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Soft theorems

• When energy of one of the scattering particles is taken to 0,
the amplitude factorises into lower point amplitude times
a universal ’soft factor’.

• Leading soft photon theorem :

lim
ω→0

Ampn+1(pi , k) =
[S0

ω
+ ...

]
Ampn(pi ).

k = ω(1, ~q) is the soft momentum.
n is number of hard particles in the scattering process.
(n + 1)th particle is the soft photon.

• Soft factors are universal.

S0 =
n∑

i=1

ei
ε.pi
pi .q

.
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Asymptotic Conservation laws

Asymptotic conservation laws :

Q+[ε+] | I+
−

= Q−[ε−] | I−+ .

ε+(x̂) = ε−(−x̂).

I+
− is the u → −∞ sphere of I+.
I−+ is the v →∞ sphere of I−.



Asymptotic Conservation law

• Classical conservation law :

Q+
0 [ε+] | I+

−
= Q−0 [ε−] | I−+ .

Q0 is defined in terms of radial component of electric field.

• At quantum level, S-matrix has to satisfy the Ward identity :

< out| Q+
0 S − S Q−0 |in > = 0.



Asymptotic Conservation law

• Classical conservation law :

Q+
0 [ε+] | I+

−
= Q−0 [ε−] | I−+ .

• At quantum level,

< out| Q+
0 S − S Q−0 |in > = 0.

This Ward identity is equivalent to leading soft photon theorem.
[He, Mitra, Porfyriadis and Strominger,1407.3789; 1703.05448]

• These charges form a subgroup of U(1) and are called large
gauge transformations.
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Subleading term for loop amplitudes

• Sahoo and Sen (arxiv:1808.03288) showed that the subleading
term in the soft expansion of loop amplitudes is given by :

lim
ω→0

Ampn+1(pi , k) =
[S0

ω
+ Slog logω + ...

]
Ampn(pi ).

• Slog is universal.

• Slog is 1-loop exact.



Subleading term for loop amplitudes

Sahoo and Sen (arxiv:1808.03288) showed that the subleading
term in the soft expansion of loop amplitudes is given by :

lim
ω→0

Ampn+1(pi , k) =
[S0

ω
+ Slog logω + ...

]
.Ampn(pi )

Is this soft theorem related to an asymptotic symmetry?

→This study was initiated by Campiglia and Laddha (arxiv:1903.09133).

→ We build upon their work and dicuss the asymptotic conservation

law underying this soft theorem.



Origin of logω

• logω term in the soft expansion is exclusive to 4 spacetime
dimensions. It is related to the long range forces present in 4
spacetime dimensions.

• Forces ∼ 1
r2 are called long range forces. Non trivial effect at

r , t →∞.
Asymptotic trajectory of a point particle : ~x ∼ ~pt + ~c log t.

• So, asymptotically particles are not free. They radiate and
and this produces the logω term.
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Asymptotic conservation laws

• We will incorporate the effect of long range forces on
asymptotic dynamics.

• This leads to new asymptotic conservation laws.



Plan

• Part 1 : Classical theory

• Asymtotic dynamics in presence of long range forces

• New Qm-conservation laws (arxiv:2007.03627)

• Part 2 : Quantum theory

• Q1-Ward identity ↔ logω soft theorem (arxiv:1912.10229)

• Expectation at m-loop order



Part 1

Asymptotic conservation laws for classical scattering.



Scattering process

Let us consider scattering of charged particles where n′ number of
particles come in and interact in a finite region say a sphere of
radius L around r = 0. At the end, they produce (n − n′) number
of outgoing particles.
This interaction could be of any sort or of any strength.



Scattering process

For r > L, the particles are apart enough so that only possible
interactions between them would be the long range forces.



Asymtotic dynamics at leading order

• We will calculate Fµν perturbatively in e and
1
τ .

• Let us first restrict ourselves to the leading order in coupling
e, then we can ignore the effect of long range electromagetic
interactions on the asymptotic trajectories.

• Hence an incoming particle has the trajectory :

xµi = [V µ
i τ + di ]Θ(−T − τ).

