, and another person. That made the real 
difference. Up to that time it wasn’t clear whether it 
was true for greater than two variables. Their paper 
used Abhyankar's work to show that over a polynomial 
ring in three variables, any projective module is free. 
And within a year Quillen and Suslin [independently] 
proved the general case. So there was this important 
contribution of the Tata Institute, but unfortunately, 
people don’t refer to it at all. As far as mathematics 
references go, you give typically credit to the final 
work on a major problem, and probably sometimes the 
first one and final one, but if something happens in 
between that work is often not cited. 

PP: What about mathematics today?

of classical invariant theory. That’s probably how I 
suggested Procesi’s paper to Divakaran. Standard 
monomials have many combinatorial applications. That 
was somewhat different in flavour from the algebraic 
geometry that I was doing. 

Another thing in algebraic geometry that I was very 
much involved in was the problem of constructing 
quotient spaces, on which Simpson has also worked… 
I did, for example some general cases of computations 
of quotients .. .  Of course, Simpson came up with a 
wonderful theorem that absorbs everything. Part of 
that slightly more complicated proof is in my first 
early work where the construction of the moduli space 
follows a certain pattern. That is to say, one proves the 
existence of some kind of Quot scheme. In classical 
language, this is called the universal family.  Each 
object in the moduli problem can be represented by 
many points in the parameter space or versal family. 
From this parameter space, one has to go down to 
a minimal model by identifying equivalent points, 
often by passing to a quotient by a group action. One 
of the principles of moduli theory from the algebraic 
geometry point of view is to reduce any moduli 
problem to a problem of quotient spaces by algebraic 
group actions. That’s where Mumford’s theory comes in. 

We were also fortunate that my first paper with 
Narasimhan was on unitary connections on vector 
bundles. Then what is the moduli space that has to be 
constructed? This came soon after, thanks to Mumford. 
And the importance of Mumford’s work and from the 
historical point of view is the definition of stability. It 
is a very deep idea of Mumford’s. Mumford sent me 
a paper on this which Narasimhan and I used in our 
paper on unitary connections. 

In any case, what I wanted to say is that I had been 
considerably interested in constructing quotients. Now, 
of course, quotients are to be understood in a more 
general sense… Quotients also throw up also new 

(From left) P. P. Divakaran, Spenta Wadia, Rukmini Dey
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plasma’s rotation. This should in turn cause the spins 
of vector (spin =1) mesons (K*0 and 𝜙) to align. Spin 
alignment can be studied by measuring the angular 
distribution of the decay products of the vector mesons. 
It is quantified by the probability ρ00 of finding a vector 
meson in a spin state 0 with respect to the direction of 
the angular momentum of the rotating QGP, which is 
approximately perpendicular to the plane of the beam 
direction and the impact parameter of the two colliding 
nuclei. In the absence of spin-alignment effects, the 
probability of finding a vector meson in any of the three 
spin states (–1, 0, 1) should be equal, with ρ00 = 1/3. 
The ALICE collaboration measured the ρ00 and found it 
to deviate from 1/3 for low momentum at a level of 3σ 
(see Fig. 3).  A number of systematic tests were carried 
out to verify these results. K0

S mesons do indeed yield 
ρ00 = 1/3, indicating no spin alignment, as must be true 
for a spin-zero particle. For proton–proton collisions, 
the absence of initial angular momentum also leads 
to ρ00 = 1/3, consistent with the observed neutral K* 
spin alignment being the result of spin-orbit coupling. 
The measurements are a step towards experimentally 
establishing spin-orbit interactions in the relativistic-
QCD matter of the quark–gluon plasma and hence 
detection of the large initial angular momentum. 

Establishing the strongest yet probed magnetic 
field: Left–right asymmetry in the production of 
negatively and positively charged particles relative to 
the collision reaction plane is one of the observables 
that are directly sensitive to electromagnetic fields. 
This asymmetry, called directed flow (v1), is sensitive 
to two main competing effects: the Lorentz force 

experienced by charged particles (quarks) propagating 
in the magnetic field, and the Faraday effect – the 
quark current that is induced by the rapidly decreasing 
magnetic field. Charm quarks are produced in the early 
stages of heavy-ion collisions and are therefore more 
strongly affected by the electromagnetic fields than 
lighter quarks. The experimental signature for the large 
magnetic field would be a much larger v1 for charm 
hadrons compared to light quark hadrons.

