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Subject of this talk: Lagrangian flow

Lagrangian flow: flow of passive tracer particles in
(incompressible) fluid in domain Ω ⊂ Rd ,d = 2,3.

Velocity field u(t, x), x ∈ Ω evolves in time according to
fluid mechanics model, e.g., Navier-Stokes

Lagrangian flow φt ∶ Ω→ Ω, t ≥ 0, solves ODE

d

dt
φt(x) = u(t, φt(x)) .

Incompressibility (∇x ⋅ u ≡ 0) implies φt flow of
volume-preserving diffeo’s on Ω
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Lagrangian flow

u(t, ⋅) ∶ Ω→ Rd , ∇ ⋅ u ≡ 0 , φ̇t(x) = u(t, φt(x))

At left: turbulent jet
visualized by fluorescent
dye.

Stretching and folding
mechanism should create
hyperbolicity

⇒ expect φt to be chaotic

E.g.: ABC flow (stationary
flow for Euler)

Image credit: K. R. Sreenivasan; taken from Shraiman & Siggia, “Scalar

turbulence”, Nature 405, 639 - 646 (2008)
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Hyperbolicity: infinitesimal stretching and
contracting & chaotic properties

Basic example: F ∶ T2 → T2, F(x) = ( 2 1
1 1

) x (modZ2).

EuEs

Chaotic features:

Sensitivity w.r.t. initial conditions:
d(F n(p1),F n(p2)) ≳ eαnd(p1,p2) when p1 − p2 ∉ E s

Correlation decay: for φ,ψ ∈ C 1(T2,R),

∣∫ φ ⋅ ψ ○ F n − ∫ φ∫ ψ∣ ≤ C∥φ∥C1∥ψ∥C1e−βn ,

α, β,C > 0 constants.

Same properties hold for all uniformly hyperbolic systems
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Comingled dynamics: hyperbolicity and ellipticity

Problem: stretching and folding should result in nonuniform
hyperbolicity: much harder to study

Chirikov standard map
F ∶ T2 → T2 a toy model of
stretching and folding.

Duarte ’95 and Gorodetski
’12: convoluted comingling
of elliptic islands and
hyperbolic points in
anti-integrable limit, a
“predominantly hyperbolic”
regime

Standard map conjecture:

{λ(p) > 0} has positive area.

Wide open.

Image due to Wikipedia user Linas
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Lagrangian chaos

u(t, ⋅) ∶ Ω→ Rd , ∇ ⋅ u ≡ 0 , φ̇t(x) = u(t, φt(x))

Question

When is φt chaotic in the sense of a positive Lyapunov
exponent, i.e.,

lim sup
t→∞

1

t
log ∥Dxφ

t∥ > 0 ?

[on a positive-volume set.]

Open question even when u(t, x) given by stationary ABC flow

(ẋ , ẏ , ż) = (A sin z + C cos y ,B sin x +A cos z ,C sin y +B cos x)

for any A,B,C , let alone when u(t, ⋅) evolves according to a
more ‘realistic’ fluids model such as driven Navier-Stokes.
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Setup: Stochastic fluid models

Punchline: presence of noise makes verifying chaotic
regimes tractable.

Consider, e.g., 2D Navier-Stokes on Ω = T2 with stochastic
forcing:

∂tu + (u ⋅ ∇)u +∇p = ν∆u +QẆt , ∇ ⋅ u ≡ 0

where QWt is white-in-time, divergence free, and Sobolev in
space

2D Navier-Stokes globally (mildly) well-posed for a.e. path
realization

Markov process ut = u(t, ⋅); unique stationary measure
when QWt “sufficiently” nondegenerate

Markov process (ut , xt), xt = φt(x0) on H ×T2
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Lagrangian Chaos (almost-surely positive Lyapunov
exponent)

∂tu + (u ⋅ ∇)u +∇p = ν∆u +QẆt , ∇ ⋅ u ≡ 0 , φ̇t(x) = u(t, φt(x))

Theorem (BBPS 2018, submitted)

If QWt satisfies certain nondegeneracy condition, then

lim
t→∞

1

t
log ∣Dxφ

t ∣ = λ > 0 w.p.1

for all initial x ∈ T2 and Sobolev regular vector fields u0. Result
also holds for 3D hyperviscous NSE, 2D & 3D Stokes and
Galerkin-Navier-Stokes.