Similarly, an outgoing particle has the trajectory :

xµj = [V µ
j τ + dj ]Θ(τ − T ).
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Asymtotic dynamics at leading order

• We have :

jσ(x ′) =

∫
dτ
[ n∑
i=n′+1

eiViσ δ
4(x ′ − xi ) Θ(τ − T ) + in

]
.

• Using �Aµ = −jµ,

Aσ(x) =
1

2π

∫
dτ δ( (x − x ′(τ))2) jσ(τ).



Fµν at O(e)

• Let us find the field at I+ : r →∞ for fixed u = t − r , x̂ .

• We get :

Fµν |I+
−
∼
∑
m,n
m<n

um

rn
+ · · · .

’· · · ’ represent terms that are atleast exponentially suppressed.

• In particular, we have :

F 2
rA|I+

−
= u F

(2,−1)
rA + u0 F

(2,0)
rA + · · · .

A denotes S2 co-ordinates.
The coefficients are a function of x̂ .

• Long range forces lead to new logarithmic terms in field strength.
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Asymptotic dynamics including subleading term

mi
∂2xµi
∂τ2

= ei F
µν(τ) Viν .

Substitute O(e) solution of Fµν in above equation to get

mi
∂2xµi
∂τ2

= O(
e2

τ2
).

Hence we get :

xµi = V µ
i τ + cµi log τ + di +O(

1

τ
).
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Asymptotic dynamics including subleading term

We have :

xµi = V µ
i τ + cµi log τ + di +O(

1

τ
).

cµi = − 1

4π

n∑
j=n′+1,

j 6=i

eiej
pi .pj m

2
j p
µ
i + m2

i m
2
j p
µ
j

[(pi .pj)2 −m2
i m

2
j ]3/2

.

• Above expression represents effect of other particles j on the i th

particle.
• ci ’s for an outgoing particle includes contribution only from
outgoing particles.



Asymptotic dynamics including subleading term

We have :

xµi = V µ
i τ + cµi log τ + di +O(

1

τ
).

cµi = − 1

4π

n∑
j=n′+1,

j 6=i

eiej
pi .pj m

2
j p
µ
i + m2

i m
2
j p
µ
j

[(pi .pj)2 −m2
i m

2
j ]3/2

.

• Above expression represents effect of other particles j on the i th

particle.
• ci ’s for an outgoing particle includes contribution only from
outgoing particles.



O(e3) fall offs in the field strength

• Using �Aµ = −jµ,

Aσ(x) =
1

2π

∫
dτ δ( [x − x ′(τ)]2) jσ(τ).

Now jσ includes O(e3) terms.

• The fields admit new fall offs :

F 2
rA|I+

−
= u F

(2,−1)
rA + log u F

(2,log)
rA + u0 F

(2,0)
rA + · · · .



O(e3) fall offs in the field strength

• At future :

FrA|u→−∞ =
1

r2

[
u F

(2,−1)
rA + log u F

(2,log)
rA + ...

]
+O(

1

r3
) .

(1)

• We repeat the similar calculation at past null infinity (??).

FrA|v→∞ =
log r

r2
v0 F

(log,0)
rA +O(

1

r2
) .

• We show that :

F
(2,log)
rA (x̂) | I+

−
= F

(log,0)
rA (−x̂) | I−+ .

This law was suggested by Campiglia and Laddha. We proved
it. This is the m = 1 conservation law.
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Asymptotic dynamics including subsubleading term

• Asymptotically particles accelerate under long range force and
radiate.

• This radiation backreacts on the particles and corrects the
trajectory of matter particles.

mi
∂2xµi
∂τ2

= ei F
µν(τ) V cor

iν (τ).

Substituting Fµν ∼ O(e3) :

mi
∂2xµi
∂τ2

∼ e2

τ2
+ e4 log τ

τ3
+ · · · .
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Asymptotic dynamics including subsubleading term

Thus, asymptotic trajectories of the particles are corrected to :

xµi = V µ
i τ + cµi log τ + di + fiσ

log τ

τ
,

where

f µi = −
n∑

i=n′+1,
i 6=j

mim
2
j

QiQj

2

[
3mimjpj .ci

(pi .pj p
µ
i + m2

i p
µ
j )

[(pi .pj)2 −m2
i m

2
j ]5/2

+
[pi .pj c

µ
i − (pi .pj c

µ
j − pj .ci p

µ
j )]

[(pi .pj)2 −m2
i m

2
j ]3/2

]
.