The ALICE collaboration has measured the directed flow, 
v1, for charged hadrons and D0 mesons as a function of 
pseudorapidity (η = - ln tan [�/2]) in lead–lead collisions 
at √sNN = 5.02 TeV [4]. The top-left panel of the Fig. 
4 shows the η dependence of v1 for charged hadrons. 
The difference Δv1 between positively and negatively 
charged hadrons is shown in the bottom-left panel. 
The η slope is found to be dΔv1/dη = 1.68 ± 0.49 (stat) 
± 0.41 (syst). The right-hand panels show the same 
analysis for the neutral charmed mesons D and D ̅. The 
measured directed flows are found to be about three 
orders of magnitude larger than for the charged hadrons, 
reflecting the stronger fields experienced immediately 
after the collision when the charm quarks are created. 
The slope of the differences in the directed flows 
mesons for D is dΔv1/dη = 4.9 ± 1.7 (stat) ± 0.6 (syst). 
These measurements provide an intriguing first sign of 
the effect of the large magnetic fields experienced in 
heavy-ion collisions on final-state particles. 

Links to physics of neutron star: As discussed above, 
ALICE has created in laboratory a perfect fluid of quarks 
and gluons that is polarized and rotating. The few 

microseconds old Universe was composed of a matter 
of free quarks and gluons, similar to that observed at 
ALICE. However, are there any other such systems in 
nature which also has such intense magnetic field and 
rotations? Can our knowledge from experiments like 
ALICE at CERN help understand such systems?

An object in the Universe which has such rotational 
and magnetic field properties is a neutron star. They 
are one of the most exotic objects in the Universe, 
whose physics is controlled by the long-range 
gravitational and electromagnetic interactions, as 
well as the short-range weak and strong nuclear 
interactions. They exhibit extreme stellar properties in 
terms of the gravitational field, rotational frequency, 
magnetic field, surface temperature as well as extreme 
nuclear properties such as nucleon density, isospin 
asymmetry, bulk superfluidity, and superconductivity. 
Due to the steep gradients in pressure and density 
necessary to stabilize the star against gravity, one 
expects much larger central densities, leading to 
super-dense matter, nucleons compressed by gravity 
well beyond the average density of normal nuclei. 
The radial profile of neutron stars is determined by 
hydrostatic equilibrium under gravitational forces 
and by the equation of state of matter, namely its 
pressure and composition as a function of density, 
which calls for the presence of different exotic phases 
like hyperonic matter. However, a serious problem 
with hyperons being included in the equation of state 
is that the interaction cross-sections of these heavy 
strange baryons with nucleons are poorly constrained 
by accelerator experiments.  The current accelerator-

Fig. 3: The spin alignment of (spin-1) K*0 mesons (red circles) measured in terms of deviations from ρ00 = 
1/3, which is shown here versus their transverse momenta, pT.  The ρ00 was estimated for (spin-0) K mesons 
(magenta stars), and K*0 mesons produced in proton-proton collisions with negligible angular momentum 
(orange circles), as systematic tests.

Fig. 2: Schematic representation of a frame of reference to calculate the spin alignment of vector mesons (spin-1 
meson K*0 shown here). The purple hemispheres are the outgoing nuclei and the magenta ellipsoidal is the 
participant nuclear matter which has been imparted a large angular momentum.

Fig. 4: The directed flow v1 of positively and negatively charged hadrons (left, scaled by a factor 10 for visibility) is three orders of magnitude smaller than for D  
and D mesons (right). In both cases, the difference Δv1 between the charge-conjugate species as a the function of pseudorapidity η (bottom panels).

POLARIZED PLASMA UNDER STRONG 
ELECTROMAGNETIC FIELDS AT LHC AND 
CONNECTION TO NEUTRON STAR 
BEDANGADAS MOHANTY 

Out of the several properties of QGP listed above, the 
value of η/s ~ 1/4π led to the discovery of the emergent 
property of QCD matter, namely the perfect fluidity [2]. 
Maxwell had realized that for a dilute gas, the shear 
viscosity is related to momentum transport by individual 
molecules and is given as η = (1/3) npl. Here n is the 
density, p is the average momentum of the molecules, 
and l is the mean free path. As mean free path varies 
inversely with density, η to a good approximation is 
independent of density (one interesting consequence 
is that the damping of a pendulum caused by the 
surrounding air is independent of atmospheric pressure!). 
For a fixed density and temperature, as η is proportional 
to mean free path (l), it will become smaller with 
stronger interactions among the constituents of the 
fluids.  So, is there a limit to how small a value 𝜂 can take 
up? The shear viscosity is a measure of the ability of a 
fluid to transport momentum from one point to another, 
and Heisenberg’s uncertainty in quantum mechanics 
puts limits the accuracy with which momentum and 
position can be simultaneously determined. This leads 
to pl ≳ ℏ. Considering entropy density (s) ~ kBn, the lower 
bound to η/s ≳  ℏ/kB . However, this simple estimate is 
not the complete physics story, it turns out that a precise 
value on the bound on the viscosity can come from 
string theoretical calculations using the anti-de Sitter/
Conformal Field Theory conjecture. It was shown by 
Kovtun, Son, and Starinets (also called KSS bound) η/s 
≥  ℏ/(4πkB)  (modulo some corrections). The QGP fluid 
created at LHC is found to have a 𝜂/s value close to 1/4π 
(KSS bound in natural units, ℏ= kB=1), hence it is termed 
as a perfect fluid.