Nondegeneracy needed is very mild: result valid for ut given by

ut(x , y) = ( Z1(t) sin y + Z2(t) cos y
Z3(t) sin x + Z4(t) cos x

) ,

Zi(t) independent Ornstein-Uhlenbeck processes (i.e. ut solves

stochastic Stokes’ equation)
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Almost-sure exponential mixing for Lagrangian flow

∂tu + (u ⋅ ∇)u +∇p = ν∆u +QẆt , ∇ ⋅ u ≡ 0 , φ̇t(x) = u(t, φt(x))

Theorem (BBPS 2019, submitted)

Under the same conditions as previous theorem, for all p ≥ 1,
there exists a deterministic γ = γ(p) > 0 and a random
constant C = C(ω,u0,p) such that P × µ a.e. (ω,u0) and
arbitrary mean-zero f ,g ∈ H1(Td), we have

∣∫ f (x) ⋅ g ○ φt(x)dx ∣ ≤ Ce−γt∥f ∥H1 ⋅ ∥g∥H1

with E ∫ Cpdµ(u0) <∞.

A priori much stronger than simply having a positive Lyapunov
exponent. Proof uses previous theorem as a lemma.

Sometimes called quenched correlation decay: exponential decay
of correlations almost surely (a.k.a. H−1-decay)
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Implications for passive scalar advection

∂tu + (u ⋅ ∇)u +∇p = ν∆u +QẆt , ∇ ⋅ u ≡ 0 , φ̇t(x) = u(t, φt(x))

Motion of e.g., chemical concentration fluctuation g(t, x) ∈ R
in the fluid:

∂tg + u ⋅ ∇g
²

transport

= κ∆g
±

diffusion

+ η̇t
®

random source

, g(0, x) = g0(x)

where ∫ g0dx = 0.

At κ = 0, gt(x) = g0((φt)−1(x)) and ∇gt = (Dxφ
t)−⊺∇g0.

Lagrangian chaos & mixing ⇒ cascade of power spectrum
of gt towards higher modes (up until dissipative range
where κ∆ predominates)

Toy model of hydrodynamic turbulence in NSE (ν → 0)
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Corollary 1: Yaglom’s Law

∂tu + (u ⋅ ∇)u +∇p = ν∆u +QẆt , ∇ ⋅ u ≡ 0 , φ̇t(x) = u(t, φt(x))
∂tg + u ⋅ ∇g = κ∆g + η̇t , g(0, x) = g0(x)

In 1949, Isaak Yaglom predicted the following analogue of the
Kolmogorov 4/5 law for passive scalars:

E(∣δ`g ∣2δ`u ⋅
`

∣`∣
) ∼κ→0

`→0
− 4

d
ε∣`∣ ,

where δ`h(x) = h(x + `) − h(x) and ε = 1
2E∥η∥2.

Theorem (BBPS 18)

Let (u,gκ) be statistically stationary, ∫ gκdx ≡ 0. Then
∃`D = `D(κ), limκ→0 `D(κ) = 0, such that

lim
κ→0

1

`D
E∫

Td
∫
Sd−1

∣δ`Dng
κ∣2δ`Dnu ⋅ n dS(n)dx = − 4

d
ε
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Corollary 2: Batchelor’s Law

∂tu + (u ⋅ ∇)u +∇p = ν∆u +QẆt , ∇ ⋅ u ≡ 0 , φ̇t(x) = u(t, φt(x))

∂tg + u ⋅ ∇g = κ∆g + η̇t , g(0, x) = g0(x),∫ g0dx = 0

Let Π≤Ng be projection onto span of Fourier modes
sin(k ⋅ x), cos(k ⋅ x), ∣k ∣∞ ≤ N

Theorem (BBPS 19, in prep)

Let (u,gκ) be statistically stationary. Then,

E∥Π≤Ng
κ∥2

L2 ≈ logN for 1 ≪ N ≲ κ−1/2

Analogue of 5/3 law for power spectrum in hydrodynamic turbulence

To our knowledge, these constitute first-ever rigorous proof of a universal
turbulent scaling law or power spectrum for a fluid evolving according to
NSE (c.f. Kraichnan model)

Requires much add’l work: must study stochastic representation
φ̇t(x) = u(t, φt(x)) +

√
κ̇̃Wt of κ∆g
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Ideas from the proof

Diverse array of tools needed:

Dynamics:

Multiplicative ergodic theorem
Furstenberg criterion / rigidity of zero Lyapunov exponent
cocycles (c.f. Invariance Principle after Avila-Viana)

Stochastic PDE:
Regularity theory for SPDE: strong Feller property

Malliavin calculus / nonadapted stochastic calculus

Harris’s Theorem & Lyapunov functions: conditions for
mixing of Markov processes in infinite dimensions
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How to prove λ > 0?

For t ∈ N,
Dx0φ

t
u0
= Dxt−1φ

1
ut−1

○ ⋯ ○Dx0φ
1
u0
,

where ut = u(t, ⋅) and xt = φt(x0). Note: (ut , xt) Markovian.

