DIOPHANTINE INHERITANCE AND DICHOTOMY FOR P-ADIC MEASURES

Shreyasi Datta (Tata Institute)

Based on a joint work with Anish Ghosh (Tata Institute)

September 30, 2019

• For every $\mathbf{x} \in \mathbb{R}^n$ there exists infinitely many $\mathbf{q} \in \mathbb{Z}^n \setminus \{0\}, p \in \mathbb{Z}$ such that

۲

• For every $\mathbf{x} \in \mathbb{R}^n$ there exists infinitely many $\mathbf{q} \in \mathbb{Z}^n \setminus \{0\}, p \in \mathbb{Z}$ such that

$$|\mathbf{q}.\mathbf{x}+\mathbf{p}| < rac{1}{(\|\mathbf{q}\|)^n}.$$

۲

• For every $\mathbf{x} \in \mathbb{R}^n$ there exists infinitely many $\mathbf{q} \in \mathbb{Z}^n \setminus \{0\}, p \in \mathbb{Z}$ such that

$$|\mathbf{q}.\mathbf{x}+\mathbf{p}| < rac{1}{(\|\mathbf{q}\|)^n}.$$

• $\mathcal{W}_{\mathbf{v}} := \{ \mathbf{x} \in \mathbb{R}^n \mid |\mathbf{q}.\mathbf{x} + p| < \frac{1}{(||\mathbf{q}||)^{\mathbf{v}}} \text{ for infinitely many } p, \mathbf{q} \}.$

۲

• For every $\mathbf{x} \in \mathbb{R}^n$ there exists infinitely many $\mathbf{q} \in \mathbb{Z}^n \setminus \{0\}, p \in \mathbb{Z}$ such that

$$|\mathbf{q}.\mathbf{x}+\mathbf{p}| < rac{1}{(\|\mathbf{q}\|)^n}.$$

• $\mathcal{W}_{\mathbf{v}} := \{ \mathbf{x} \in \mathbb{R}^n \mid |\mathbf{q}.\mathbf{x} + p| < \frac{1}{(\|\mathbf{q}\|)^{\mathbf{v}}} \text{ for infinitely many } p, \mathbf{q} \}.$

• $\omega(\mathbf{x}) := \sup_{\mathbf{x} \in \mathcal{W}_{v}} v.$

۲

• For every $\mathbf{x} \in \mathbb{R}^n$ there exists infinitely many $\mathbf{q} \in \mathbb{Z}^n \setminus \{0\}, p \in \mathbb{Z}$ such that

$$|\mathbf{q}.\mathbf{x}+\mathbf{p}| < rac{1}{(\|\mathbf{q}\|)^n}.$$

• $\mathcal{W}_{\mathbf{v}} := \{ \mathbf{x} \in \mathbb{R}^n \mid |\mathbf{q}.\mathbf{x} + p| < \frac{1}{(\|\mathbf{q}\|)^{\mathbf{v}}} \text{ for infinitely many } p, \mathbf{q} \}.$

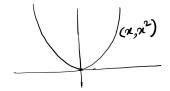
• $\omega(\mathbf{x}) := \sup_{\mathbf{x} \in \mathcal{W}_{v}} v.$

• For every $\mathbf{x} \in \mathbb{R}^n$, $\omega(\mathbf{x}) \ge n$.

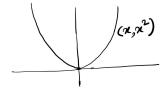
• VWA: $\omega(\mathbf{x}) > n$.

- VWA: $\omega(\mathbf{x}) > n$.
- Leb (VWA) = 0 on \mathbb{R}^n .

- VWA: $\omega(\mathbf{x}) > n$.
- Leb (VWA) = 0 on \mathbb{R}^n .
- What is the situation for submanifolds of \mathbb{R}^n ?

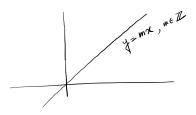


- VWA: $\omega(\mathbf{x}) > n$.
- Leb (VWA) = 0 on \mathbb{R}^n .
- What is the situation for submanifolds of \mathbb{R}^n ?



