Collective dynamics of drops in 2D microchannels: an agent based approach

Danny Raj M and Rengaswamy R, Department of chemical engineering, IIT Madras, India

Drop microfluidics

Collective dynamics in 2D microchannels

When things simply don't add up!

3

Self-organization

Microchannel: Hele-Shaw

geometry that constrains the drop motion in 2D

- Diverging converging geometry: decelerates and accelerates the drops inside the channel
- Self organization: Drops form patterns depending on the rate at which they enter the channel

(Courtesy: Bibin M. Jose and Thomas Cubaud, Stony Brook University) (Jose & Cubaud, 2011)

Coalescence avalanches

- One coalescence event triggers
 an avalanche
- Not all coalescence events lead to propagation
 - Small avalanches
 - Destabilization of the assembly

Courtesy: Nicholas Bremond, Laboratoire Colloïdes et Matériaux Divisés, ESPCI, France Bremond, N et al (2011), Physical Review Letters, 106(21), 1–4

Complex drop behavior in 2D channels

- $\hfill\square$ What we know:
 - Drops form ordered 2D arrangements in a microchannel
 - Non-linearly interactions result in complex traffic
 - Drops can catastrophically destabilize

□ Inverse problems:

- For a desired pattern or arrangement
 - How should the drops be sent in, to form a pattern of choice?
 - Composite drops (A B): how do they arrange in an ordered configuration?
 - How does complex traffic inside the channel affect the exit spacing?
- Coalescence avalanches
 - How can one pack drops to make an emulsion more stable?

Design perspective

- Design problem is hard
 - Complex behavior of drops
 - Large combinatorial problem
- Need for a systematic design of microchannels
 - Design problem as an optimization problem
- Models for flow of drops- incorporation inside optimization routines
 - Would involve solving the model several times
 - NS based models- high computational time- multiscale problem

An agent based approach

Self organization of drops

8

Agent based framework

9

Break the complex system into a group of interacting agents
 Drops are regarded as agents

□ Agents interact with each other and the surroundings

Drop-interactions: simple rules/models

All the interactions of agents are pieced together to study the behavior of the complete system

A multi-agent framework: incorporating the interactions

Interacting drop-traffic models (IDT)

Force due to the continuous phase fluid

- X- component of force: classic problem of flow past a sphere
- **D** $F_{x,flow} \propto \left[(\langle v_a \rangle + \langle v_b \rangle) 2v_{d,x} \right]$
- Y-component of force: resistance to flow is least when drop is at center

 $\square \ F_{y,flow} \propto \left[(\langle v_a \rangle - \langle v_b \rangle) - v_{d,y} \right]$

 Force between drops and effect of boundary on the flow of drops Lubrication theory (Davis et al 1989)

 $\square \ \mathbf{F}_{\mathbf{d}_i - \mathbf{d}_j} \propto \frac{\Delta \mathbf{v}_{\mathbf{d}_{ij}}}{\mathbf{d} - 2\mathbf{R}}$

- Multi agent simulation
 - Newton's second law of motion for all drops
 - Creeping flow approximation

Danny Raj, M., & Rengaswamy, R. (2014)

Jose and Cubaud, 2012

Danny and Rengaswamy, 2014

Jose and Cubaud, 2012

Danny and Rengaswamy, 2014

Jose and Cubaud, 2012

Danny and Rengaswamy, 2014

Jose and Cubaud, 2012

Danny and Rengaswamy, 2014

Design problem

Composite drop arrangment

Composite drop arrangement

- Consider the case where there are two different drops
 - Drop A and B- different composition
 - Mass transfer between drops
- Design and operation of a drop-Incubator
- How do you send drops into the channel to pack them such that
 - Maximum mass transfer- maximum contact between A and B and vice versa

Gruner et al, Nature comm., 2016

Drop-drop contactor

17

If there are 100 drops of A and 100 drops of B

 \Box An intuitive solution...

For minimum contact
 Send 100 A then 100 B

For maximum contact

Send 1A then 1B

- □ Study: Effect of inlet sequence (A and B)
 - Self-organization of composite drops in a diverging converging channel
 - A and B- same flow characteristics

Composite drop-patterns

How should I send drops into the channel such that the ordered arrangement has a good mix of A and B?

Composite drop-patterns

- Vertical stratification of drops
- Possible applications in
 Optofluidics
 - Drop-dye lasers with a large area of effect

Design problem

□ Composite drop arrangement in a 2D ensemble

- The simplest self-organizing system shows non-intuitive behavior
- □ It is a large combinatorial problem
 - A large number of possible inlet sequences
- Design and operation of incubator is a much harder problem
 - Amplified local rearrangement of drops
 - Large number of possible inlet sequences
 - Drop A and B may have different flow characteristics

~Equal speed

Unequal speed

~Equal speed

Systematic design and operation of microchannels

Self organization route to particle synthesis

Work done by Abeynaya G, (B Tech student)

Agent based framework- complex droplet systems

- Local interactions are characterized by simple phenomenological models
- Interactions lead to rich global behavior: self organization, autocatalytic propagation
- New rules and models for newer interactions can be incorporated with ease: versatility of agent based frameworks

Complex behavior of drops

- Design of 2D channels is non-intuitive
- Need for a systematic design approach
- Simplicity of the modeling framework: rational design, process monitoring, fault diagnosis etc...

Thank you

Self organization

M. Danny Raj and R. Rengaswamy, *Microfluid. Nanofluidics*, 2014, 17, 527–537.

Passive control applications

D. R. M and R. Rengaswamy, in 2014 European Control Conference (ECC), 2014, pp. 1055–1060.

Coalescence propagation

M. Danny Raj and R. Rengaswamy, Soft Matter, 2016, 12 (1), 115-122

Composite drops- organization, applications

M. D. Raj and R. Rengaswamy, Ind. Eng. Chem. Res., 2015, 54 (43), 10835-10842

Danny Raj M (Doctoral Scholar)

Rengaswamy R (Professor),

Department of chemical engineering, IIT Madras, India

Email: <u>danny.presto@gmail.com;</u> <u>raghur@iitm.ac.in</u>