
Lecture 3: Stirring by swimming organisms, part 1a

Jean-Luc Thiffeault†

Department of Mathematics, University of Wisconsin – Madison,

480 Lincoln Dr., Madison, WI 53706, USA

(Dated: 1 June 2016)

The setting of our problem is a large volume V that contains a number of swimmers N ,
also typically large. The swimmers move independently of each other in randomly directions
(see Fig. 1). In the dilute limit that we consider, the velocity field of one swimmer is not
significantly affected by the others. A random fluid particle (not too near the edges of
the domain), will be displaced by the cumulative action of the swimmers. If we follow
the displacements of a large number of well-separated fluid particles, which we treat as
independent, we can obtain the full pdf of displacements. Our goal is to derive the exact
pdf of displacements from a simple probabilistic model. Our starting point is the model
described by Thiffeault and Childress [1] and improved by Lin et al. [2], which captures the
important features observed in experiments. The calculation we describe is mostly taken
from [3].

We examine the distribution of particle displacements for relatively short times, when the
swimmers can be assumed to move along straight paths. For this we need the partial-path
drift function for a fluid particle, initially at r = r0, affected by a single swimmer:

∆(r0, t) = U

∫ t

0

u(r(s)−Us) ds, ṙ = u(r −U t), r(0) = r0 . (1)

Here U t is the swimmer’s position, with U assumed constant. To obtain ∆(r0, t) we must
solve the differential equation for each initial condition r0. After using homogeneity and
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FIG. 1. A fluid particle displaced by a swimmer.
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isotropy, we obtain the probability density of displacements, [4]

p1(r, t) =
1

αd rd−1

∫
V

δ(r −∆(η, t))
dVη
V

, r = ‖r‖, (2)

where αd is the area of the unit sphere in d dimensions: α2 = 2π, α3 = 4π. Here r gives
the displacement of the particle from its initial position after a time t, and p1(r, t) is the
probability density function of r for one swimmer.

The second moment of r for a single swimmer is

〈r2〉1 =

∫
V

r2p1(r, t) dVr =

∫
V

∆2(η, t)
dVη
V

. (3)

This goes to zero as V → ∞, since a single swimmer in an infinite volume shouldn’t give
any fluctuations. If we have N swimmers, the second moment is

〈r2〉N = N〈r2〉1 = n

∫
V

∆2(η, t) dVη (4)

with n = N/V the number density of swimmers. This is nonzero (and might diverge) in
the limit V → ∞, reflecting the cumulative effect of multiple swimmers. Note that this
expression is exact, within the problem assumptions: it doesn’t even require N to be large.
It is not at all clear that (4) leads to diffusive behavior, but it does [2, 5, 6]: the “support”
of the drift function ∆(η, t) typically grows in time: that is, the longer we wait, the larger
the number of particles displaced by the swimmer. There is another mechanism, important
for microswimmers, by which (4) can grow linearly in time, but it is more involved and will
not be discussed here (see [3]).

From (2) with d = 2 we can compute p1(x, t), the marginal distribution for one coordinate:

p1(x, t) =

∫ ∞
−∞

p1(r, t) dy =

∫
V

∫ ∞
−∞

1

2πr
δ(r −∆(η, t)) dy

dVη
V

. (5)

Since r2 = x2 + y2, the δ-function will capture two values of y, and with the Jacobian
included we obtain

p1(x, t) =
1

π

∫
V

1√
∆2(η, t)− x2

[∆(η, t) > |x|] dVη
V

, (6)

where [A] is an indicator function: it is 1 if A is true, 0 otherwise.
The marginal distribution in the three-dimensional case proceeds the same way from (2)

with d = 3:

p1(x, t) = 1
2

∫
V

1

∆(η, t)
[∆(η, t) > |x|] dVη

V
. (7)

For summing the displacements due to multiple swimmers, we need the characteristic
function of p1(x, t), defined by the Fourier transform

〈eikx〉1 =

∫ ∞
−∞

p1(x, t) eikx dx. (8)
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FIG. 2. The function γd(x) defined by (10) for d = 3 (solid) and d = 2 (dashed).