A simplified model:

Random products of IID 2 × 2 matrices A1,A2,⋯ of
determinant 1, An = An ○ ⋯ ○A1.
Lyapunov exponent η = limn→∞

1
n log ∣An∣ exists and

constant wp1. Note η ≥ 0.

Theorem (Furstenberg ’68)

If η = 0 then 2 cases:

(a) ∃ deterministic inner product ⟨⋅, ⋅⟩ with respect to which
A1 is almost-surely an isometry.

(b) ∃ deterministic lines {Li}pi=1,p ∈ {1,2} such that
A1(∪pi=1Li) = ∪

p
i=1Li .
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Prove λ > 0 by contradiction

u(t, ⋅) ∶ Td → Rd , φ̇t(x) = u(t, φt(x)) , ut = u(t, x) , xt = φt(x0) .

In our setting:

Proposition (with J. Bedrossian & S. Punshon-Smith)

Fix d = 2. If λ = 0, 2 cases:

(a) ∃ deterministic, continuously-varying family of inner
products ⟨⋅, ⋅⟩u,x such that Dx0φ

t an isometry
⟨⋅, ⋅⟩u0,x0 → ⟨⋅, ⋅⟩ut ,xt .

(b) ∃ deterministic, continuously-varying families of lines
Li(u, x), i ≤ p,p = 1,2 such that

Dx0φ
t( ∪pi=1 L

i(u0, x0)) = ∪pi=1L
i(ut , xt)

In both cases, λ = 0 implies degeneracy in law of Dxφt .

Note: Many such generalizations exist: c.f. Ledrappier, Virtser,
Royer, Baxendale, Carverhill
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Ingredients from SPDE

u(t, ⋅) ∶ Td → Rd , φ̇t(x) = u(t, φt(x)) , ut = u(t, x) , xt = φt(x0) .

Definition

Let (zt) be a Markov process on a Polish space Z . We say it
has the strong Feller property if for all bounded measurable
φ ∶ Z → R, have

z ↦ E(φ(zt)∣z0 = z)

is continuous for all t > 0.

We require Strong Feller for zt = (ut , xt) process to check
continuity of ‘deterministic’ families (inner products or line
bundles)

For finite-dimensional processes: Hörmander’s condition.
In infinite-dimensions: Malliavin calculus with nonadapted
controls

Necessary to force infinitely many Fourier modes
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Almost-sure correlation decay: two-point motion

Consider the two-point motion (ut , xt , yt) with (x ≠ y)

∂txt = ut(xt)
∂tyt = ut(yt).

This Markov process lives in H ×Dc where
D = {(x , y) ∈ T2d ∶ x = y}.
Geometric ergodicity of this two-point motion implies the
desired mixing: for some V ∈ L1(µ × Leb × Leb),

∣Eϕ(ut , xt , yt) − ∫
Td×Td ∫L2

ϕ(u, x , y)µ(du)dxdy ∣ ≲ V(u0, x0, y0)e−γt∥ϕ∥L∞ .

Basic idea why: apply Borel-Cantelli after the following L2 trick
(Dolgopyat-Kaloshin-Koralov ‘04, Ayyer-Liverani-Stenlund ’07)

P × µ(∣∫ f ○ φngdx ∣ > e−qn) ≤ e2qn ∫ ∣Eu,x,y f (xn)f (yn)g(x)g(y)∣dxdydµ

≲ ∥f ∥2L∞∥g∥
2
L∞e(2q−γ)n.

More quantitative control on D requires regularity of f ,g and a more

complicated argument.
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Harris’ theorem via Goldys/Maslowski

Goldys-Maslowski ‘04: convenient framework for checking the conditions
for Harris’ theorem for e.g. dissipative semilinear parabolic SPDE.

Let Zt be a Markov process on a Polish space Z with transition kernels

Qt(z,K). Suppose:

strong Feller: ∀t > 0 and bounded (measurable)
ψ ∶ Z → R, z ↦ Qtψ(z) is continuous on Z.
Topological irreducibility: ∀ open U ⊂ Z, Qt(z ,U) > 0
for all t > 0, z ∈ Z.
Drift condition: ∃V ∶ Z → [1,∞) and constants
k , α, c > 0 such that

QtV ≤ ke−αtV + c

Uniform lower bounds: ∀r > 1, ∃ a compact K ⊂ Z and
a t0 = t0(r) > 0 such that

inf
z ∶V(z)≤r

Qt0(z ,K) > 0 .

