	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	
000000 0000 000	000 000000 00	0000000000 000000 0000000000	0000000 00000000000000000 000000000000	00

Higher Spin and Yangian

Wei Li

Institute of Theoretical Physics, Chinese Academy of Sciences

AdS/CFT 20 ICTS, 2018/05/23

ntro	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	
00000 0000	000 000000	0000000000 000000	0000000 0000000000000000000000	00000
000	00	0000000000	000000000000000	

Reference

1. Higher Spins and Yangian Symmetries

JHEP **1704**, 152 (2017), [arXiv:1702.05100] with Matthias Gaberdiel, Rajesh Gopakumar, and Cheng Peng

- Twisted sectors from plane partitions
 JHEP 1609, 138 (2016), [arXiv:1606.07070]
 with Shouvik Datta, Matthias Gaberdiel, and Cheng Peng
- 3. The supersymmetric affine yangian JHEP in press, [arXiv:1711.07449] with Matthias Gaberdiel, Cheng Peng, and Hong Zhang
- 4. Twin plane partitions and $\mathcal{N} = 2$ affine yangian (to appear)

with Matthias Gaberdiel and Cheng Peng

Intro	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	
00000	000	0000000000	0000000	
0000	000000	000000	00000000000000000	
000	00	000000000	000000000000	

Motivations

Motivation-1 (conceptual, vague)

Higher spin symmetry and integrability are both (large) symmetry structures of string theory. Relations? Unification?

Motivation-2 (practical, concrete)

 \mathcal{W}_∞ is ubiquitous, but computationally unwieldy. Better formulation?

Intro
000000
0000
000

Plane Partition 00000000000 000000 0000000000 Summary 00000 0000

Motivation-1: What is the hidden stringy symmetry?

Intro	
000000	D
0000	
000	

Plane Partition 00000000000 000000 0000000000

Summary 00000 0000

Intro	
000000	D
0000	
000	

Plane Partition 00000000000 000000 00000000000 Summary 00000 0000

Intro	
000000)
0000	
000	

Plane Partition 00000000000 000000 00000000000 Summary 00000 0000

Intro	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian
000000	000	0000000000	0000000
0000	000000	000000	00000000000000000
000	00	000000000	000000000000

Today

æ

Intro	
00000	
0000	

Plane Partition 00000000000 000000 0000000000

Summary 00000 0000

Today : higher spin AdS_3/CFT_2

Intro	
000000	
0000	

Plane Partition 00000000000 000000 00000000000 Summary 00000 0000

A concrete relation between HS and integrability

Intro
000000
0000
000

Plane Partition 00000000000 000000 0000000000 Summary 00000 0000

Motivation-2: plane partition is useful for \mathcal{W}_∞

Intro	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 •00	000 000000 00	0000000000 000000 0000000000	0000000 00000000000000000 000000000000	00000

Two questions

- 1. Supersymmetrize \triangle ?
- 2. \triangle as lego pieces for new VOA/affine Yangian?

4 3 > 4 3 >

Intro	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 •00	000 000000 00	00000000000 000000 0000000000	0000000 00000000000000000 000000000000	00000

Two questions

- 1. Supersymmetrize \triangle ?
- 2. \triangle as lego pieces for new VOA/affine Yangian?

A surprising (partial) answer

Glue two riangle to get $\mathcal{N}=2$ version of riangle

3 > < 3 >

Intro	
00000	
0000	
000	

Plane Partition 00000000000 000000 00000000000 Summary 00000 0000

New Yangian algebra from W algebra

Intro	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	0000000000 000000 000000000	0000000 00000000000000000 000000000000	00000

Outline

Intro

W and affine Yangian

Plane Partition

 $\mathcal{N}=2$ affine Yangian

Summary

∃ → (∃ →

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	• 00 000000 00	0000000000 000000 000000000	0000000 000000000000000000000000000000	00000
Higher spin in Ad	IS ₃			

Outline

Intro

W and affine Yangian

Plane Partition

 $\mathcal{N}=2$ affine Yangian

Summary

A B < A B </p>

Ir	

Higher spin in AdS₃

W and affine Yangian

Plane Partition 00000000000 000000 00000000000 Summary 00000 0000

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	
000000 0000 000	000 000000 00	0000000000 000000 0000000000	0000000 00000000000000000 000000000000	

Summary 00000 0000

Higher spin in AdS₃

Higher spin symmetry and stringy symmetry

String theory has infinite number of massive higher spin particles

3 K K 3 K

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	
	000			
0000	000000	000000	000000000000000000000000000000000000000	
000	00	000000000	0000000000000000	
Higher spin in	AdS ₂			

Summary 00000 0000

Higher spin symmetry and stringy symmetry

- String theory has infinite number of massive higher spin particles
- Tensionless limit:

massive higher spin particle \Longrightarrow massless \Longrightarrow stringy symmetry

 subalgebra: Vasiliev higher spin symmetry (one per spin) (from Leading Regge trajectory)
 Vasiliev '91

Sundborg '01, Witten '01, Mikhailov '02, Klebanov-Polyakov '02

< 3 > < 3 >

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	
000000	000	0000000000	0000000	
0000	000000	00000000000	000000000000000000000000000000000000000	
Higher spin in	AdS ₂			

Summary 00000 0000

Higher spin symmetry and stringy symmetry

- String theory has infinite number of massive higher spin particles
- Tensionless limit:

massive higher spin particle \Longrightarrow massless \Longrightarrow stringy symmetry

 subalgebra: Vasiliev higher spin symmetry (one per spin) (from Leading Regge trajectory) Vasiliev '91

Sundborg '01, Witten '01, Mikhailov '02, Klebanov-Polyakov '02

► Tensionless String in AdS₃ ⇒ maximal stringy symmetry?

