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High-dimensional Linear Regression

These days, fields like natural sciences, engineering, and social
sciences have lots of data which they use to construct more
complex statistical models than ever before.

This requires new methodologies and mathematical techniques for
analysis of such models.

Today I overview recent progress on one such prototypical problem
in this area: high-dimensional regression. Specifically, I focus on
finite sample analysis of approximate message passing algorithms.
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= yβ0A + wm

N

Want to reconstruct β0 from y = Aβ0 + w

• y : length-m measurement vector

• w : length-m measurement noise

• A: m × N design matrix with m < N, m
N → δ ∈ Θ(1)

• β0: length-N unknown parameter vector (or ‘signal’)

Study this estimation problem but ideas extend to other settings
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Many Applications

• Imaging: Medical, Seismic, Compressive Sensing...
y = measurements w = sensor noise
A = basis representation β0 = sparse image/signal

• Statistics/Machine Learning
y = experimental outcome w = model error
A = feature data β0 = prediction coefficients

• Channel Coding in Communications
y = received sample w = noise/interference
A = coding dictionary β0 = message

Problem sizes are large, computational complexity of
reconstruction algorithm is a concern.
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= yβ0A + wm

N

Often assume additional info about β0, e.g. it has k < N non-zero elements

Goal: reconstruct k-sparse β0 from y = Aβ0 + w

Want to solve:

β̂ = arg min
β∈RN

‖y − Aβ‖2 subject to
N∑
j=1

I{βj 6= 0} ≤ k.

Unfortunately, a very hard combinatorial problem.
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Instead, a convex relaxation:

β̂ = arg min
β∈RN

‖y − Aβ‖2 subject to ‖β‖1 ≤ λ.

If A satisfies certain conditions, e.g. RIP, can get a good estimate
of sufficiently sparse β0 by solving a convex program (LASSO):

β̂ = arg min
β∈RN

‖y − Aβ‖2 + λ̃‖β‖1

[Donoho’06, Candes-Romberg-Tao’06, Bickel-Ritov-Tsybakov’09,...]
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Compressed Sensing and its Challenges

Significant work beginning ∼2006:

• Many successful applications, e.g. MRI

• Fast algorithms

• Scaling laws for measurements required to recover ‘true’
sparse vector

Challenges:

• Most analyses only provide bounds; can be conservative

• Methods specific to LASSO and don’t generalize
• Lacking results related to theoretically-optimal estimate that

minimizes MSE E‖β̂ − β0‖2(assuming a known prior on β0)
• When can we achieve this and how?

• Limited insight on the distribution of β̂; needed for inference
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Approximate Message Passing (AMP)

Low complexity, scalable algorithm studied extensively for solving
high-dimensional linear regression in compressed sensing

Benefits of AMP

For certain random matrices,

• Fast convergence

• Asymptotically exact characterization

• Testable conditions for optimality

Though studied extensively for compressed sensing, theory provides
insights into many more complex models

(GLMS, logistic regression, phase retrieval, multilayer models,
PCA, optimization, ...)
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Approximate Message Passing (AMP)

Outline

1. AMP algorithm for the LASSO.

2. General AMP algorithms.

3. State evolution and performance guarantees.

9 / 34



Solving the LASSO:

β̂ = arg min
β

‖y − Aβ‖2 + λ‖β‖1

First-order methods: Iteratively generate estimates of β0 as

β1, β2, . . .

1. Proximal Gradient (aka Iterative Soft-Thresholding)

r t = y − Aβt

βt+1 = soft(βt + sAT r t ; sλ)

soft(x ;T ) =


x − T , x ≥ T ,
0, −T < x < T ,
x + T , x ≤ −T .

x
−T T
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2. Proximal Gradient + Momentum (FISTA/Nesterov)

momentum term β̃t = βt +
t − 1

t + 2
(βt − βt−1)

same as IST r t = y − Aβ̃t

same as IST βt+1 = soft(β̃t + sAT r t ; sλ)

FISTA is good, but can we use a message passing algorithm
to address the issues raised earlier...?