Checking the lower bound usually isn’t hard for parabolic equations:
basically we just need V(z)→∞ as z →∞.
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Harris’ theorem via Goldys/Maslowski ‘04

Theorem (Goldys/Maslowski ‘04)

Then, the Markov process (Zt) admits a unique stationary
measure m, with respect to which (Zt) is geometrically ergodic
in CV . That is, for all ψ ∈ CV , we have that

∣Qtψ(z) − ∫ ψdm∣ ≲ CV(z)e−βt∥ψ∥CV for all t > 0 ,

where

∥ψ∥CV ∶= sup
z∈Z

∣ψ(z)∣
V(z)

Strong Feller follows from some Malliavin calculus and Hörmander bracket
conditions (not too different from a lemma in Lagrangian chaos).
Irreducibility follows from an elementary approximate control argument
(also not too different from a lemma in BBPS 18).

Chief new difficulty: the drift condition V!!!
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Drift condition

The diagonal D is being treated as part of “infinity”, so V needs to imply
that particles close together separate exponentially fast...

When d(xt , yt)≪ 1 we expect

wt = xt − yt ≈ Dxφ
t(x)w . (1)

Previously: proved ∃λ1 > 0 ∀u, x , P-a.e. limt→∞
1
t

log ∣Dxφt ∣ = λ1. Indeed,

each given v0 ∈ R2 grows at λ1 with probability 1!

Implies repulsion for linearized dynamics near diagonal D.

It then makes sense to look for a drift condition of the form:

V(u, x , y) = ∣d(x , y)∣−pψp (u, x ,
x − y

∣x − y ∣
)χ(d(x , y)) + c0 V (u)

=∶ hp(u, x , y) + c0V (u)

where V satisfies a drift condition on the Navier-Stokes equation:

V (u) = (1 + ∥u∥2H)
β exp (η∥∇u∥2

L2) .

Inclusion of H is not a trivial extension of existing work. The actual proof
uses a range of β, η’s and compact embedding arg’s
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Twisted semigroup

We construct ψp as the dominant eigenfunction of the “twisted”
semi-group acting on observables of the (ut , xt , vt):

P̂p
t ψ(u, x , v) = Eu,x,v ∣Dφtv ∣−pψ(ut , xt , vt)

Seek ψp such that P̂p
t ψp = e−Λ(p)tψp for Λ(p) > 0.

Note that due to the unbounded/infinite dimensional phase space, it is not
obvious that P̂p

t is even bounded CV → CV for any t > 0.

Baxendale-Strook 1988 used the twisted semigroup to study large
deviations away from the diagonal for the two-point motions.

Λ(p) is the moment Lyapunov function1

Λ(p) = −
1

t
lim
t→∞

log E∣Dxφ
t ∣−p .

We eventually verify Λ(p) ≈ pλ1 for 0 < p ≪ 1, where λ1 is the top
Lagrangian Lyapunov exponent.

1This comes up in studying large deviations in convergence of Lyapunov
exponents; c.f. Arnold et al. ’80s.
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Spectral perturbation and the drift condition

Step 1: construct ψp ∈ CV , ∂vψp ∈ CV , ψp > 0

Obtain a spectral gap for P̂0
t in the corresponding spaces; main step

is a gradient bound / “Lasota-Yorke” estimate2

Spectral theoretic perturbation argument gives ψp as the dominant
eigenvector of 0 < p ≪ 1.

Lagrangian λ1 > 0 ⇒ eigenvalue strictly negative

Step 2: obtain drift condition for two point motion by linearized

approximation:

Key lemma is an estimate based on infinitesimal generators:

L(2)hp ≤ L(Lin)hp + CV (u) ≤ −Λ(p)hp + C ′V (u),

where L(2) is the generator for two-point motion and L(Lin) for
linearized motion.
Error is absorbed by taking advantage of the drift conditions for NSE,
giving

P̂
(2)
t V ≤ e−γtV + C ′′.

2
∥Dv P̂

0
t φ∥L∞ ≲ V (u) (∥φ∥L∞ + e−αt∥Dvφ∥L∞); this is proved via

Malliavin calculus a la Hairer/Mattingly ‘06 proof of asymptotic strong
Feller for 2D NSE with degenerate forcing.
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Recap and conclusion

∂tu + (u ⋅ ∇)u +∇p = ν∆u +QẆt , ∇ ⋅ u ≡ 0 , φ̇t(x) = u(t, φt(x))
∂tg + u ⋅ ∇g = κ∆g + η̇t , g(0, x) = g0(x)

Using stochastic framework, have shown Lagrangian flow
φt is chaotic (pos. LE, exponential correlation decay with
probability 1) when ut evolves by Navier-Stokes or other
models

Consequences for passive scalar turbulence: quantitative
control on formation of small scales for concentration
density of chemicals being passively advected by flow

Thanks for your attention!
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