• $\lambda \{x \in \mathbb{R} \mid (x, x^2) \text{ is VWA } \} = ?$

Mahler's conjecture



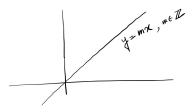
• $\{x \in \mathbb{R} \mid (x, mx) \text{ is VWA }\} = \mathbb{R}.$

MAHLER'S CONJECTURE

•
$$\{x \in \mathbb{R} \mid (x, mx) \text{ is VWA }\} = \mathbb{R}.$$

In 1932 Mahler conjectured that a.e. point on the Veronese curve (x, x², x³,..., xⁿ) is not very well approximable.

MAHLER'S CONJECTURE



- $\{x \in \mathbb{R} \mid (x, mx) \text{ is VWA }\} = \mathbb{R}.$
- In 1932 Mahler conjectured that a.e. point on the Veronese curve (x, x², x³,..., xⁿ) is not very well approximable.
- This was settled by Sprindžuk in 1964.

CONJECTURE (SPRINDŽUK)

For any analytic manifold which is not locally contained in any proper affine hyperplane, the set of VWA vectors has measure zero.

Conjecture (Sprindžuk)

For any analytic manifold which is not locally contained in any proper affine hyperplane, the set of VWA vectors has measure zero.

• Diophantine exponent $\omega(\mu)$ of μ to be

 $\omega(\mu) = \sup\{v \ : \ \mu(\{y \mid \omega(y) > v\}) > 0\}.$

Conjecture (Sprindžuk)

For any analytic manifold which is not locally contained in any proper affine hyperplane, the set of VWA vectors has measure zero.

• Diophantine exponent $\omega(\mu)$ of μ to be

$$\omega(\mu) = \sup\{v : \mu(\{y \mid \omega(y) > v\}) > 0\}.$$

• $\omega(\mathbf{f}_{\star}\lambda) = n$ for "nondegenerate" manifold $\mathbf{f} : U \subset \mathbb{R}^d \to \mathbb{R}^n$.

• Kleinbock and Margulis solved Sprindžuk's conjecture in 1998.

- Kleinbock and Margulis solved Sprindžuk's conjecture in 1998.
- Main tools:

- Kleinbock and Margulis solved Sprindžuk's conjecture in 1998.
- Main tools:
 - Quantitative nondivergence.

- Kleinbock and Margulis solved Sprindžuk's conjecture in 1998.
- Main tools:
 - Quantitative nondivergence.
 - VWA $\subset \bigcup \{ \mathbf{x} \mid \delta(g_t u_{\mathbf{f}(\mathbf{x})} \mathbb{Z}^{n+1}) < e^{-\lambda t} \text{ for infinitely many } t \in \mathbb{N} \}.$

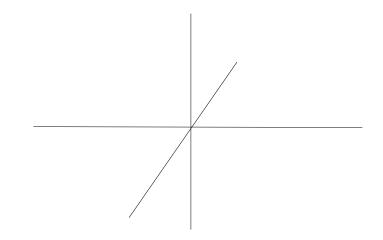
- Kleinbock and Margulis solved Sprindžuk's conjecture in 1998.
- Main tools:
 - Quantitative nondivergence.
 - VWA $\subset \bigcup \{ \mathbf{x} \mid \delta(g_t u_{\mathbf{f}(\mathbf{x})} \mathbb{Z}^{n+1}) < e^{-\lambda t}$ for infinitely many $t \in \mathbb{N} \}$.

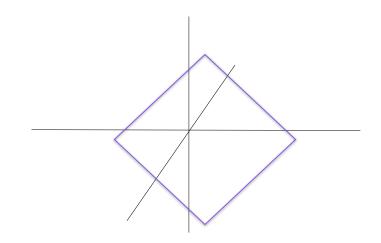
•
$$g_t := \operatorname{diag}(e^t, e^{-t/n}, \dots, e^{-t/n}), u_{\mathsf{f}(\mathsf{x})} = \begin{bmatrix} 1 & \mathsf{f}(\mathsf{x}) \\ \mathbf{0} & \mathsf{I}_n \end{bmatrix}.$$