Gaberdiel Gopakumar '15

• higher spin symmetry $\implies \mathcal{W}$ symmetry

(Virasoro + higher spin currents)

イロト イヨト イヨト イヨト

Campoleoni Fredenhagen Pfenninger Theisen '10, Henneaux Rey '10

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	00000000000 000000 000000000	0000000 00000000000000000 000000000000	00000
Affine Yangian				

Modes of $\mathcal{W}_{1+\infty}$

$W^{(s)}(z) = \sum_{n \in \mathbb{Z}} \frac{W_n^{(s)}}{z^{n+s}} \qquad s = 1, 2$	$,3,\ldots$
--	-------------

•	•	•	•	•	•	•		-	•	•	
•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	
spin-5		X_{-4}	X_{-3}	X_{-2}	X_{-1}	X_0	X_1	X_2	X_3	X_4	
spin-4		U_{-4}	U_{-3}	U_{-2}	U_{-1}	U_0	U_1	U_2	U_3	U_4	
spin-3		W_{-4}	W_{-3}	W_{-2}	W_{-1}	W_0	W_1	W_2	W_3	W_4	
spin-2		L_{-4}	L_{-3}	L_{-2}	L_{-1}	L_0	L_1	L_2	L_3	L_4	
spin-1		J_{-4}	J_{-3}	J_{-2}	J_{-1}	J_0	J_1	J_2	J_3	J_4	

(日) (圖) (圖)(注)(注)

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 00000 00	0000000000 000000 000000000	0000000 00000000000000000 000000000000	00000
Affine Vangiar				

Regrouping the modes

$$W^{(s)}(z) = \sum_{n \in \mathbb{Z}} \frac{W_n^{(s)}}{z^{n+s}} \qquad s = 1, 2, 3, \dots$$

•	•	•	-	•	•	•	•	•	•
			:	:	:	:	:	:	:
spin-5		X_{-3}	X_{-2}	$X_{-1} \sim e_4$	$X_0 \sim \psi_5$	$X_1 \sim f_4$	X_2	X_3	X_4
spin-4		U_{-3}	U_{-2}	$U_{-1} \sim e_3$	$U_0 \sim \psi_4$	$U_1 \sim f_3$	U_2	U_3	U_4
spin-3		W_{-3}	W_{-2}	$W_{-1} \sim e_2$	$W_0 \sim \psi_3$	$W_1 \sim f_2$	W_2	W_3	W_4
spin-2		L_{-3}	L_{-2}	$L_{-1} \sim e_1$	$L_0 \sim \psi_2$	$L_1 \sim f_1$	L_2	L_3	L_4
spin-1		J_{-3}	J_{-2}	$J_{-1} \sim e_0$	$J_0 \sim \psi_1$	$J_1 \sim f_0$	J_2	J_3	J_4

イロト イヨト イヨト イヨト

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	00000000000 000000 000000000	0000000 00000000000000000 000000000000	00000
Affine Vangiar				

Regrouping the modes

$$W^{(s)}(z) = \sum_{n \in \mathbb{Z}} \frac{W_n^{(s)}}{z^{n+s}} \qquad s = 1, 2, 3, \dots$$

:	:	:	:	:	:	:	:	:	:
spin-5		X_{-3}	X_{-2}	$X_{-1} \sim e_4$	$X_0 \sim \psi_5$	$X_1 \sim f_4$	X_2	X_3	X_4
spin-4		U_{-3}	U_{-2}	$U_{-1} \sim e_3$	$U_0 \sim \psi_4$	$U_1 \sim f_3$	U_2	U_3	U_4
spin-3		W_{-3}	W_{-2}	$W_{-1} \sim e_2$	$W_0 \sim \psi_3$	$W_1 \sim f_2$	W_2	W_3	W_4
spin-2		L_{-3}	L_{-2}	$L_{-1} \sim e_1$	$L_0 \sim \psi_2$	$L_1 \sim f_1$	L_2	L_3	L_4
spin-1		J_{-3}	J_{-2}	$J_{-1} \sim e_0$	$J_0 \sim \psi_1$	$J_1 \sim f_0$	J_2	J_3	J_4

Generators

$$e(z) = \sum_{j=0}^{\infty} \frac{e_j}{z^{j+1}} \qquad \psi(z) = 1 + \sigma_3 \sum_{j=0}^{\infty} \frac{\psi_j}{z^{j+1}} \qquad f(z) = \sum_{j=0}^{\infty} \frac{f_j}{z^{j+1}}$$

イロト イヨト イヨト イヨト

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	00000000000 000000 000000000	0000000 00000000000000000 000000000000	00000
Affine Yangian				

Affine Yangian of \mathfrak{gl}_1

<u>Def:</u> Associative algebra with generators e_j, f_j and $\psi_j, j = 0, 1, ...$

Generators

$$\psi(z) = 1 + (h_1 h_2 h_3) \sum_{j=0}^{\infty} \frac{\psi_j}{z^{j+1}} \qquad e(z) = \sum_{j=0}^{\infty} \frac{e_j}{z^{j+1}} \qquad f(z) = \sum_{j=0}^{\infty} \frac{f_j}{z^{j+1}}$$

- Parameters (h_1, h_2, h_3) with $h_1 + h_2 + h_3 = 0$
- One S_3 invariant function $\varphi(z) = \frac{(z+h_1)(z+h_2)(z+h_3)}{(z-h_1)(z-h_2)(z-h_3)}$
- Defining relations

$$\begin{split} [e(z), f(w)] &= -\frac{1}{h_1 h_2 h_3} \frac{\psi(z) - \psi(w)}{z - w} \\ \psi(z) e(w) &\sim \varphi(z - w) e(w) \psi(z) \qquad \psi(z) f(w) \sim \varphi(w - z) f(w) \psi(z) \\ e(z) e(w) &\sim \varphi(z - w) e(w) e(z) \qquad f(z) f(w) \sim \varphi(w - z) f(w) f(z) \end{split}$$

э

3 K K 3 K

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	00000000000 000000 000000000	0000000 00000000000000000 000000000000	00000
Affine Yangian				

Affine Yangian of \mathfrak{gl}_1

<u>Def:</u> Associative algebra with generators e_j, f_j and $\psi_j, j = 0, 1, ...$

Generators

$$\psi(z) = 1 + (h_1 h_2 h_3) \sum_{j=0}^{\infty} \frac{\psi_j}{z^{j+1}} \qquad e(z) = \sum_{j=0}^{\infty} \frac{e_j}{z^{j+1}} \qquad f(z) = \sum_{j=0}^{\infty} \frac{f_j}{z^{j+1}}$$

- Parameters (h_1, h_2, h_3) with $h_1 + h_2 + h_3 = 0$
- One S_3 invariant function $\varphi(z) = \frac{(z+h_1)(z+h_2)(z+h_3)}{(z-h_1)(z-h_2)(z-h_3)}$

Defining relations

$$\begin{split} & [e(z), f(w)] = -\frac{1}{h_1 h_2 h_3} \frac{\psi(z) - \psi(w)}{z - w} \\ & \psi(z) e(w) \sim \varphi(z - w) e(w) \psi(z) \quad \psi(z) f(w) \sim \varphi(w - z) f(w) \psi(z) \\ & e(z) e(w) \sim \varphi(z - w) e(w) e(z) \quad f(z) f(w) \sim \varphi(w - z) f(w) f(z) \end{split}$$

Initial conditions

$$[\psi_{0,1}, e_j] = 0 \quad [\psi_2, e_j] = 2e_j \quad [\psi_{0,1}, f_j] = 0 \quad [\psi_2, f_j] = -2f_j$$