O(e5) fall offs in the field strength

• Including the O(e5) terms around future null infinity :

F 3
rA|u→−∞ = u2 F

(3,−2)
rA + u log u F

(3,−1)
rA + (log u)2 F

(3,log2)
rA + ... .

• Expansion around the past null infinity is given by :

FrA|v→∞ =
log r

r2
v0 F

(log,0)
rA +

(log r)2

r3
v0 F

(log2,0)
rA +O(

1

r2
) .

• We proved following O(e5) conservation law :

F
(3,log2)
rA (x̂)|I+

−
= F

(log2,0)
rA (−x̂)|I−+ .

This is the m = 2 conservation law.
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Summary so far

We have established conservation laws for following modes of FrA :

O(e3) :
log u

r2
and

log r

r2
.

O(e5) :
(log u)2

r3
and

(log r)2

r3
.



mth order asymptotic conservation laws

• We expect these conservation laws to exist for all m-modes of
FrA :

O(e2m+1) :
(log u)m

rm+1
and

(log r)m

rm+1
.

Proved for m = 1, 2, 3.



Concluding Part 1

• Classical theory admits a set of conservation laws (m = 1, 2, 3) :

Q+
m [Y +

m ] | I+
−

= Q−m [Y−m ] | I−+ .

• Next we will discuss the implications of these Qm charges in the
quantum theory.



Part 2

• Strominger and his colloborators have established a
correspondence between asymptotic conservation laws and soft
theorems.

• Q1-conservation law is equivalent to the Sahoo-Sen logω soft
theorem.
• We expect higher Qm’s also to be related to soft theorems.
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Soft theorems

Let us go back to the quantum theory.

lim
ω→0

Ampn+1(pi , k) =
[S0

ω
+ Slog logω + ...

]
Ampn(pi ).

• The subleading term can be isolated as follows :

lim
ω→0

ω ∂2
ω ω Ampn+1 = Slog Ampn.

Our next goal is to reproduce this soft theorem from
Q1 conservation law for massless scalar QED.
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Massless scalar QED

lim
ω→0

ω ∂2
ω ω Ampn+1 = Slog Ampn.

We have for massless hard particles :

Slog = − 1

4π2

∑
i ,j
i 6=j

e2
i ej

εµkρ
pi .k

pi [µ∂iρ] log[pi .pj ].

• Let us construct the asymptotic charge Q1 for massless scalar
QED.

• The charge gets contribution from the dressing of massless scalar
field under electromagnetic force.



Asymptotics of free massless scalar

• Free equation of motion of the scalar is :

�φ(x) = 0.

• Around future null infinity :

φ(u, r , x̂) =
1

r
φ1(u, x̂) +

1

r2
φ2(u, x̂) + ... .

• φ1(u, x̂) = −i
8π2

∫
dω [b(ω, x̂) e−iωu − d†(ω, x̂) e iωu ].



Long range force on massless scalar field

The dominant effect of electromagnetic coupling is given by :

�φ = −2ie
A1
r (x̂)

r
∂uφ.

Ar =
A1
r

r
+ ... .

The solution of above equation is given by :

φ(x) =
−i

8π2r
e iA

1
r (x̂) log r

∫
dω [b e−iωu − d† e iωu ].



Corrections to U(1) current

• Currents get corrections due to the dressing :

jA = ieφDAφ
∗ − ieφ∗DAφ,

=
j2
A

r2
+

log

jA
log r

r2
+ ...

log

jA ∼ e2 ∂AA
1
r (bb† + dd†).

• The logarithmic mode contributes to the charge.



Asymptotic charge
The Q1-conservation law :

2,log

FrA (x̂) | I+
−

=
log,0

FrA (−x̂) | I−+ .

