

Two Statistical Challenges in Classification of Variable Sources

James Long

Texas A&M University

March 21, 2017

ICTS "Time Series Analysis for Synoptic Surveys and Gravitational Wave Astronomy"

Background on Automated Variable Star Classification

Example: CART Classifier Applied to OGLE

Challenge 1: Controlling Computational Costs in Feature Extraction

Challenge 2: Post Classification Inference

Background on Automated Variable Star Classification

Example: CART Classifier Applied to OGLE

Challenge 1: Controlling Computational Costs in Feature Extraction

Challenge 2: Post Classification Inference

Overview of Statistical Classification

Key Terms:

- training data: lightcurves of known class
- unlabeled data: lightcurves of unknown class

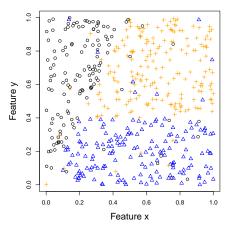
Steps in Classification:

- 1. **feature extraction:** derive quantities from light curves useful for separating classes, eg period, amplitude, derivatives, etc.
- 2. classifier construction: using training data, construct function

$$\widehat{\mathcal{C}}(features) \rightarrow class$$

3. apply classifier: for unlabeled data, compute features and predict class using $\widehat{\mathcal{C}}$

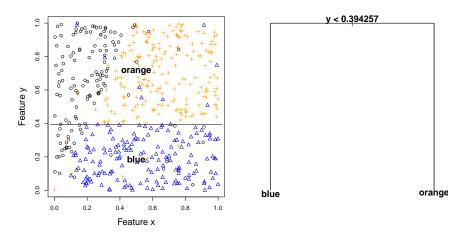
Classifier Construction using CART



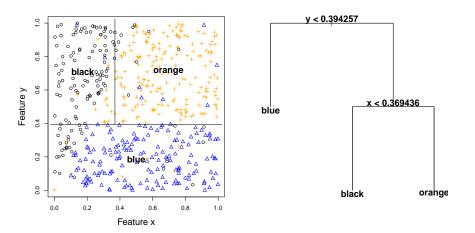
- Classification and Regression Trees (CART) developed in 1980s
- recursively partitions feature space
- partition represented by tree

Breiman et al. 1984 "Classification and regression trees"

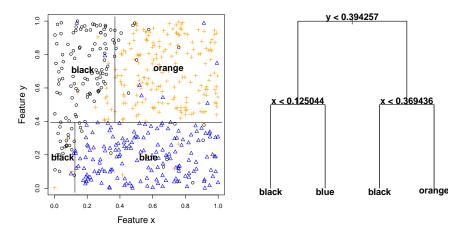
Building CART Tree . . .



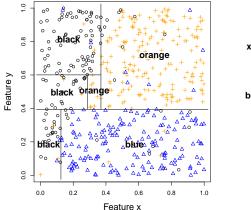
Building CART Tree . . .

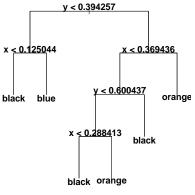


Building CART Tree . . .



Resulting Classifier





Test Data: Data used to evaluate classifier accuracy. Test data is not used to construct classifier.

Confusion Matrix: Rows are true class of test data. Columns are predicted class of test data. Entries are counts.

	Predicted			
Truth	black	blue	orange	
black	23	1	7	
blue	2	30	2	
orange	3	1	31	

Background on Automated Variable Star Classification

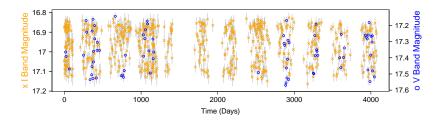
Example: CART Classifier Applied to OGLE

Challenge 1: Controlling Computational Costs in Feature Extraction

Challenge 2: Post Classification Inference

Optical Gravitational Lensing Experiment (OGLE)

- ► 400,000 + variable sources in LMC, SMC, Galactic Bulge
- typically hundreds of epochs in I, dozens in V
- ► 10 year + baseline



OGLE Variable Source Catalog: http://ogledb.astrouw.edu.pl/~ogle/CVS/

OGLE Classification Example

Classes

- Mira O–rich
- Mira C–rich
- Cepheid
- RR Lyrae AB
- RR Lyrae C

Features

- period (of best fitting sinusoid)
- ▶ amplitude = 95^{th} percentile mag 5^{th} percentile mag
- skew of magnitude measurements
- p2p_scatter¹

¹Dubath et al. 2011 "Random forest automated supervised classification of Hipparcos periodic variable stars" MNRAS