• Can we get an asymptotically exact characterization?

• What is the ‘optimal’ estimate?

• Want faster convergence as N grows large.
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Assuming:

• entries of A are iid N (0, 1
m )

• dimensions of A are large, m
N → δ (δ is Θ(1))

AMP ‘derived’ as approximation of loopy belief propagation (BP)
for dense graphs

[Mézard ’89, Opper-Winther ’96, Kabashima ’03, ’08, Donoho-Maleki-Montanari ’09,

Rangan ’11, Krzakala et al ’12, Schniter ’11, ...]

While BP used to derive, need other techniques to analyze
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At a high level...

• Message passing operates on messages sent over edges of an
undirected graph at time indices t.

• Local rules update messages: outgoing messages from a vertex
at time t + 1 are functions of incoming messages to that
vertex at time t, except for the message on the same edge.

• Describing a general class of dynamical systems; only require
locality and ‘non-back-tracking’.

• When the graph is a tree, such systems have many interesting
properties and have found numerous applications.
(e.g. [Koller-Friedman ’09, Richardson-Urbanke ’08, Mézard-Montanari ’09])

AMP can be thought of as the limit of message passing algorithms
when the underlying graph is completely dense.
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AMP iteratively produces estimates β0 = 0, β1, . . . , βt , . . .

r t = y − Aβt +
r t−1

m
‖βt‖0

βt+1 = soft(βt + AT r t ; θt)

• r t is the ‘modified residual’ after step t

• soft denoises the effective observation to produce βt+1

• θt chosen wrt LASSO penalty λ, changing with t

Compare to Iterative Soft-Thresholding

r t = y − Aβt

βt+1 = soft(βt+sAT r t ; sλ)
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AMP iteratively produces estimates β0 = 0, β1, . . . , βt , . . .

r t = y − Aβt +
r t−1

m
‖βt‖0

βt+1 = soft(AT r t + βt ; θt)

With the assumptions:

• Entries of A are iid N (0, 1
m )

• Dimensions of A are large, m
N → δ (δ is constant)

The momentum term in r t ensures that asymptotically

AT r t + βt ≈ β0 + τtZ where Z is N (0, 1)

⇒ Effective observation AT r t + βt is true signal observed in
independent Gaussian noise with τt predicted by state evolution.
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Example: y = Aβ0

A : m × N = 2000× 4000; β0 has 500 non-zeros ∼ iid unif ±1

Histogram of AT r t + βt at indices where β0 = +1 at t = 10

with r t = y − ATβt + r t−1 ‖βt‖0

m with r t = y − ATβt
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Example: y = Aβ0

A : m × N = 2000× 4000; β0 has 500 non-zeros ∼ iid unif ±1

Histogram of AT r t + βt at indices where β0 = +1 at t = 10

– Here: empirical observation at a single t for specific m,N
– Later: rigorous proof that statistical properties exact in limit of
m,N for all t
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Theorem ((Rush ’20) LASSO: exact asymptotics)

Assume:

• Entries of A are iid N (0, 1
m )

• Dimensions of A are large, m
N → δ (δ is constant)

• Signal β0
i .i .d .∼ pβ sub-Gaussian and noise w

i .i .d .∼ N(0, σ2
w )

Let α∗ and τ2
∗ be the unique solution to the pair of equations

λ = α∗

{
1− 1

δ
P
(
|β + τ∗Z | > α∗

)}
,

τ2
∗ = σw +

1

δ
E
{[

soft(β + τ∗Z ;α∗)− β
]2}

.

where β ∼ pβ independent of Z ∼ N(0, 1).

