A hybrid geometric-random template placement algorithm for gravitational wave searches from compact binary coalescences

> Soumen Roy, Anand S. Sengupta, Nilay Thakor IIT Gandhinagar Mar 23, 2017

Templated matched filtering

$$\langle s | h(\vec{\lambda}) \rangle_{\Delta t} = 4 \operatorname{Re} \int_{f_{\text{low}}}^{f_{\text{high}}} \frac{\tilde{s}^*(f) \ \tilde{h}(f;\vec{\lambda})}{S_n(f)} e^{-2\pi i f \,\Delta t} \ df \\ \langle h(\vec{\lambda}) | h(\vec{\lambda} + \Delta \vec{\lambda}) \rangle = 1 - g_{\mu\nu} \Delta \lambda^{\mu} \Delta \lambda^{\nu}$$

$$g_{\mu\nu} = \frac{1}{2} \frac{\partial^2 \langle h(\vec{\lambda}) \left| h(\vec{\lambda} + \Delta \vec{\lambda}) \rangle }{\partial \Delta \lambda^{\mu} \, \partial \Delta \lambda^{\nu}} \right|_{\Delta \vec{\lambda} = 0}$$

Art of template placement

Maximise inter-template separation without violating the constraint on minimal match of the bank.

Geometrical template placement can be mapped to a sphere-packing problem with overlap using cells of radius $\sqrt{1-\mathcal{M}_{\min}}$

$$g_{\mu\nu}\Delta\lambda^{\mu}\Delta\lambda^{\nu} = 1 - \mathcal{M}_{\min}$$

"Spherical" cell at some point in λ

Two ways of template placement

Geometric:

Stochastic:

Start with empty bank and build it up from random proposals, for each proposal calculate fitting factor

$$FF = \max_{\lambda \in B_0} \mathcal{M}(\lambda, \lambda - \lambda^{\text{prop}})$$

The three dimensional sphere packing

What is the optimal way to fill a three dimensional space with cells of equal volume to achieve the minimum interfacial area? --1887 Lord Kelvin

Truncated octahedrons:

Dirichlet-Voronoi polytopes of the body-centred A₃* lattice

Packing in curved space

Calculate ellipsoid neighborhood position using rotation and scaling matrix from the metric

$$\bar{N}_i^p = \sum_{j,k=1}^3 \mathcal{R}_{ij}^T \mathcal{S}_{jk} N_k^p$$

Parameter Space

Bank Parameter	Set-I	Set-II
Waveform model	TaylorF2RedSpin	TaylorF2RedSpin
Noise model	aLIGOZeroDetHighPower	aLIGOZeroDetHighPower
Lower cut-off frequency f_{low}	20 Hz	30 Hz
Higher cut-off frequency f_{high}	2048 Hz	1024 Hz
Mass of first object m_1	$[1,20]{ m M}_{\odot}$	$[3, 15] \mathrm{M}_{\odot}$
Mass of second object m_2	$[1,3]{ m M}_{\odot}$	$[1,3]{ m M}_{\odot}$
Spin of first object χ_1	[-0.98, 0.98]	[-0.6, 0.6]
Spin of second object χ_2	[-0.4, 0.4]	[-0.05, 0.05]
Size of \mathcal{R}_{ℓ}	$[1-8] \times 10^7$	1×10^7
Minimal Match \mathcal{M}_{\min}	0.97	0.97

Template density normalized by

 $||g_{ij}||$

Final results for various banks

Bank Parameters	Placement Algorithm	Size of	Bank Size	Execution	Comments	
		\mathcal{R}_ℓ		Time (min)		
Set-I of Table I	Geometric-Random	1×10^7	694, 422	375	25% fewer templates	
		2×10^7	749,705	482	$\times (8-10)$ faster	
		3×10^7	777, 113	616		
		4×10^7	798,269	885		
		5×10^7	812,570	990		
		6×10^7	824, 541	1191		
		8×10^7	843,177	1712		
	Vanilla-Stochastic		939,787	3666		
Set-II of Table <mark>I</mark>	Geometric-Random	1×10^7	107,547	69		
	Vanilla-Stochastic		134,563	762	25% fewer templates	
	A_3^* seeded Stochastic		128, 185		×11 iaster	

Future Research

- Implementation in higher dimension.
- Construction of template bank using IMR signal model.