Serre relation

$$\operatorname{Sym}_{(j_1, j_2, j_3)}[e_{j_1}, [e_{j_2}, e_{j_3+1}]] = 0 \qquad \operatorname{Sym}_{(j_1, j_2, j_3)}[f_{j_1}, [f_{j_2}, f_{j_3+1}]] = 0$$

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 00000 00	00000000000 000000 0000000000	0000000 00000000000000000 000000000000	00000
Affine Yangian				

Affine Yangian of \mathfrak{gl}_1

In terms of modes e_j, f_j and $\psi_j, j = 0, 1, \ldots$

$$\begin{split} 0 = & [\psi_j, \psi_k] \\ \psi_{j+k} = & [e_j, f_k] \\ \sigma_3\{\psi_j, e_k\} = & [\psi_{j+3}, e_k] - 3[\psi_{j+2}, e_{k+1}] + 3[\psi_{j+1}, e_{k+2}] - [\psi_j, e_{k+3}] \\ & + \sigma_2[\psi_{j+1}, e_k] - \sigma_2[\psi_j, e_{k+1}] \\ -\sigma_3\{\psi_j, f_k\} = & [\psi_{j+3}, f_k] - 3[\psi_{j+2}, f_{k+1}] + 3[\psi_{j+1}, f_{k+2}] - [\psi_j, f_{k+3}] \\ & + \sigma_2[\psi_{j+1}, f_k] - \sigma_2[\psi_j, f_{k+1}] \\ \sigma_3\{e_j, e_k\} = & [e_{j+3}, e_k] - 3[e_{j+2}, e_{k+1}] + 3[e_{j+1}, e_{k+2}] - [e_j, e_{k+3}] \\ & + \sigma_2[e_{j+1}, e_k] - \sigma_2[e_j, e_{k+1}] \\ -\sigma_3\{f_j, f_k\} = & [f_{j+3}, f_k] - 3[f_{j+2}, f_{k+1}] + 3[f_{j+1}, f_{k+2}] - [f_j, f_{k+3}] \\ & + \sigma_2[f_{j+1}, f_k] - \sigma_2[f_j, f_{k+1}] \end{split}$$

with

$$h_1 + h_2 + h_3 = 0$$
 $\sigma_2 \equiv h_1 h_2 + h_2 h_3 + h_1 h_3$ $\sigma_3 \equiv h_1 h_2 h_3$

Schiffmann Vasserot '12 Maulik Okounkov '12

Feigin Jimbo Miwa Mukhin '10-11

< □ ▷ < □ ▷ < Tsymbaliuk '14</p>

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	
000000	000	0000000000	000000	00000
0000	•0	000000	000000000000000000000000000000000000000	0000

W algebra and affine Yangian

$\mathcal{Y}[\widehat{\mathfrak{gl}_1}] \cong \mathrm{UEA}[\mathcal{W}_{1+\infty}[\lambda]]$

Procházka '15

Gaberdiel Gopakumar Li Peng '17

for q-version $\mathcal{U}[\widehat{\widehat{\mathfrak{gl}}_1}] \cong \mathrm{UEA}[q\text{-}\mathcal{W}_{1+\infty}[\lambda]]$ Miki '07

Feigin Jimbo Miwa Mukhin '10-11

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	0000000000 000000 000000000	0000000 00000000000000000 000000000000	00000

Outline

Intro

W and affine Yangian

Plane Partition

 $\mathcal{N}=2$ affine Yangian

Summary

æ

3 K K 3 K

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	•••••• •••••• •••••••	0000000 00000000000000000 000000000000	00000
PP				

Outline

Intro

W and affine Yangian

Plane Partition

 $\mathcal{N}=2$ affine Yangian

Summary

< E > < E >

э

Intro	
0000	
000	

PP

W and affine Yangian

 Summary 00000 0000

Plane partition as representations of affine Yangian

Intro
0000

PΡ

W and affine Yangian

 Summary 00000 0000

Plane partition via box stacking

Wei Li

AdS/CFT 20 ICTS, 20

(日) (同) (三) (三)

Intro
00000

PΡ

W and affine Yangian

 $\mathcal{N}=2$ affine Yangian

Summary 00000 0000

Stacking 1 box

 $1+q+\cdots$

<ロ> (日) (日) (日) (日) (日)

		Plane Partition		
000000 0000 000	000 000000 00	0000000000 000000 000000000	0000000 00000000000000000 000000000000	00000
DD				

Stacking 2 boxes

$$1+q+3q^2\cdots$$

▲圖▶ ▲ 臣▶ ▲ 臣

Intro
00000

PΡ

W and affine Yangian

Plane Partition 00000000000 000000 0000000000

Summary 00000 0000

Stacking 3 boxes

$$1 + q + 3q^2 + 6q^3 + \cdots$$

AdS/CFT 20 ICTS, 2

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	0000000000 000000 000000000	0000000 00000000000000000 000000000000	00000
PP				

MacMahon function

Generating function of Plane partition

$$\sum_{n=0}^{\infty} M(n)q^n = \prod_{k=1}^{\infty} \frac{1}{(1-q^k)^k}$$

= 1 + q + 3 q^2 + 6 q^3 + 13 q^4 + 24 q^5 + 48 q^6 + ...
$$M(n) \sim n^{-\frac{25}{36}} \cdot \exp\left(\frac{3\zeta(3)^{\frac{1}{3}}}{2^{\frac{2}{3}}}n^{\frac{2}{3}}\right)$$

Wright '31

(日) (同) (三) (三)
	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	0000000000 000000 0000000000	0000000 00000000000000000 000000000000	00000
PP				

MacMahon function

Generating function of Plane partition

$$\begin{split} \sum_{n=0}^{\infty} M(n)q^n &= \prod_{k=1}^{\infty} \frac{1}{(1-q^k)^k} \\ &= 1+q+3\,q^2+6\,q^3+13\,q^4+24\,q^5+48\,q^6+\cdots \\ & M(n)\sim n^{-\frac{25}{36}}\cdot \exp\left(\frac{3\zeta(3)^{\frac{1}{3}}}{2^{\frac{2}{3}}}n^{\frac{2}{3}}\right) \\ & \frac{Wright '31}{2} \end{split}$$

Generating function of partition

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{k=1}^{\infty} \frac{1}{1-q^k}$$

= 1 + q + 2q^2 + 3q^3 + 5q^4 + 7q^5 + 11q^6 + ...
$$p(n) \sim \frac{1}{n} \cdot \exp\left(\sqrt{\frac{2}{3}} \pi \sqrt{n}\right)$$