Recently, it was realized that the perfect fluid of QGP 
formed in ultra-relativistic heavy-ion collisions is 
subjected to two interesting initial conditions:  

(a) Angular momentum and (b) Magnetic field. Angular 
momentum of the order of 107ℏ is theorized to be 
imparted to the system through the torque generated 
when two nuclei collide at non-zero impact parameter 
with center of mass energies per nucleon of few TeV. 
This leads to a thermal vorticity of the order of 1021 per 
second for the QCD matter formed in the collisions.  
Further, when the two nuclei collide in the LHC, an 
extremely strong magnetic field of the order of 1015 
Tesla is generated by the spectator protons, which pass 
by the collision zone without breaking apart in inelastic 
collisions. The effect of the angular momentum, a 
conserved quantity, is expected to be felt throughout the 
evolution of the system, the magnetic field on the other 
hand is transient in nature and stays for a few fm/c in 
time scale. Just to give an idea of the magnitude of these 
values, the highest angular momentum measured for 
nuclei ~ 70 ℏ  and the strongest magnetic field we have 
managed to produce in the laboratory is ~ 103 Tesla. Are 
there experimental signatures of these phenomenally 
large initial conditions? The complexity enters due to 
the femtoscopic nature of the system formed in the 
heavy-ion collisions, both in space and time scales. 
Nevertheless, the experiment has been able to address 
this challenging problem.

Establishing the large initial angular momentum 
It is known that the spin-orbit coupling causes fine 
structure in atomic physics and shell structure in 
nuclear physics, and, is a key ingredient in the field of 
spintronics in materials sciences. It is also expected to 
affect the development of the rotating QGP created in 
collisions of lead nuclei at LHC energies. The extreme 
angular momenta are expected to lead to spin-orbit 
interactions that polarise the quarks in the plasma 
along the direction of the angular momentum of the 

ALICE (A Large Ion Collider 
Experiment) is a heavy-ion 
detector on the Large Hadron 

Collider (LHC) facility at the Conseil 
Européen pour la Recherche Nucléaire 
(CERN). The 10,000-tonne ALICE 

detector is 26m long, 16m high, and 16m wide.  

The detector sits in a vast cavern 56m below ground 
in France. The collaboration consists of more than 
1800 scientists from over 175 physics institutes in 41 
countries.  It is designed to study the physics of strongly 
interacting matter at extreme energy densities, where 
a phase of matter called quark-gluon plasma (QGP) 
forms [1]. Heavy-ion collisions in the LHC generate 
temperatures (T) of the order of 1012 – 1015 degrees 
Kelvin. Under these extreme conditions, protons and 
neutrons melt, freeing the quarks from their bonds with 
the gluons leading to QGP formation. Thus, recreating 
in the laboratory conditions similar to those during 
a few microseconds old Universe. Studying such a 
phase and its properties tests the theory of quantum 
chromodynamics (QCD), provides understanding of the 
phenomenon of confinement, and the physics of chiral-
symmetry. While the confinement tells why we observe 
only colourless states in the particle spectrum in nature, 
the chiral symmetry on the other hand describes the 
presence of particles like pions and mass generation 
of nucleons, which then accounts for most of the mass 
of all the visible matter. The experiment in conjunction 
with the theory has measured several properties of 
the QGP medium like the shear viscosity to entropy 
density (η/s) ~ (1-2)1/4π, stopping power also called as 
opacity of the medium ~ 2 – 10 GeV2/fm and diffusion 
co-efficient times 2πT ~ 1–10. 

Fig. 1: The photo shows the inside of ALICE detector.  
Credit: J Ordan/CERN-PHOTO-201903-053-1
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insight these measurements bring are the following: 
with Λ-separation energy of only ~130 keV, the average 
distance between the Λ and the deuteron core of the 
hypertriton is 10.6 fm. This relatively large separation 
implies only a small perturbation to the Λ wavefunction 
inside the hypernucleus, and therefore a hypertriton 
lifetime close to that of a free Λ, 263.2 ± 2.0 ps. Most 
calculations predict the hypertriton lifetime to be in 
the range of 213 to 256 ps. Combining the ALICE result 
with previous measurements gives an average lifetime 
of hypernucleus to be ~ 206 ps, which is about 22% 
shorter than the lifetime of a free L, indicating possibility 
of a stronger hyperon-nucleon interaction in the 
hypernucleus system. This is a crucial input for models 
attempting to understand the physics of neutron star.