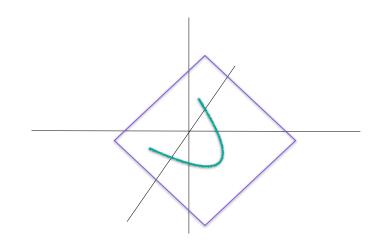
- Kleinbock and Margulis solved Sprindžuk's conjecture in 1998.
- Main tools:
 - Quantitative nondivergence.
 - VWA $\subset \bigcup \{ \mathbf{x} \mid \delta(g_t u_{\mathbf{f}(\mathbf{x})} \mathbb{Z}^{n+1}) < e^{-\lambda t} \text{ for infinitely many } t \in \mathbb{N} \}.$

•
$$g_t := \operatorname{diag}(e^t, e^{-t/n}, \dots, e^{-t/n}), u_{\mathbf{f}(\mathbf{x})} = \begin{bmatrix} 1 & \mathbf{f}(\mathbf{x}) \\ \mathbf{0} & \mathbf{I}_n \end{bmatrix}$$

• Kleinbock-Lindenstrauss-Weiss improved that to geometric condition on measures to study Diophantine property.







• Kleinbock: $\omega(\mathcal{L}) = n \implies \omega(\mathcal{M}) = n$ for nondegenerate manifolds $\mathcal{M} \subset \mathcal{L}$.

- Kleinbock: ω(L) = n ⇒ ω(M) = n for nondegenerate manifolds M ⊂ L.
- In this case both directions of Dani correspondence play role.

- Kleinbock: ω(L) = n ⇒ ω(M) = n for nondegenerate manifolds M ⊂ L.
- In this case both directions of Dani correspondence play role.
- Kleinbock later generalised this and proved ω(L) = ω(M) for nondegenerate manifolds of L.

• Sprindžuk proved *p*-adic version of Mahler's conjecture.

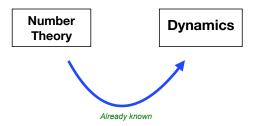
- Sprindžuk proved *p*-adic version of Mahler's conjecture.
- Kleinbock and Tomanov solved non-archimedean Sprindžuk conjecture.

- Sprindžuk proved *p*-adic version of Mahler's conjecture.
- Kleinbock and Tomanov solved non-archimedean Sprindžuk conjecture.
- Kleinbock and Tomanov conjectured : If L ⊂ Qⁿ_p affine subspace is extremal i.e. a.e every point is not VWA then any nondegenerate manifold inside that affine subspace is also extremal.

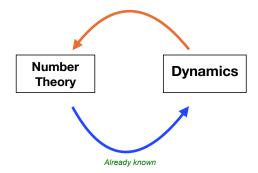
- Sprindžuk proved *p*-adic version of Mahler's conjecture.
- Kleinbock and Tomanov solved non-archimedean Sprindžuk conjecture.
- Kleinbock and Tomanov conjectured : If L ⊂ Qⁿ_p affine subspace is extremal i.e. a.e every point is not VWA then any nondegenerate manifold inside that affine subspace is also extremal.
- Later Kleinbock asked the more general question i.e. whether
 ω(L) = ω(M) holds for nondegenerate manifolds M of affine
 subspace L ⊂ Qⁿ_p.

- Sprindžuk proved *p*-adic version of Mahler's conjecture.
- Kleinbock and Tomanov solved non-archimedean Sprindžuk conjecture.
- Kleinbock and Tomanov conjectured : If L ⊂ Qⁿ_p affine subspace is extremal i.e. a.e every point is not VWA then any nondegenerate manifold inside that affine subspace is also extremal.
- Later Kleinbock asked the more general question i.e. whether
 ω(L) = ω(M) holds for nondegenerate manifolds M of affine
 subspace L ⊂ Qⁿ_p.
- We could answer these questions.

p-ADIC DIOPHANTINE APPROXIMATION



p-ADIC DIOPHANTINE APPROXIMATION



• We introduce a new *p*-adic Diophantine approximation which is better suited to homogeneous dynamics, and which we show to be closely related to the exponent considered by Kleinbock and Tomanov. • We introduce a new *p*-adic Diophantine approximation which is better suited to homogeneous dynamics, and which we show to be closely related to the exponent considered by Kleinbock and Tomanov. • We introduce a new *p*-adic Diophantine approximation which is better suited to homogeneous dynamics, and which we show to be closely related to the exponent considered by Kleinbock and Tomanov.