+ Bardy, Ramanujan '18

Intro 00000 0000 000

PP

W and affine Yangian

 Summary 00000 0000

Plane partition with non-trivial asymptotics

Ground state of $(\Lambda_x, \Lambda_y, \Lambda_z)$

3 🕨 🖌 3

Intro 00000 0000 000

PP

W and affine Yangian

 Summary 00000 0000

Plane partition with non-trivial asymptotics

a level-7 excited states of $(\Lambda_x, \Lambda_y, \Lambda_z)$

Intro
0000

PΡ

W and affine Yangian

 Summary 00000 0000

Stacking 1 boxes

 $1+3q+\cdots$

イロト イ団ト イヨト イヨト

æ

Intro	
0000	

PΡ

W and affine Yangian

Plane Partition 0000000000 000000 0000000000

Summary 00000 0000

Stacking 2 boxes

$$1+3\,q+9\,q^2+\cdots$$

AdS/CFT 20 ICTS, 2

イロト イ団ト イヨト イヨト

2

0000	000
0	000000
	00

Plane Partition

Summary 00000 0000

PP as representions of affine yangian

Plane partitions are faithful representations of $\hat{\mathcal{Y}}(\mathfrak{gl}_1)$

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	0000000000 000000 000000000	0000000 00000000000000000 000000000000	00000
PP as represe	ntions of affine yangian			

Action of $\hat{\mathcal{Y}}(\mathfrak{gl}_1)$ on a plane partition

 $\begin{array}{l} \flat \ \psi(z) \ \text{acts diagonally} \\ \psi(z)|\Lambda\rangle = \psi_{\Lambda}(z)|\Lambda\rangle \\ \\ \psi_{\Lambda}(z) \equiv \left(1 + \frac{\psi_0 \sigma_3}{z}\right) \prod_{\square \in (\Lambda)} \varphi(z - h(\square)) \\ \\ h(\square) = h_1 x(\square) + h_2 y(\square) + h_3 z(\square) \end{array}$

• e(z) adds one box

$$e(z)|\Lambda\rangle = \sum_{\square \in \mathrm{Add}(\Lambda)} \frac{\left[-\frac{1}{\sigma_3} \mathrm{Res}_{w=h(\square)} \psi_{\Lambda}(w)\right]^{\frac{1}{2}}}{z-h(\square)} |\Lambda + \square\rangle$$

• f(z) removes one box

$$f(z)|\Lambda\rangle = \sum_{\square \in \operatorname{Rem}(\Lambda)} \frac{\left[-\frac{1}{\sigma_3} \operatorname{Res}_{w=h(\square)} \psi_{\Lambda}(w)\right]^{\frac{1}{2}}}{z-h(\square)}|\Lambda-\square\rangle$$

Higher Spin and Yangian

	W and affin
00000	000
000	000000
00	00

and affine Yangian 0 0000 Plane Partition

Summary 00000 0000

PP as representions of affine yangian

Plane partition with non-trivial boundary condition

< ロト < 同ト < ヨト < ヨト

	W and affir
00000	000
000	000000
00	00

Plane Partition

イロト イポト イヨト イヨト

Summary 00000 0000

PP as representions of affine yangian

Plane partition with non-trivial boundary condition

character of affine Yangian = generating function of plane partition

	W and affine Yangian		
000000	000		
0000	000000		
PP as representions of affine yangian			

 Summary 00000 0000

æ

	W and af
00000	000
000	000000
00	00

and affine Yangian

Plane Partition

Summary 00000 0000

PP as representions of affine yangian

Plane partition as representations of W

(日) (同) (三) (三)

	W and affir
00000	000
000	000000
00	00

and affine Yangian

Plane Partition

・ロト ・四ト ・ヨト ・ヨト

Summary 00000 0000

PP as representions of affine yangian

Plane partition as representations of W

character of $\mathcal{W}_{1+\infty} {=}$ generating function of plane partition

W and affine Yangian

Plane Partition 00000

 $\mathcal{N}=2$ affine Yangian

PP as representions of affine yangian

Plane partition as representations of W

in Vasiliev

non-perturbative in Vasiliev

new representation

イロト イポト イヨト イヨト

character of $\mathcal{W}_{1+\infty}$ = generating function of plane partition

	С
0000	

W and affine Yangian

Plane Partition

Summary 00000 0000

PP applications

Application

Character computation more transparent

(日) (周) (三) (三)

3

Intro 000000 0000	W and affine Yangian 000 000000	Plane Partition	$\mathcal{N}=2$ affine Yangian 0000000 0000000000000000000000000000	Summary 00000 0000
000 DD analisations		000000000	00000000000000	
PP applications				
\mathcal{S}_3 action	on on \mathcal{W}_{Nk} co	set		
W _M ,	coset			
VVN,k	COSEL	$\sigma_{M}(N), \oplus \sigma_{M}(N),$		
		$\frac{\mathfrak{su}(\mathfrak{l},\mathfrak{l})}{\mathfrak{su}(\mathfrak{l},\mathfrak{l})}$		
		$\mathfrak{su}(N)_{k+1}$		
had h	idden S_3			
		(N, h)		
	σ_1		σ_2	
	$\left(\frac{N}{N+k}, \frac{1-N}{N+k}\right)$		(N, -1 - 2N - k)	
	A		1	
	σ_2		σ_1	
	¥		\checkmark	
	$\left(-\frac{N}{N+L+1}, \frac{N-1}{N+L+1}\right)$		$\left(\frac{N}{N+L}, 1-\frac{N+1}{N+L}\right)$	
	$N+\kappa+1$ $N+\kappa+1$		$(N+\kappa)$ $N+\kappa$	
	σ_1		σ_2	
			`	
		$\left(-\frac{1}{N+k+1}, -\frac{n}{N+k+1}\right)$)	

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ -

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	0000000000 000000 000000000	0000000 00000000000000000 000000000000	00000
PP application	IS			

S_3 action on 't Hooft coupling

 $\mathcal{W}_{N,k}$ coset

 $\mathfrak{su}(N)_k \oplus \mathfrak{su}(N)_1$ $\mathfrak{su}(N)_{k+1}$ 't Hooft coupling $\lambda = \frac{N}{N+k}$ transform under \mathcal{S}_3 $\frac{N}{N+k}$ σ_1 σ_2 $\frac{N}{N+k+1}$ σ_2 σ_1 $\overset{\mathsf{v}}{N}$ $\frac{N}{N+k+1}$ σ_1 σ_2 $\frac{N}{N+k}$ Wei Li Higher Spin and Yangian 45 / 100

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian
000000 0000 000	000 000000 00	0000000000 000000 000000000	0000000 0000000000000000 0000000000000
PD application			

Summary 00000 0000

Triality symmetry for higher spin holography

For fixed c, three $\mathcal{W}_{\infty}[\lambda]$ are isomorphic Gaberdiel Gopakumar '12

Crucial in Higher spin AdS_3/CFT_2 (Vasiliev theory in $AdS_3 = W_{N,k}$ coset)