• The charge is defined as follows :

Q+[Y ] = −
∫

d2z Y A
2,log

FrA | u→−∞

= −
∫
I+

du d2z Y A∂u [u2∂2
u

2
F rA] −

∫
d2z Y A

2,log

FrA | u→∞

• Qsoft
+ [Y ] = −

∫
du d2z Y A∂u [u2∂2

u

2
F rA]

• Qhard
+ [Y ] = −

∫
d2z Y A

2,log

FrA | u→∞
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Soft charge

Qsoft
+ = −

∫
du′ d2z ′ Y A(x̂ , x̂ ′)∂u′ [u′2∂2

u′F
2
rA(x ′)]

• Let us choose

Y z(x̂ , x̂ ′) =
√

2(1 + z ′z̄ ′)
z ′ − z

z̄ ′ − z̄
, Y z̄ = 0.

Using Maxwell’s equations we get,

Qsoft
+ = −i lim

ω→0
ω ∂2

ω ω a−(ω, x̂).

• Above operator picks out coefficient of logω.
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Ward identity

• Ward identity takes following form :[
Q1 , S

]
= 0[

Qsoft , S
]

= −
[
Qhard , S

]

• Qsoft inserts soft photon.

• Qhard acts on the states and produces the soft factor Slog.



Hard charge

• Using Maxwell’s equations, we get :

Qhard
+ = −

∫
du′d2z ′

qν εµ−
q.q′

q′[µ D ′Aq′ν] j
log
A ,

=
∑
i

e2
i

qν εµ−
q.qi

qi [µ∂iν] A
1
r (xi ).

• We recall that A1
r is the dressing of massless scalar field under

electromagnetic force.

• A sidepoint : when we incorporate gravity then above
expression gets corrected according to A1

r → A1
r + h1

rr . h1
rr is

the dressing of massless scalar field under gravitational force.

• It is interesting to note that the hard charge is directly related
to the dressing of fields under long range forces.
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Qhard
+ = −

∫
du′d2z ′

qν εµ−
q.q′

q′[µ D ′Aq′ν] j
log
A ,

=
∑
i

e2
i

qν εµ−
q.qi

qi [µ∂iν] A
1
r (xi ).

• We recall that A1
r is the dressing of massless scalar field under

electromagnetic force.

• A sidepoint : when we incorporate gravity then above
expression gets corrected according to A1

r → A1
r + h1

rr . h1
rr is

the dressing of massless scalar field under gravitational force.

• It is interesting to note that the hard charge is directly related
to the dressing of fields under long range forces.



Ward identity

• So, we have following expressions :

Qsoft
+ = −i lim

ω→0
ω ∂2

ω ω a−(ω, x̂),

Qhard =
∑
i

e2
i

qν εµ−
q.qi

qi [µ∂iν] A
1
r (xi ). (2)

• The Ward identity (??) :[
Qsoft , S

]
= −

[
Qhard , S

]
.



Ward identity

lim
ω→0

ω ∂2
ω ω Ampn+1(pi , k)

=− 1

4π2

∑
i

e2
i

qν εµ

q.pi
pi [µ∂iν]

∑
j ,j 6=i

ej log pi .pj Ampn.

• This reproduces the Sahoo-Sen soft theorem.

• Q1-conservation law ↔ logω soft photon theorem.



Outlook - Strominger’s triangle

• 1-loop exact logω soft theorem [Sahoo, Sen].

• Tail memory effect [Laddha, Sen].

• Asymptotic conservation law for Q1.
(The underlying symmetry not clear yet.)



For m > 1

• Qm charges which are O(e2m+1) are expected to be related to
m-loop soft factors.

• These soft theorems have not been studied for m > 1.



For m > 1

• It can be argued that Qm-conservation laws are related to
following terms in soft expansion of loop amplitudes :

lim
ω→0

Ampn+1(pi , k) =
[S0

ω
+
∑
m

Sm ωm−1 logωm + ...
]
. (3)

• These mth level soft photon theorems for quantum amplitudes
have not been explored for m > 1.

• In the paper, we have proved the classical version of soft
theorems for m = 2, 3, 4.