Interaction potentials: The ALICE collaboration is 
able to use the scattering between particles produced 
in collisions to constrain interaction potentials in a new 
way. So far, pK, pΛ, pΣ , pΞ and pΩ interactions have been 
investigated. Strong final-state interactions between 
pairs of particles make their momenta more parallel to 
each other in the case of an attractive interaction and 
increase the opening angle between them in the case of 
a repulsive interaction. The attractive potential of the  
p-Ξ interaction was observed by measuring the 
correlation of pairs of protons and Ξ particles as a 
function of their relative momentum (the correlation 
function) and comparing it with theoretical calculations 
based on different interaction potentials. 

Data from proton–lead collisions at a centre-of-mass 
energy per nucleon pair of 5.02 TeV show that p-Ξ pairs 
are produced at very small distances (~1.4 fm); the 
measured correlation is therefore sensitive to the short-
range strong interaction. The measured p-Ξ correlations 
were found to be stronger than theoretical correlation 
functions with only a Coulomb interaction, whereas 
the prediction obtained by including both the Coulomb 
and strong interactions (as calculated by the HAL-QCD 
collaboration) agrees with the data (Fig. 6) [6]. As a first 
step towards evaluating the impact of these results on 
models of neutron-star matter, the HAL-QCD interaction 

potential was used to compute the single-particle 
potential of Ξ within neutron-rich matter. A slightly 
repulsive interaction was inferred (of the order of 6 MeV, 
compared to the 1322 MeV mass of the Ξ), leading to 
better constraints on the equation of state for dense 
hadronic systems that contain Ξ particles. 

ALICE has thus made some very exciting recent 
measurements related to QCD matter that indicates 
the first evidence of spin-orbital angular momentum 
interactions, presence of strong electromagnetic fields 
and findings which can be linked to determining the 
equation of state for dense and cold nuclear matter 
with strange hadrons, like a neutron star. ■
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based experiments like ALICE at LHC is an ideal location 
for studying hyperon, hypernuclei, strange hadron 
interactions with nucleons. The physics learned at LHC 
can be used to understand properties of neutron star. 

In this context, ALICE has carried out some interesting 
recent measurements.

The lifetime of hypernuclei: The hyperon-nucleon 
(Y-N) interaction is of fundamental interest because 
it introduces the strangeness quantum number in 
high density nuclear matter, such as a neutron star. 
The formation of hyperons softens the equation of 
state and reduces the possible maximum mass of the 
corresponding neutron star, which makes it extremely 
difficult to describe neutron stars exceeding two solar 
masses, several of which were observed recently. Among 
other explanations, alternative Y-N couplings have 
been suggested as possible solutions for the so-called 
“hyperon puzzle”.

Hypernuclei are bound states of nucleons and hyperons, 
hence they are natural hyperon-baryon correlation 
systems. They can be used as an experimental probe 
to study the Y-N interaction. Studying their properties 
is one of the best ways to investigate the strengths 
of hyperon–nucleon interactions. The lifetime of a 
hypernucleus depends on the strength of the Y-N 
interactions. Therefore, a precise determination of the 
lifetime of hypernuclei provides direct information on 
the Y-N interaction strength. Further, the high collision 
energies of the heavy-ions at LHC (2.76 and 5.02 TeV) 
creates favourable conditions to produce hypernuclei in 
significant quantities. The lightest, the hypertriton, is a 
bound state of a proton, a neutron and a Λ. 

Fig. 6 below shows the ALICE collaboration 
measurement of the hypertriton lifetime using Pb–Pb 
collisions at √sNN = 5.02 TeV, along with results from 
other experiments and theory calculations [5]. The 
lifetime of the (anti-)hypertriton is determined by 
reconstructing the two-body decay channel with a 
charged pion, namely 3

Λ H → 3He + π. The measured 
lifetime is 242+34 -38 (stat) ± 17 (syst) picoseconds. The 

Fig. 5: Hypertriton lifetime measurements from various experiments, including the latest results from ALICE at LHC (red), The orange band is the average of the lifetime values and the dashed lines represent theoretical predictions

Fig. 6: TProton-Cascade correlation as a function of the relative momentum of the proton and cascade, and the 
expected background contribution. The theoretical results, including only the Coulomb interaction, and both the 
Coulomb and strong interaction, as computed within the lattice–QCD framework are also shown.