Wei Li

< ロト < 同ト < ヨト < ヨト

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	
000000 0000 000	000 000000 00	0000000000 000000 0000000000	0000000 00000000000000000 000000000000	
PP applicatio	ns			

• S_3 symmetry in $\mathcal{W}_\infty CFT$ is highly non-trivial

hard to check/prove

Gaberdiel Gopakumar '12, Linshaw '17

- ▶ UV IR
- Manifest in $\mathcal{Y}[\widehat{\mathfrak{gl}_1}]$

(日) (周) (三) (三)

э

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	0000000000 000000 0000000000	0000000 00000000000000000 000000000000	00000
PP application	าร			

 $\mathcal{Y}[\widehat{\mathfrak{gl}_1}]$ depends on (h_1, h_2, h_3) symmetrically

$$h_1 = -\sqrt{\frac{N+k+1}{N+k}}$$
 $h_2 = \sqrt{\frac{N+k}{N+k+1}}$ $h_3 = \frac{1}{\sqrt{(N+k)(N+k+1)}}$

Procházka '15, Gaberdiel Gopakumar Li Peng '17

イロト イヨト イヨト イヨト

æ

Intro	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000	000	0000000000	0000000	00000
0000	000000	0000000000	000000000000000000000000000000000000000	0000
PP application	ns			

$$\mathcal{Y}[\widehat{\mathfrak{gl}_1}]$$
 depends on (h_1,h_2,h_3) symmetrically

$$h_1 = -\sqrt{\frac{N+k+1}{N+k}} \qquad h_2 = \sqrt{\frac{N+k}{N+k+1}} \qquad h_3 = \frac{1}{\sqrt{(N+k)(N+k+1)}}$$

Procházka '15, Gaberdiel Gopakumar Li Peng '17

Under S_3 transformation on (N, k)

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	0000000000 000000 0000000000	0000000 00000000000000000 000000000000	00000
PP application	ns			

\mathcal{S}_3 symmetry of plane partition

The representations of \mathcal{W}_∞ comes in \mathcal{S}_3 family

3 🕨 🖌 3

Intro	
0000	

W and affine Yangian

Plane Partition

Summary 00000 0000

PP applications

Application

Character computation more transparent

(日) (周) (三) (三)

æ

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	0000000000 000000 000000000	0000000 00000000000000000 000000000000	00000
PP application	ne			

- 1. Manifest S_3 symmetry
- 2. Good representation theory
 - manifest S_3 symmetry
 - describe new representations invisible in coset
 - ▶ easier to compute W_{∞} characters via counting boxes Datta Gaberdiel Li Peng '16

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	0000000000 000000 000000000	0000000 00000000000000000 000000000000	00000
PP application	15			

- 1. Manifest S_3 symmetry
- 2. Good representation theory
 - manifest S_3 symmetry
 - describe new representations invisible in coset
 - \blacktriangleright easier to compute \mathcal{W}_∞ characters via counting boxes

Datta Gaberdiel Li Peng '16

3. Connect to integrable structure?

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	00000000000 000000 000000000	•••••• •••••••• ••••••••••••••••••••••	00000
$\mathcal{N}=2~\mathcal{W}_\infty$				

Outline

Intro

W and affine Yangian

Plane Partition

 $\mathcal{N}=2$ affine Yangian

Summary

< E > < E >

2

V and affine Yang	
000	
00000	

 $\mathcal{N} = 2 \mathcal{W}_{\infty}$

Plane Partition 00000000000 000000 00000000000 Summary 00000 0000

Bosonic W and affine Yangian

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	00000000000 000000 000000000	0000000 000000000000000000000000000000	00000
$\mathcal{N} = 2 \ \mathcal{W}_{\infty}$				

Two questions

- 1. Supersymmetrize \triangle ?
- 2. \triangle as lego pieces for new VOA/affine Yangian?

.⊒ . ►

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	00000000000 000000 000000000	0000000 000000000000000000000000000000	00000
$\mathcal{N}=2 \ \mathcal{W}_{\infty}$				

Two questions

- 1. Supersymmetrize \triangle ?
- 2. \triangle as lego pieces for new VOA/affine Yangian?

A surprising (partial) answer

Glue two \bigtriangleup to get $\mathcal{N}=2$ version of \bigtriangleup

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	0000000000 000000 0000000000	0000000 000000000000000000000000000000	00000
$\mathcal{N} = 2 \ \mathcal{W}_{\infty}$				

Two questions

1. Supersymmetrize \triangle ?

2. \bigtriangleup as lego pieces for new VOA/affine Yangian?

Gaiotto Rapcak '17, Rapcak Prochazka '17

A surprising (partial) answer

Glue two \triangle to get $\mathcal{N}=2$ version of \triangle

Gaberdiel Li Peng Zhang'17

56 / 100

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian
000000 0000 000	000 000000 00	0000000000 000000 0000000000	0000000 000000000000000000000000000000
M = 2.142			

Summary 00000 0000

$\mathcal{N} = 2$ version?

æ

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	00000000000 000000 0000000000	0000000 00000000000000000 000000000000	00000
$\mathcal{N} = 2 \mathcal{W}_{\infty}$				

Constructing $\mathcal{N} = 2$ version

1. Rewrite representations of $\mathcal{N}=2~\mathcal{W}_\infty$ in terms of (some version) of plane partitions

Twin plane partition

.

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	00000000000 000000 0000000000	0000000 00000000000000000 000000000000	00000
$\mathcal{N} = 2 \mathcal{W}_{\infty}$				

Constructing $\mathcal{N} = 2$ version

1. Rewrite representations of $\mathcal{N}=2$ \mathcal{W}_{∞} in terms of (some version) of plane partitions

Twin plane partition

- 2. Define $\mathcal{N}=2$ affine Yangian such that
 - twin plane partitions are faithful representations
 - reproduce $\mathcal{N} = 2 \mathcal{W}_{\infty}$ charges

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian
000000 0000 000	000 000000 00	0000000000 000000 0000000000	000000 0000000000000000000000000000000
$\mathcal{N} = 2 \ \mathcal{W}_{\infty}$			

Summary 00000 0000

$\mathcal{N} = 2$ version

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	0000000000 000000 000000000	0000000 •00000000000000000000 000000000	00000 0000

$\mathcal{N} = 2 \ \mathcal{W}_{\infty}[\lambda]$ algebra

• One $\mathcal{N} = 2$ multiplet per spin

Creutzig, Hikida, Ronne '11 Candu Gaberdiel '12

$$\begin{pmatrix} & T \\ G^- & & G^+ \\ & J & \end{pmatrix} \quad \begin{pmatrix} & W^{(2)1} \\ W^{(2)-} & & W^{(2)+} \\ & & W^{(2)0} & \end{pmatrix} \quad \begin{pmatrix} & W^{(3)1} \\ W^{(3)-} & & W^{(3)+} \\ & & W^{(3)0} & \end{pmatrix} \dots$$