For the three-dimensional pdf (7), the characteristic function is

〈eikx〉1 = 1
2

∫
V

1

∆(η, t)

∫ ∞
−∞

[∆(η, t) > |x|] eikx dx
dVη
V

= 1
2

∫
V

1

∆(η, t)

∫ ∆

−∆

eikx dx
dVη
V

=

∫
V

sinc (k∆(η, t))
dVη
V

where sincx := x−1 sinx for x 6= 0, and sinc 0 := 1. For the two-dimensional pdf (6), we
have

〈eikx〉1 =

∫
V

J0(k∆(η, t))
dVη
V

(9)

where J0(x) is a Bessel function of the first kind.
Here there is a subtlety that will creep up when dealing when taking the limit of in-

finite volume. As ‖η‖ → ∞, the displacement ∆(η, t) naturally goes to zero. However,
because J0(0) = 1 and sinc(0) = 1, this means the integrand goes to one at infinity, which
means the integral will go to V . This would create problems later when passing to the ‘ther-
modynamic limit’ N, V → ∞. To remedy this, we add and subtract one in the integrand
and use

∫
V

dVη/V = 1. We then define (see Fig. 2)

γd(x) :=

{
1− J0(x), d = 2;

1− sincx, d = 3,
(10)

and write the two cases for the characteristic function together as

〈eikx〉1 = 1− Γd(k, t)/V. (11)

where1

Γd(k, t) :=

∫
V

γd(k∆(η, t)) dVη . (12)

1 Note that our normalization of Γd is different than in [3].
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We have γd(0) = γ′d(0) = 0, γ′′d (0) = 1/d, so γd(ξ) ∼ (1/2d) ξ2 + O(ξ4) as ξ → 0. For large
argument, γd(ξ)→ 1 as ξ →∞.

We will need the following simple result:

Proposition 1. Let y(ε) ∼ o(ε−M/(M+1)) as ε→ 0 for an integer M ≥ 1; then

(1− εy(ε))1/ε = exp

(
−

M∑
m=1

εm−1ym(ε)

m

)(
1 + o(ε0)

)
, ε→ 0. (13)

Proof. Observe that εy(ε) ∼ o(ε1/(M+1)) → 0 as ε → 0. Writing (1 − εy)1/ε = eε
−1 log(1−εy),

we expand the exponent as a convergent Taylor series:

(1− εy)1/ε = exp

(
−ε−1

∞∑
m=1

(εy)m

m

)
(converges since εy ∼ o(ε1/(M+1)))

= exp

(
−ε−1

( M∑
m=1

(εy)m

m
+ O((εy)M+1)

))

= exp

(
−ε−1

M∑
m=1

(εy)m

m

)
exp

(
O(εMyM+1)

)
= exp

(
−ε−1

M∑
m=1

(εy)m

m

)(
1 + o(ε0)

)
.

Since we are summing their independent displacements, the characteristic function for N
swimmers is 〈eikx〉N = 〈eikx〉N1 . From (11),

〈eikx〉N1 = (1− Γd(k, t)/V )nV , (14)

where we used N = nV , with n the number density of swimmers. Let’s examine the
assumption of Proposition 1 for M = 1 applied to (14), with ε = 1/V and y = Γd(k, t).
For M = 1, the assumption of Proposition 1 requires

Γd(k, t) ∼ o(V 1/2), V →∞. (15)

A stronger divergence with V means using a larger M in Proposition 1, but we shall not need
to consider this here. Note that it is not possible for Γd(k, t) to diverge faster than O(V ),
since γd(x) is bounded. In order for Γd(k, t) to diverge that fast, the displacement must be
bounded away from zero as V →∞, an unlikely situation which can be ruled out.

Assuming that (15) is satisfied, we use Proposition 1 with M = 1 to make the large-
volume approximation

〈eikx〉N1 = (1− Γd(k, t)/V )nV ∼ exp (−nΓd(k, t)) , V →∞. (16)

If the integral Γd(k, t) is convergent as V → ∞ we have achieved a volume-independent
form for the characteristic function, and hence for the distribution of x for a fixed swimmer
density.

A comment is in order about evaluating (12) numerically: if we take |k| to∞, then γd(k∆)→
1, and thus Γd → V , which then leads to e−N in (16). This is negligible as long as the
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number of swimmers N is moderately large. In practice, this means that |k| only needs to
be large enough that the argument of the decaying exponential in (16) is of order one, that
is

nΓd(kmax, t) ∼ O(1). (17)

Wavenumbers |k| > kmax do not contribute to (16). (We are assuming monotonicity
of Γd(k, t) for k > 0, which will hold for our case.) Note that (17) implies that we need
larger wavenumbers for smaller densities n: a typical fluid particle then encounters very few
swimmers, and the distribution should be far from Gaussian.

We finally recover the pdf of x as the inverse Fourier transform

pn(x, t) =
1

2π

∫ ∞
−∞

exp (−nΓd(k, t)) e−ikx dk. (18)

Note that we write pn(x, t) now instead of pN(x, t), where n is the number density, since N
has been taken to infinity. In the next lecture we’ll use this formula to evaluate pn(x, t) for
several model swimmers.
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