THEOREM (DG, 2019)

Let \mathcal{L} be an affine subspace of \mathbb{Q}_p^n , and let \mathcal{M} be a submanifold of \mathcal{L} which is nondegenerate in \mathcal{L} . Then

 $\omega(\mathcal{M}) = \omega(\mathcal{L}) = \inf\{\omega(\mathbf{y}) \mid \mathbf{y} \in \mathcal{L}\} = \inf\{\omega(\mathbf{y}) \mid \mathbf{y} \in \mathcal{M}\}.$

 $\mathbf{y}\in\mathbb{Q}_p^n$ is v–Z-approximable if there are infinitely many $\tilde{\mathbf{q}}=(q_0,\mathbf{q})\in\mathbb{Z}^{n+1}$ such that

$$|q_0 + \mathbf{q} \cdot \mathbf{y}|_{\rho} \le \|\tilde{\mathbf{q}}\|_{\infty}^{-\nu}.$$
(1.1)

•
$$w(\mathbf{y}) = \sup\{v \text{ appearing in } 1.1\}.$$

 $\mathbf{y}\in\mathbb{Q}_p^n$ is v–Z-approximable if there are infinitely many $\tilde{\mathbf{q}}=(q_0,\mathbf{q})\in\mathbb{Z}^{n+1}$ such that

$$|q_0 + \mathbf{q} \cdot \mathbf{y}|_{\mathcal{P}} \le \|\tilde{\mathbf{q}}\|_{\infty}^{-\nu}.$$
(1.1)

•
$$w(\mathbf{y}) = \sup\{v \text{ appearing in } 1.1\}.$$

• In view of p-adic Dirichlet's theorem one have $w(\mathbf{y}) \ge n+1$.

 $\mathbf{y}\in\mathbb{Q}_p^n$ is v–Z-approximable if there are infinitely many $\tilde{\mathbf{q}}=(q_0,\mathbf{q})\in\mathbb{Z}^{n+1}$ such that

$$|q_0 + \mathbf{q} \cdot \mathbf{y}|_{p} \le \|\tilde{\mathbf{q}}\|_{\infty}^{-\nu}.$$
(1.1)

•
$$w(\mathbf{y}) = \sup\{v \text{ appearing in } 1.1\}.$$

- In view of p-adic Dirichlet's theorem one have $w(\mathbf{y}) \ge n+1$.
- A vector is very well approximable if $w(\mathbf{y}) > n+1$.

 $\mathbb{Z}[1/p]$ approximable vectors: $\mathbf{y} \in \mathbb{Q}_p^n$ is $\mathbf{v} - \mathbb{Z}[1/p]$ -approximable if there exists $\tilde{\mathbf{q}} = (q_0, \mathbf{q}) \in \mathbb{Z}[1/p]^{n+1}$ with unbounded $\|\mathbf{q}\|_p \|\tilde{\mathbf{q}}\|_\infty$ such that

$$|q_0 + \mathbf{q} \cdot \mathbf{y}|_{\rho} < \frac{1}{(\|\mathbf{q}\|_{\rho} \|\tilde{\mathbf{q}}\|_{\infty})^{\nu} \|\tilde{\mathbf{q}}\|_{\infty}}.$$
 (1.2)

• $w_p(\mathbf{y}) = \sup\{v \text{ appearing in } 1.2\}.$

• The following proposition gives a nice relation between these two types of approximation.

PROPOSITION

For any $\mathbf{y} \in \mathbb{Q}_p^n$ we have

 $w_p(\mathbf{y}) = w(\mathbf{y}) + 1.$

• The following proposition gives a nice relation between these two types of approximation.

Proposition

For any $\mathbf{y} \in \mathbb{Q}_p^n$ we have

$$w_p(\mathbf{y}) = w(\mathbf{y}) + 1.$$

• This $\mathbb{Z}[\frac{1}{p}]$ approximation turns out to be directly connected to dynamics.