(日) (周) (三) (三)

æ

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	00000000000 000000 000000000	0000000 000000000000000000000000000000	00000

$\mathcal{N} = 2 \ \mathcal{W}_{\infty}[\lambda]$ algebra

• One $\mathcal{N} = 2$ multiplet per spin

Creutzig, Hikida, Ronne '11 Candu Gaberdiel '12

$$\begin{pmatrix} & T \\ G^- & G^+ \\ & J \end{pmatrix} \begin{pmatrix} & W^{(2)1} \\ & W^{(2)-} & W^{(2)+} \\ & W^{(2)0} \end{pmatrix} \begin{pmatrix} & W^{(3)1} \\ & W^{(3)-} & W^{(3)+} \\ & W^{(3)0} \end{pmatrix} \dots$$

Rearrange by spin

(日) (周) (三) (三)

э

60 / 100
Intro 000000 0000 000	W and affine Yangian 000 000000 00	Plane Partition 00000000000 000000 0000000000	$\mathcal{N}=2$ affine Yangian 000000000000000000000000000000000000	Summary 00000 0000
$\mathcal{N}=2$	$\mathcal{W}_\infty[\lambda]$ algebr	ra		
►	One $\mathcal{N}=2$ multipl	et per spin	Creutzig, Hikida, Roni	ne '11
			Candu Gaberdi	iel '12
	$\begin{pmatrix} T & \\ G^- & G^+ \\ & J \end{pmatrix} $	$egin{array}{ccc} & W^{(2)1} & & & & & & & & & & & & & & & & & & &$	$\begin{pmatrix} & W^{(3)1} \\ & W^{(3)-} \\ & & W^{(3)0} \end{pmatrix}$	$W^{(3)+}$)
•	Rearrange by spin			

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	
000000	000	0000000000	0000000	
			000000000000000000000000000000000000000	

Summary 00000 0000

Decomposing $\mathcal{N} = 2 \ \mathcal{W}_{\infty}[\lambda]$ — bosonic part

• Conjecture: $\mathcal{W}_{\infty}^{\mathcal{N}=2}[\lambda]$ has two bosonic \mathcal{W}_{∞} subalgebra

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	
000000 0000 000	000 000000 00	00000000000 000000 000000000	0000000 000000000000000000000000000000	

Summary 00000 0000

Decomposing $\mathcal{N} = 2 \ \mathcal{W}_{\infty}[\lambda]$ — bosonic part

• Conjecture: $\mathcal{W}_{\infty}^{\mathcal{N}=2}[\lambda]$ has two bosonic \mathcal{W}_{∞} subalgebra

 $\mathcal{N} = 2 \quad \mathcal{W}_{\infty}[\lambda]$

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト … 臣

Intro 000000 0000 000	W and affine Yangian 000 000000 00	Plane Partition 00000000000 000000 0000000000	$\mathcal{N}=2$ affine Yangian 000000000000000000000000000000000000	Summary 00000 0000
Decom	posing $\mathcal{N}=2$	$\mathcal{W}_\infty[\lambda]$ — bo	sonic part	
•	Conjecture: $\mathcal{W}_{\infty}^{\mathcal{N}=2}$	${}^{2}[\lambda]$ has two boso	nic \mathcal{W}_∞ subalgebra	

 $\begin{array}{lll} \text{Vasiliev shs}[\lambda] & \supset & \text{hs}[\lambda] \oplus \text{hs}[1-\lambda] & \textit{Prokushkin Vasiliev '98} \end{array}$

wedge subalgbra

 $\mathcal{N} = 2 \quad \mathcal{W}_{\infty}[\lambda]$

・ロト ・聞 と ・ 聞 と ・ 聞 と …

Intro 000000 0000 000	W and affine Yangian 000 000000 00	Plane P; 000000 000000 000000	$\mathcal{N}=2$ affir $\mathcal{O} = 000000$ $\mathcal{O} = 00000000000000000000000000000000000$	te Yangian Summary 00000 0000 0000000 0000
Decom	bosing $\mathcal{N}=2$ \mathcal{V}	$\mathcal{V}_\infty[\lambda]$	— bosonic par	rt
▶ (Conjecture: $\mathcal{W}^{\mathcal{N}=2}_{\infty}$	λ] has t	wo bosonic \mathcal{W}_∞ su	balgebra
	Vasiliev shs[λ]	\supset	$ ext{hs}[\lambda] \oplus ext{hs}[1-\lambda]$	Prokushkin Vasiliev '98
	wedge subalgbra			
	$\mathcal{N} = 2 \mathcal{W}_{\infty}[\lambda]$			
	↓ Truncatio	n		
	$\mathcal{N}=2$ \mathcal{W}_3	\supset	Virasoro \oplus Virasoro	Romans '92

・ロト・(局)・(目)・(目)・(日)・(の)

65 / 100

Intro 000000 0000 000	W and affine Yangian 000 000000 00	Plane 0000 0000 0000	Partition $\mathcal{N} = 2$ affin 0000000 0000000 00 0000000 0000000 00000000	e Yangian Summary 00000 00000000 0000000
Decom	nposing $\mathcal{N}=2~\mathcal{V}$	$V_{\infty}[\lambda]$	√] — bosonic par	t
•	Conjecture: $\mathcal{W}^{\mathcal{N}=2}_{\infty}[\mathcal{X}]$] has	two bosonic \mathcal{W}_∞ sul	palgebra
	Vasiliev shs[λ]	\supset	$ ext{hs}[\lambda] \oplus ext{hs}[1-\lambda]$	Prokushkin Vasiliev '98
	wedge subalgbra		\downarrow	
	$\mathcal{N} = 2 \mathcal{W}_{\infty}[\lambda]$	\supset	$\mathcal{W}_\infty[\lambda]\oplus\mathcal{W}_\infty[1-\lambda]$	
	\bigvee_{V} Truncation	1	\uparrow	
	$\mathcal{N}=2$ \mathcal{W}_3	\supset	$Virasoro \oplus Virasoro$	Romans '92

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

■ _ _ のへ (?)

66 / 100

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	00000000000 000000 000000000	0000000 0000000000000000000 0000000000	00000

Decomposing $\mathcal{N} = 2 \mathcal{W}_{\infty}[\lambda]$ — fermionic part

Bosonic sub-algebra

$$\mathfrak{u}(1) \oplus \mathcal{W}_{\infty}^{\mathcal{N}=2}[\lambda] \supset \mathcal{W}_{1+\infty}[\lambda] \oplus \mathcal{W}_{1+\infty}[1-\lambda]$$

How do fermions fit in?