Then, for ε ∈ (0, 1),

P
(∣∣∣ 1

N
||β̂ − β0||22 − E

{[
soft(β + τ∗Z ;α∗)− β

]2}∣∣∣ ≥ ε+ δt

)
≤ KKte

−κκtNε2
,

where κt ,Kt depend on t but not n, ε and δt < K1e
κ1t .

Proof requires demonstrating that the AMP algorithm just
introduced converges rapidly to β̂ and can be analyzed exactly.
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Theorem ((Bayati-Montanari ’15) LASSO: exact asymptotics)

Assume:

• Entries of A are iid N (0, 1
m )

• Dimensions of A are large, m
N → δ (δ is constant)

• Signal β0
i .i .d .∼ pβ and noise w

i .i .d .∼ N(0, σ2
w )

Let α∗ and τ2
∗ be the unique solution to the pair of equations

λ = α∗

{
1− 1

δ
P
(
|β + τ∗Z | > α∗

)}
,

τ2
∗ = σw +

1

δ
E
{[

soft(β + τ∗Z ;α∗)− β
]2}

.

where β ∼ pβ independent of Z ∼ N(0, 1). Then,

lim
m,N→∞

1

N
||β̂ − β0||22

a.s.
= E

{[
soft(β + τ∗Z ;α∗)− β

]2}
.

Proof requires demonstrating that the AMP algorithm just
introduced converges rapidly to β̂ and can be analyzed exactly.
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This result actually applies in more generality than presented:

• ‘Pseudo-Lipschitz’ loss functions [Bayati-Montanari ’12]

• Matrices with finite second moments and lite tails
[Korada-Montanari ’11, Bayati-Lelarge-Montanari ’15, Oymak-Tropp ’15]

• Beyond i.i.d. matrices: some empirics and heuristics
[Donoho-Tanner ’09, Tulino-Caire-Verdu-Shamai ’13, Javanmard-Montanari ’14b]

• Non-asymptotic analysis [Rush ’20]
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General AMP Framework

In the talk so far:

• LASSO motivated by a sparse signal (and unknown signal
prior distribution)

• Goal to minimize LASSO cost

• Note: theorem doesn’t require sparsity of the assumed prior.
This suggests....

First generalization:

• Known signal prior distribution (sparsity-inducing or not)

• Goal to minimize mean squared error (MSE) of estimate
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Let y = Aβ0 + w , β0
i .i .d .∼ pβ, w

i .i .d .∼ N (0, σ2)

r t = y − Aβt +
r t−1

m

N∑
i=1

η′t−1(AT r t−1 + βt−1)i

βt+1 = ηt(A
T r t + βt)

Function ηt chosen to denoise effective observation producing βt+1

KEY: For large m,N, at each time step t

AT r t + βt ≈ β0 + τt Z where Z is N (0, 1)

• pβ known: Bayes-optimal ηt choice minimizes E‖β0 − βt+1‖2.
Equals

ηt(s) = E[β0 | β0 + τtZ = s]

• pβ unknown: partial knowledge about β0 can guide ηt choice.
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Historically...

• With Bayesian denoisers, the fixed point version of the AMP
iteration dates back to the work of Thouless, Anderson,
Palmer (TAP) on mean field spin glasses.

• Iterative solutions of the TAP equations [Bolthausen ’14].

• General (non-Bayesian) formulation developed and analyzed in
[Donoho-Maleki-Montanari ’09, Bayati-Montanari ’11]
motivated by applications to compressed sensing.

22 / 34



To summarize:

LASSO for compressed sensing:

• Sparse signal (unknown signal prior distribution)

• Goal to minimize LASSO cost

• Soft-threshold denoiser η(·)

First generalization:

• Known signal prior distribution (sparsity-inducing or not)

• Goal to minimize mean squared error (MSE)

• Denoiser ηt(s) = E[β0 |β0 +N (0, τt) = s] when prior known

In both cases, as N → ∞ with t fixed, AMP admits an
asymptotically exact characterization via state evolution,
such that AT r t + βt ≈ β0 +N (0, τt).
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Under the assumption on the effective observation:

βt + AT r t ≈ β0 + τtZ , Z ∼ N (0, I).