(??)
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Conclusion

• A new set of Qm-conservation laws (m = 1, 2, 3). Charges are
O(e2m+1) and tied to long range forces.

• Expected to be related to soft theorems for loop amplitudes.
We demonstrated the equivalence for m = 1.

• There is compelling evidence that this structure holds for all
m’s. So there are many interesting questions that need to be
explored.
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THANK YOU !



Comparison between future and past solutions (??)

• The retarded root of the delta function is

τ0 = −Vi .(x − di )−
[

(Vi .x − Vi .di )
2 + (x − di )

2
]1/2

. (4)

• Around future :

τ0|I+ =
u

(V 0
i − x̂ .Vi )

+O(
1

r
).

• Around past :

τ0|I− = −2r (V 0
i + x̂ .Vi ) +O(r0).



A1
r - classical

• In Lorenz gauge, the mertric perturbations satisfy �Aµ = −jµ.
So,

Aµ(xν) =
1

π

∫
d4x ′ δ

(
(x − x ′)2

)
Θ(t − t ′) jµ(x ′).

• We get :

A1
r (x̂) = − 1

2π

∑
j

ej . (5)



A1
r - quantum (??)

• There is a quantum mode in photon such that :

A1
r (x̂) = − 1

2π2

∑
j

ej log q.pj .



A1
r - quantum

A generic homogenous solution in Lorenz gauge can be written as :

Aµ(x) =

∫
d2q′

[
ε−µ Ȧz(u = x · q′, q̂′) + ε+

µ Ȧz̄(u = x · q′, q̂′)
]
(6)



A1
r - quantum

Ar (x) =

∫
d2z ′

[
ε−.q Ȧzz(u = r q.q′, q̂′) + ... ] .

Thus, 1/r term in Ar needs a log u term in AB .

• But, classically we have

A0
B =

0,0

AB u0 +
0,1

AB
1

u
+ ... .

• This is consistent with the usual radial gauge choice.



log u term in photon field

A(u) =
1

2π

∫ ∞
−∞

dω Ã(ω) e−iωu.

• If around ω = 0,

Ã(ω) ∼
Ã0
±
ω

+ ... .

then,

A(u)|u→∞ =
1

2π
[ Ã0

+ − Ã0
− ] log u−1 + ... .



log u term in photon field

• Now, [Ã]+ involves annihilation operator : a(ω, x̂)
[Ã]− involves creatuion operator : a†(ω, x̂)

• So, we get :

A(u, x̂) = − 1

2π

[
Ã0

+(x̂)− Ã0
−(x̂)

]
log |u|+ ... ,

= − 1

2π
lim
ω→0

ω[a(ω, x̂) + a†(−ω, x̂)] log |u|+ ... .



Classical soft theorems

Classical soft theorems were studied in Prof Ashoke Sen’s talk.
These are statements about universal terms in soft limit of classical
radiative field.

We calculate the soft limit of the radiative field generated in a
general scattering process :

lim
ω→0

εµÃµ(ω)

=
[S0

ω
+ Sclass

1 logω + Sclass
2 ω(logω)2 + Sclass

3 ω2(logω)3 + ...
]
.(7)

S0 and S1 terms are already known.

• Sm are O(e2m+1).

• Sm are related to Qm charges. (??)



Log ω soft theorem

• Slog has 2 parts. A part that survives in the classical limit.

Sclass
log =

i

4π

∑
ηiηj=1
i 6=j

e2
i ej

εµqν

(q.pi )
m2

i m
2
j pi [µ∂iν]

pi .pj√
(pi .pj)2 −m2

i m
2
j

• This term appears in the soft radiation emitted in a classical
scattering.
• Important to note that this term vanishes for massless particles.



Log ω soft theorem

• The other part is purely quantum and does not appear in
classical physics.

Squan
log = − 1

8π2

∑
i 6=j

e2
i ej

εµqν

(q.pi )
pi [µ∂iν]

f (pi , pj)√
(pi .pj)2 −m2

i m
2
j

• The exact form of this expression is not important for us.
Interesting to note the relative factor of i between two terms.