伺下 イヨト イヨト

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	
0000	000000	000000	000000000000000000	000

Decomposing $\mathcal{W}^{\mathcal{N}=2}_{\infty}[\lambda]$ vacuum character

• Vacuum character of $\mathfrak{u}(1) \oplus \mathcal{W}_{\infty}^{\mathcal{N}=2}[\lambda]$

$$\begin{split} \chi_{0}^{\text{Full}}(q,y) &= \prod_{n=1}^{\infty} \frac{(1+yq^{n+\frac{1}{2}})^{n}(1+\frac{1}{y}q^{n+\frac{1}{2}})^{n}}{(1-q^{n})^{2n}} \\ &= \chi_{\text{PP}}(q) \Biggl(\sum_{\text{R}} y^{|\text{R}|} \chi_{\text{R}}^{(\text{wedge})\,[\lambda]}(q) \cdot \chi_{\bar{\text{R}}^{T}}^{(\text{wedge})\,[1-\lambda]}(q) \Biggr) \\ &\quad \cdot \Biggl(\sum_{\text{S}} \frac{1}{y^{|\text{S}|}} \chi_{\bar{\text{S}}}^{(\text{wedge})\,[\lambda]}(q) \cdot \chi_{\text{S}^{T}}^{(\text{wedge})\,[1-\lambda]}(q) \Biggr) \chi_{\text{PP}}(q) \end{split}$$

► Fermions transform as $(\lambda, \overline{\lambda}^T)$ and $(\overline{\lambda}^T, \lambda)$ of $W_{1+\infty}[\lambda] \oplus W_{1+\infty}[1-\lambda]$

過 ト イヨ ト イヨト

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	
000000	000	0000000000	000000	oc
0000	000000	000000	00000000000000000	oc

Decomposing $\mathcal{W}^{\mathcal{N}=2}_{\infty}[\lambda]$ vacuum character

• Vacuum character of $\mathfrak{u}(1) \oplus \mathcal{W}_{\infty}^{\mathcal{N}=2}[\lambda]$

$$\begin{split} \chi_{0}^{\mathrm{Full}}(q,y) &= \prod_{n=1}^{\infty} \frac{(1+yq^{n+\frac{1}{2}})^{n}(1+\frac{1}{y}q^{n+\frac{1}{2}})^{n}}{(1-q^{n})^{2n}} \\ &= \chi_{\mathrm{PP}}(q) \Biggl(\sum_{\mathrm{R}} y^{|\mathrm{R}|} \chi_{\mathrm{R}}^{(\mathrm{wedge})\,[\lambda]}(q) \cdot \chi_{\mathrm{\bar{R}}^{T}}^{(\mathrm{wedge})\,[1-\lambda]}(q) \Biggr) \\ &\quad \cdot \Biggl(\sum_{\mathrm{S}} \frac{1}{y^{|\mathrm{S}|}} \chi_{\mathrm{\bar{S}}}^{(\mathrm{wedge})\,[\lambda]}(q) \cdot \chi_{\mathrm{S}^{T}}^{(\mathrm{wedge})\,[1-\lambda]}(q) \Biggr) \chi_{\mathrm{PP}}(q) \end{split}$$

- ► Fermions transform as $(\lambda, \overline{\lambda}^T)$ and $(\overline{\lambda}^T, \lambda)$ of $W_{1+\infty}[\lambda] \oplus W_{1+\infty}[1-\lambda]$
 - only need to label left representation
 - How to describe $\overline{\lambda}$ as plane partition?

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	
000000 0000 000	000 000000 00	0000000000 000000 0000000000	0000000 000000000000000000000000000000	00000

Aside: \Box v.s. $\overline{\Box}$

イロト イヨト イヨト イヨト

э.

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	
000000 0000 000	000 000000 00	00000000000 000000 000000000	0000000 000000000000000000000 00000000	

Summary

Aside: \Box v.s. $\overline{\Box}$... and their descendents

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	0000000000 000000 000000000	0000000 000000000000000000000000000000	00000

Decomposing $\mathcal{N} = 2 \mathcal{W}_{\infty}[\lambda]$

Bosonic sub-algebra

$$\mathfrak{u}(1) \oplus \mathcal{W}_{\infty}^{\mathcal{N}=2}[\lambda] \supset \mathcal{W}_{1+\infty}[\lambda] \oplus \mathcal{W}_{1+\infty}[1-\lambda]$$

Fermions:

$$(\lambda, \bar{\lambda}^T)$$
 $(\bar{\lambda}, \lambda^T)$

A B F A B F

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	
000000 0000 000	000 000000 00	0000000000 000000 0000000000	0000000 000000000000000000000000000000	0000

Representation

イロト イヨト イヨト イヨト

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	
000000 0000 000	000 000000 00	00000000000 000000 0000000000	0000000 000000000000000000000000000000	

Representation $\overline{\Box}$

seen from left $\mathcal{W}_{1+\infty}$

seen from right $\mathcal{W}_{1+\infty}$

(日) (周) (三) (三)

	W and affine Yangian
0000	000
0	000000

Plane Partition 00000000000 000000 0000000000 Summary 00000 0000

Representation \square

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	
000000 0000 000	000 000000 00	0000000000 000000 0000000000	0000000 00000000000000000 000000000000	00

Representation \Box

イロト イヨト イヨト イヨト

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	
000000 0000 000	000 000000	0000000000 000000 000000000		00000

Building blocks

Gaberdiel Li Peng Zhang '17

Decomposing $\mathcal{N} = 2 \ \mathcal{W}_{\infty}[\lambda]$

Bosonic sub-algebra

$$\mathfrak{u}(1) \oplus \mathcal{W}_{\infty}^{\mathcal{N}=2}[\lambda] \supset \mathcal{W}_{1+\infty}[\lambda] \oplus \mathcal{W}_{1+\infty}[1-\lambda]$$

Fermions:

$$(\lambda, \bar{\lambda}^T)$$
 $(\bar{\lambda}^T, \lambda)$

э

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	00000000000 000000 0000000000	0000000 000000000000000000000 00000000	00000

Building blocks

Gaberdiel Li Peng Zhang '17

Decomposing $\mathcal{N} = 2 \ \mathcal{W}_{\infty}[\lambda]$

Bosonic sub-algebra

$$\mathfrak{u}(1) \oplus \mathcal{W}_{\infty}^{\mathcal{N}=2}[\lambda] \supset \mathcal{W}_{1+\infty}[\lambda] \oplus \mathcal{W}_{1+\infty}[1-\lambda]$$