If τ1, τ2, . . . is decreasing, getting a more ‘pure’ view of β0 as
algorithm iterates. The state evolution computes τ2

t .

State evolution equations

Set τ2
0 = σ2 + 1

mE‖β‖2,

τ2
t = σ2 +

1

m
E‖β − ηt(β + τt−1Z )‖2

where Z ∼ N (0, 1) independent of β ∼ pβ.

State evolution is a scalar recursion that allows for prediction of the
performance of AMP at any iteration. Now we make this rigorous.
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Assumptions for Performance Guarantees

We make the following assumptions:

• Measurement matrix: i.i.d. ∼ N (0, 1/m).

• Signal: i.i.d. ∼ pβ, sub-Gaussian.

• Measurement noise: i.i.d. ∼ pW , sub-Gaussian, E[w2
i ] = σ2.

• De-noising Functions ηt : Lipschitz continuous with weak
derivative η′t that’s differentiable except possibly at a finite
num. of points, with bounded derivative everywhere it exists.

Pseudo-Lipschitz (PL) Loss Functions

A function φ : Rm → R is PL if there exists a constant L > 0 such
that for all x , y ∈ Rm,

|φ(x)− φ(y)| ≤ L(1 + ‖x‖+ ‖y‖)‖x − y‖.

E.g. φ(x) = ‖x‖2
2 (squared-error loss), or φ(x) = ‖x‖1 (`1 loss).
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Performance Guarantees

Theorem (Rush, Venkataramanan ’18)

Under the assumptions of the previous slide, for any PL function
φ : R2 → R, ∆ ∈ (0, 1), and t ≥ 0,

P
(∣∣∣ 1

N

N∑
i=1

φ(βt+1
i , β0i )− δE[φ(ηt(β + τtZ ), β)]

∣∣∣ ≥ ∆
)
≤ Kte

−κtN∆2
,

for Z ∼ N (0, 1), β ∼ pβ independent with constants Kt , κt .

For PL loss functions, can essentially consider AMP estimate
βt+1 as having i.i.d. entries with each entry ∼ ηt(β + τtZ ).
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Performance Guarantees

Theorem (Rush, Venkataramanan ’16)

Under the assumptions of the previous slide, with constants Kt , κt ,
for ∆ ∈ (0, 1) and t ≥ 0,

P

(∣∣∣∣ 1

N
‖βt+1 − β0‖2 − δ(τ2

t+1 − σ2)

∣∣∣∣ ≥ ∆

)
≤ Kte

−κtN∆2
.
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P

(∣∣∣∣ 1

N
‖βt+1 − β0‖2 − δ(τ2

t+1 − σ2)

∣∣∣∣ ≥ ∆

)
≤ Kte

−κtN∆2
.

• Refines the asymptotic result proved by
[Bayati-Montanari ’11]

• The finite-sample result above implies the asymptotic
result (via Borel-Cantelli), i.e. with δ = m/N

lim
N→∞

1

N
‖βt+1 − β0‖2 a.s.

= δ(τ2
t+1 − σ2).
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Performance Guarantees

Theorem (Rush, Venkataramanan ’18)

Under the assumptions of the previous slide, with constants Kt , κt ,
for ∆ ∈ (0, 1) and t ≥ 0,

P

(∣∣∣∣ 1

m
‖βt+1 − β0‖2 − (τ2

t+1 − σ2)

∣∣∣∣ ≥ ∆

)
≤ Kte

−κtN∆2
.

Constants in the Bound:

• Constants Kt = K1(K2)t(t!)K3 and κt = κ1κ
−t
2 (t!)−κ3

where K1,K2,K3, κ1, κ2, κ3 > 0 are universal constants.