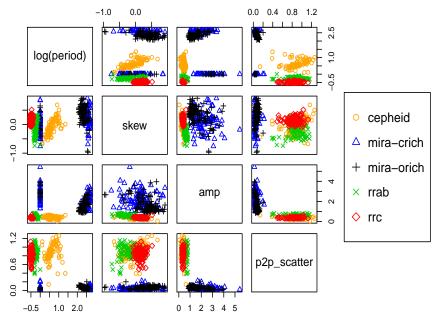
First 6 Rows of Feature–Class Dataframe

period	skew	amp	p2p_scatter	class
1.6128497	-0.5009063	0.56050	0.8672024	cepheid
0.6394983	0.3022388	0.35675	0.7523166	rrab
0.6433533	0.3200730	0.33730	0.8554517	rrab
0.4954661	-0.2053132	0.42000	0.7560226	rrab
0.3540801	0.1361693	0.34340	0.9215426	rrc
0.5460332	-0.3863142	0.69600	1.0682803	rrab

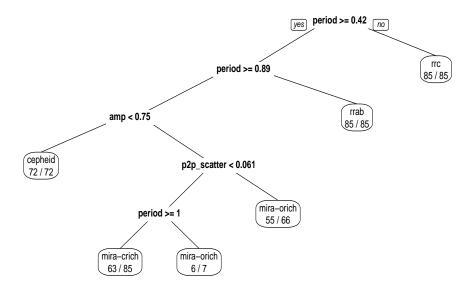
500 total rows. 5 classes.

training data: 400 randomly selected rows test data: remaining 100 rows

Feature Distributions



CART Model Fit To Training Data



Confusion Matrix using Test Data

	Predicted				
Truth	cepheid	mira-crich	mira-orich	rrab	rrc
cepheid	24	0	0	0	0
mira-crich	0	15	10	0	0
mira-orich	0	5	12	0	0
rrab	1	0	0	14	0
rrc	0	0	0	1	14

Conclusion: Develop features to better separate O/C-rich Mira.

Note: CART is interpretable (not black box) but not particularly accurate. Forms basis for Random Forests.²

²Breiman 2001. "Random forests" Machine learning

Background on Automated Variable Star Classification

Example: CART Classifier Applied to OGLE

Challenge 1: Controlling Computational Costs in Feature Extraction

Challenge 2: Post Classification Inference

Features and Computation Time

feature	computation time / l.c.	
colors	≈ 0	
Stetson–J ³	≈ 0	
period (best fitting sine) ⁴	5 seconds	
Mira Gaussian Process model ⁵	20 sec	
RR Lyrae template goodness–of–fit ⁶	30 minutes	
generative model posterior probabilities	ask David Jones	
i	:	

Computational limitations prevent extracting all features for all sources.

³Stetson 1996 "On the automatic determination of light-curve parameters for cepheid variables" PASP

⁴Vanderplas 2015 "Periodograms for multiband astronomical time series" ApJ

⁵He 2016 "Period Estimation for Sparsely Sampled Quasi-periodic Light Curves Applied to Miras" ApJ

⁶Sesar 2016 "Machine-learned Identification of RR Lyrae Stars from Sparse, Multi-band data: The PS1 Sample"

Minimizing Feature Computations

Common Solution:

- 1. compute cheap features for all sources
- 2. build a simple classifier
- 3. select "interesting objects"
- 4. compute more expensive features on interesting objects, build classifier

Example: Variable versus non-variable

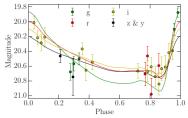
- 1. compute Stetson J, other variability metrics
- 2. make cuts on variability metrics
- 3. compute more expensive features on objects classified as variables

Multiple Iterations: RR Lyrae in Pan-STARRS

Example: Sesar 2016

Goal: Find RR Lyrae among 500 million Pan-STARRS objects

- ► <u>Classifier 1</u>: identified variables using Stetson J, other metrics
- <u>Classifier 2</u>: extracted "simple" features (multiband period estimator, amplitude, etc.) on variables, built classifier
- <u>Classifier 3</u>: extracted computationally intensive features (eg RRL template fits) on high probability RRL candidates from Classifier 2, built classifier



Sesar 2016 "Machine-learned Identification of RR Lyrae Stars from Sparse, Multi-band data: The PS1 Sample"

Formalizing this Framework

Standard Setting

- *l* is light curve
- f(l) = X is features for light curve l
- Z is class of l
- \widehat{C} is classifier

Train classifier \widehat{C} to

maximize
$$P(\widehat{C}(f(l)) = Z)$$

Controlling Feature Extraction Computational Cost

- classifier \widehat{C} chooses which features to compute
- $\blacktriangleright\ \widehat{C}$ outputs predicted class \widehat{Z} and feature extraction time T

$$C(l) = (\widehat{Z}, T)$$

Train classifier \widehat{C} to

maximize $P(\widehat{C}(l)_1 = Z)$ subject to $\mathbb{E}[\widehat{C}(l)_2] < t_0$

Result

 $pprox Nt_0$ time to classify N objects

Question: Has this been studied in the statistics / ML literature?