Fermions:

$$(\lambda, \bar{\lambda}^T)$$
 $(\bar{\lambda}^T, \lambda)$

Building blocks of $\mathcal{N} = 2$ Yangian

- Vacuum: a pair of plane partition (left and right)
- $\mathbf{x} \equiv (\Box, \overline{\Box})$: a pair of plane partition with asymptotics $(\Box, \overline{\Box})$
- ▶ $\bar{\mathbf{x}} \equiv (\bar{\Box}, \Box)$: a pair of plane partition with asymptotics $(\bar{\Box}, \Box)$
- single boxes (created by e and \hat{e}) for descendents

W and affine Yangian

Plane Partition 00000000000 000000 0000000000 $\mathcal{N}=2$ affine Yangian

Summary 00000 0000

Fermionic building block-1: $x \equiv \Box$

< ロト < 同ト < ヨト < ヨト

э

W and affine Yangian

Plane Partition 00000000000 000000 0000000000 $\mathcal{N}=2$ affine Yangian

Summary 00000 0000

Fermionic building block-2: $\bar{x} \equiv \bar{\Box}$

< ロト < 同ト < ヨト < ヨト

э

W and affine Yangian

Plane Partition 00000000000 000000 0000000000 $\mathcal{N}=2$ affine Yangian

Summary 00000 0000

Fermionic building block-1: $x \equiv \Box$

$$\psi(z) = \left(1 + \frac{\psi_0 \sigma_3}{z}\right) \prod_{n=0}^{\infty} \varphi_3(z - nh_2) = \left(1 + \frac{\psi_0 \sigma_3}{z}\right) \frac{z(z + h_2)}{(z - h_1)(z - h_3)}$$
$$\boxed{\varphi_2(z) = \frac{z(z + h_2)}{(z - h_1)(z - h_3)}}$$

(日) (同) (三) (三)

W and affine Yangian

Plane Partition 00000000000 000000 0000000000 $\mathcal{N}=2$ affine Yangian

Summary 00000 0000

Fermionic building block-1: $x \equiv \Box$

Intro
000

N and affine Yangian

e

Plane Partition 00000000000 000000 00000000000 $\mathcal{N}=2$ affine Yangian

Summary 00000 0000

Building blocks of bosonic affine Yangian of \mathfrak{gl}_1

ψ

Wei Li

(日) (周) (三) (三)

э

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian
00000	000	0000000000	000000
000	000000	000000	000000000000000000
00	00	000000000	00000000000000000

Summary 00000 0000

Building blocks of bosonic affine Yangian of \mathfrak{gl}_1

(日) (周) (三) (三)

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian
000	000	0000000000	000000
	000000	000000	000000000000000000000000000000000000000
	00	000000000	000000000000000000

Summary 00000 0000

A pair of bosonic affine Yangian of \mathfrak{gl}_1

Wei Li

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	
000000 0000 000	000 000000 00	0000000000 000000 0000000000	000000 0000000000000000 00000000000000	00000

Fermionic creators

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian
000000 0000 000	000 000000 00	0000000000 000000 000000000	0000000 00000000000000000000000000000

Summary 00000 0000

Building blocks of $\mathcal{N}=2$ affine Yangian of \mathfrak{gl}_1

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	
000000	000	000000000000000000000000000000000000000	0000000	00 00
000		000000000	000000000000000000000000000000000000000	

Constructing $\mathcal{N} = 2$ version

1. Rewrite representations of $\mathcal{N} = 2 \mathcal{W}_{\infty}$ in terms of (some version) of plane partitions

Twin plane partition

- 2. Define $\mathcal{N}=2$ affine Yangian such that
 - twin plane partitions are faithful representations
 - reproduce $\mathcal{N} = 2 \mathcal{W}_{\infty}$ charges

87 / 100

V and	affine	Yangian	
000			
0000	00		
ົດ			

Plane Partition 00000000000 000000 00000000000 $\mathcal{N}=2$ affine Yangian

Summary 00000 0000

Building up $\mathcal{N}=2$ affine Yangian of \mathfrak{gl}_1

Wei Li

20 ICTS, 2018

88 / 100

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affi
000	000	0000000000	000000
	000000	000000	0000000
		000000000	0000000

² = 2 affine Yangian

Summary 00000 0000

Building up $\mathcal{N}=2$ affine Yangian of \mathfrak{gl}_1

Gaberdiel Li Peng Zhang'17

Gaberdiel Li Peng '18

	W and affine Yangian
000000	000
0000	000000
000	

Plane Partition 00000000000 000000 00000000000 $\mathcal{N}=2$ affine Yangian

Summary 00000 0000

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian
000000 0000 000	000 000000 00	0000000000 000000 0000000000	0000000 000000000000000000000000000000

Lessons

plane partition is also very useful in the gluing process

- visualize Fock space
- Define algebra by faithful representation

< 3 > < 3 >

Summary

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	00000000000 000000 000000000	0000000 00000000000000000 000000000000	•0000 0000
Summary				

Outline

Intro

W and affine Yangian

Plane Partition

 $\mathcal{N}=2$ affine Yangian

Summary

< 3 > < 3 >

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	0000000000 000000 0000000000	0000000 00000000000000000 000000000000	0000
Summary				

Part 1

Intro 000000 0000 000	W and affine Yangian 000 000000 00	Plane Partition 0000000000 000000 0000000000	$\mathcal{N}=2$ affine Yangian 0000000 0000000000000000000000000000	Summary 00000 0000
Summary				

Application

Character computation more transparent

(日) (周) (三) (三)

æ
	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	00000000000 000000 000000000	0000000 00000000000000000 000000000000	00000
Summary				

Part 2

Intro 000000 0000 000	W and affine Yangian 000 000000 00	Plane Partition 0000000000 000000 0000000000	$\mathcal{N}=2$ affine Yangian 0000000 0000000000000000 00000000000	Summary 0000 0000
Summary				

- \blacktriangleright affine Yangian is useful for \mathcal{W}_∞ computation
- Can define new VOA/affine Yangian via gluing plane partitions

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	0000000000 000000 000000000	0000000 000000000000000000000000000000	00000 0000
Future				

Open problems

1. large
$$\mathcal{N} = 4 \mathcal{W}_{\infty}[\lambda]$$

2. alternate ways of gluing

э

Intro
0000
000
Future

W and affine Yangian

Plane Partition 00000000000 000000 00000000000 Summary

Different manifestation of stringy symmetry

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	00000000000 000000 000000000	0000000 00000000000000000 000000000000	00000
Future				

More open problems

- 1. What is the relation between higher spin symmetry and integrable structure ?
- 2. What is stringy symmetry?

3. Application of stringy symmetry?

	W and affine Yangian	Plane Partition	$\mathcal{N}=2$ affine Yangian	Summary
000000 0000 000	000 000000 00	0000000000 000000 0000000000	0000000 00000000000000000 000000000000	00000
Future				

Thank you very much !

æ

100 / 100