Connection to dynamics

• For any $\mathbf{y} \in \mathbb{Q}_p^n$ we associate a lattice $u_{\mathbf{y}}\mathcal{D}^{n+1}$ in $(\mathbb{Q}_p \times \mathbb{R})^{n+1}$, where $u_{\mathbf{y}}$ is defined as

$$u_y^p = \begin{bmatrix} 1 & \mathbf{y} \\ 0 & I_n \end{bmatrix}$$

•

Connection to dynamics

• For any $\mathbf{y} \in \mathbb{Q}_p^n$ we associate a lattice $u_{\mathbf{y}}\mathcal{D}^{n+1}$ in $(\mathbb{Q}_p \times \mathbb{R})^{n+1}$, where $u_{\mathbf{y}}$ is defined as

$$u_y^p = \begin{bmatrix} 1 & \mathbf{y} \\ 0 & I_n \end{bmatrix}$$

•

•
$$u_y^{\infty} = I_{n+1}$$
.

Connection to dynamics

• For any $\mathbf{y} \in \mathbb{Q}_p^n$ we associate a lattice $u_{\mathbf{y}}\mathcal{D}^{n+1}$ in $(\mathbb{Q}_p \times \mathbb{R})^{n+1}$, where $u_{\mathbf{y}}$ is defined as

$$u_y^p = \begin{bmatrix} 1 & \mathbf{y} \\ 0 & I_n \end{bmatrix}$$

•

•
$$u_y^{\infty} = I_{n+1}$$
.

• For $t \in \mathbb{N}$ define

$$g_t^{p} = egin{bmatrix} p^{-t} & 0 \ 0 & I_n \end{bmatrix}$$
 and $g_t^{\infty} = ext{diag}(p^{-rac{t}{n+1}},\cdots,p^{-rac{t}{n+1}}).$

• For $\mathbf{y} \in \mathbb{Q}_p^n$, the following are equivalent.

- For $\mathbf{y} \in \mathbb{Q}_p^n$, the following are equivalent.
- $\omega_p(\mathbf{y}) \geq v$, where v > n.

- For $\mathbf{y} \in \mathbb{Q}_p^n$, the following are equivalent.
- $\omega_p(\mathbf{y}) \geq v$, where v > n.
- For every d < c there exists arbitrarily large $t \in \mathbb{N}$ such that $\delta(g_t u_y \mathcal{D}^{n+1}) \leq p^{-dt}$, where $c = \frac{v-n}{(n+1)(v+1)}$.

THEOREM (DG, 2019)

Let \mathcal{L} be an affine subspace, parametrized by a matrix A. If all the rows (resp. columns) are rational multiples of one row (resp. column) then one has

 $w_p(\mathcal{L}) = \max(n, w_p(A))$ and $w(\mathcal{L}) = \max(n+1, w(A))$.

Theorem (DG, 2019)

Let \mathcal{L} be an affine subspace, parametrized by a matrix A. If all the rows (resp. columns) are rational multiples of one row (resp. column) then one has

 $w_p(\mathcal{L}) = \max(n, w_p(A))$ and $w(\mathcal{L}) = \max(n+1, w(A))$.

THEOREM (DG, 2019)

Suppose \mathcal{M} is a connected analytic manifold of \mathbb{Q}_p^n . Let $v \ge n$ and suppose $w_p(\mathbf{y}) \le v$ for some $\mathbf{y} \in \mathcal{M}$ then for almost every $\mathbf{y} \in \mathcal{M}, w_p(\mathbf{y}) \le v$.

• So if one point is not very well approximable then almost every point is not very well approximable.

• We could actually prove Kleinbock-Tomanov conjecture in more general setup of multiplicative approximation.

- We could actually prove Kleinbock-Tomanov conjecture in more general setup of multiplicative approximation.
- https://arxiv.org/abs/1903.09362

- We could actually prove Kleinbock-Tomanov conjecture in more general setup of multiplicative approximation.
- https://arxiv.org/abs/1903.09362
- https://arxiv.org/abs/1906.09916