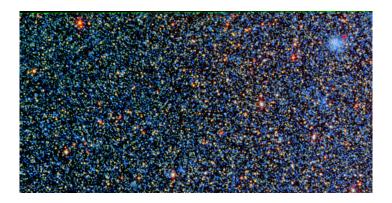
Background on Automated Variable Star Classification

Example: CART Classifier Applied to OGLE

Challenge 1: Controlling Computational Costs in Feature Extraction

Challenge 2: Post Classification Inference

What are the distances to these objects?



Problem:

brightness $\propto \frac{\text{luminosity}}{\text{distance}^2}$

Only brightness can be directly measured.

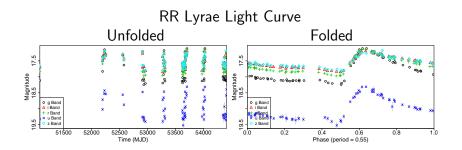
Image Source: DES Collaboration

Standard Candle: Class of objects with same luminosity

- Know absolute luminosity of standard candle.
- Determine object is standard candle and estimate its brightness.
- Solve for distance.

RR Lyrae (RRL): Standard candle variable star

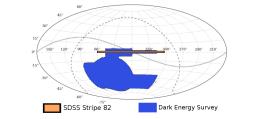
► All RR Lyrae have (approximately) same luminosity



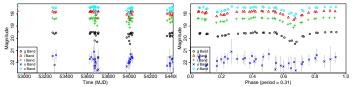
Standard candle: Distance to this star is proportional to mean magnitude, after accounting for <u>dust</u> and <u>PL relation</u>.

Sloan Digital Sky Survey (SDSS) III – Stripe 82

- Discovered $\approx 60,000$ variable stars
- $\blacktriangleright \approx 250$ brightness measurements / star
- variables belong to many classes



Example Light Curve: Eclipsing Binary (Unfolded and Folded)



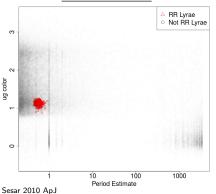
Ivezic 2007 "Sloan Digital Sky Survey Standard Star Catalog for Stripe 82: The Dawn of Industrial 1% Optical Photometry" ApJ. 28 / 32

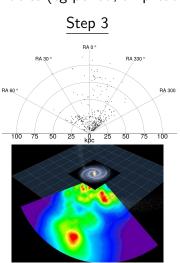
Identifying RRL, Mapping MW Halo with SDSS

Sesar 2010:

- 1. extracted features for $\approx 60,000$ variables (eg period, amplitude)
- 2. identified ≈ 350 RR Lyrae
- 3. estimated distances to RRL

Steps 1 and 2

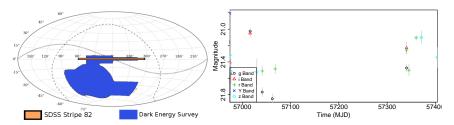




Mapping the Galactic Halo with DES

Dark Energy Survey (DES)

- ▶ ongoing survey (started 2013, 5 years of planned observing)
- ▶ 5000 square degrees ($\approx 1/9^{th}$ entire sky)
- depths to 24 mag in i
- 68 million stars
- ▶ \approx 10 observations in each filter (g,i,r,z,Y) over five years



DES is deeper and wider but sparsely sampled.

See: Sesar 2016 "Machine–learned Identification of RR Lyrae Stars from Sparse, Multi–band data: The PS1 Sample" for similar work using Pan–STARRS 30/32

Complicated, Multilevel Inference Process

Steps in Inference Process:

- 1. classify stars as RR Lyrae
- 2. estimate distances to stars classified as RR Lyrae
- 3. estimate intensity maps of distribution of matter in MW halo

Can machine learning methods propagate uncertainty through all of these steps?

A Framework for Statistical Inference in Astrophysics

Chad M. Schafer

Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; email: cschafer@cmu.edu

Discusses multistage aspect of several astrostatistics problems.

Thank you. Questions?