• Indicates how large t can get for deviation prob. → 0:

t = o

(
logN

log logN

)
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Proof Idea of Performance Guarantees

Show βt + AT r t ∼ β0 + τtZ , with τt given by state evolution.

Steps:

1. Characterize conditional dist. of effective observation
and residual as sum of i.i.d. Gaussians plus deviation.

Show:

(βt + AT r t − β0)|{past, β0,w}
d
= τtZt + ∆t ,

(r t − w)|{past, β0,w}
d
=
√
τ2
t − σ2 Z̃t + ∆̃t ,

2. Inductively show that norms of the deviation terms
concentrate to zero.
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concentrate to zero.
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AMP Extensions/Generalizations

• Non-Gaussian noise distributions (GAMP) [Rangan ’11]

• Different measurement matrices:

• Sub-Gaussian [Bayati-Lelarge-Montanari ’15]

• Right orthogonally-invariant (VAMP) [Schniter-Rangan-Fletcher ’16,

’17]

• Spatially-coupled (for improved MSE performance)
[Donoho-Javanmard-Montanari ’13, Rush-Hsieh-Venkataramanan ’18]

• Signals with dependent entries and non-separable
denoisers [Ma-Rush-Baron ’17, Berthier-Montanari-Nguyen ’17]
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AMP Extensions/Generalizations

Statistics Applications:

• False discoveries in LASSO and SLOPE estimation
[Su-Bogdan-Candes etal ’17, Bu-Klusowski-Rush-Su ’20]

• Power of knock-off variable selection [Weinstein-Barber-Candes etal ’17]

• Exact asymptotic performance guarantees for penalized
regression tasks

• LASSO [Bayati-Montanari ’12]

• M-estimation [Donoho-Montanari ’16]

• SLOPE [Bu-Klusowski-Rush-Su ’19]

• Bias and variance of the MLE for high-dimensional
logistic regression [Sur-Candes ’18]
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AMP Extensions/Generalizations

Different measurement models:
• Bilinear Models [Parker-Schniter-Cevhar ’14]

• Multiple Measurement Vectors [Ziniel-Schniter ’13]

• Matrix Factorization [Kabashima-Krzakala-Mézard-Sakata-Zdeborová ’16]

• Blind Deconvolution

• Low-rank Matrix Estimation [Rangan-Fletcher ’12, Lesieur-Krzakala-Zdeborová

’15]

• Principle Component Analysis [Deshpandre-Montanari ’14,

Montanari-Richard ’16]

• Stochastic Block Model [Deshpandre-Abbe-Montanari ’16]

• Replica Method [Barbier-Dia-Macris-Krzakala-Lesieur-Zdeborová ’15]
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AMP Summary
y = Aβ0 + w

r t = y − Aβt +
r t−1

m

N∑
i=1

η′t−1(AT r t−1 + βt−1)i

βt+1 = ηt(A
T r t + βt)

AMP: First-order iterative algorithm

• Theory assumes i.i.d. (sub)Gaussian A
• Sharp theoretical guarantees determined by simple scalar

iteration. E.g.,

1

N
‖β0 − βt+1‖2 ≈ δ(τ2

t+1 − σ2)

• AMP can be run even without knowing prior pβ

(our result shows that τ2
t concentrates on ‖r t‖2/m)

• Knowing pβ can help choose a good denoiser ηt
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Open Questions

• Theoretical results for more general A matrices

(i.i.d. uniform Bernoulli, partial DFT, correlated columns, . . . )

• AMP can diverge outside of i.i.d. Gaussian: want to know
when and why

• Develop AMP methods for inference and learning in deep
networks
• Connections between AMP and classical optimization

techniques

AMP

r t = y − Aβt + r t−1 ‖βt‖0

m

βt+1 = η(AT r t + βt ; ατt)

Nesterov/FISTA

β̃t = βt +
t − 1

t + 2
(βt − βt−1)

r t = y − Aβ̃t

βt+1 = η(β̃t + sAT r t ; sλ)
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