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Set up

A local cartesian plane on the surface of a rotating sphere.

Coriolis force approximated to vary linearly
with lattitude: β−plane approximation.

Large horizontal scales L >> H.

In this limit, NS equations:

Du/Dt + f × u = −∇p − gk̂ (1)

Equations with forcing.

Circulations due to forcing.
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Shallow Water equations (QG system)

Local Cartesian plane.

β−plane approximation (f = βy).

State of rest, incompressible, hydrostatic balance (H/L� 1) as the
base state.

Small deviations from the base state.

∇x,yp are independent of z and so are u, v .

∂u

∂t
− fv = −g ∂h

∂x
∂v

∂t
+ fu = −g ∂h

∂y

∂h

∂t
+ H

(
∂u

∂x
+
∂v

∂y

)
= 0

3 / 20



QG waves f -plane

Assume f to be constant.

∂u

∂t
− fv = −g ∂h

∂x
∂v

∂t
+ fu = −g ∂h

∂y

∂h

∂t
+ H

(
∂u

∂x
+
∂v

∂y

)
= 0
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Dispersion relation

Non-dimensional form:

∂u

∂t
− yv = −∂φ

∂x
∂v

∂t
+ yu = −∂φ

∂y

∂φ

∂t
+

(
∂u

∂x
+
∂v

∂y

)
= 0

φ is geo-potential.

Assume solution of the form (.) = (̂.)ei(kx+ωt).

Eliminating u and φ, where û = − iωy v̂ + k(∂v̂/∂y)

(ω − k)(ω + k)
for ω 6= k.

∂2v̂

∂y2
+

(
ω2 − k2 +

k

ω
− y2

)
v̂ = 0

v̂ = C exp(−y2/2)Hn(y) for v̂ → 0 as y → ±∞ and

ω2 − k2 +
k

ω
= 2n + 1
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QG waves

ω2 − k2 +
k

ω
= 2n + 1

For large (IG waves) and small (Rossby waves) regimes of ω

ω1,2 = ±
√
k2 + 2n + 1, ω3 =

k

k2 + 2n + 1

For n = 0, the dispersion relation can be written as

(ω − k)[ω(ω + k)− 1] = 0

. The valid solutions are: ω1 = −k

2
−

√(
k

2

)2

+ 1 and

ω2 =

√(
k

2

)2

+ 1− k

2
. How does this look like?
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Kelvin waves

The solutions where obtained by solving for v . But there exists a wave
that has no meridional velocity (v = 0):

iωû + ikφ̂ = 0 (2)

y û +
d φ̂

dy
= 0 (3)

iωφ̂+ ikû = 0. (4)

For v = 0, the dispersion relation can be obtained by solving for û
and φ̂,

(ω − k)(ω + k) = 0.

Here, ω = −k is the valid solution. This represents the Kelvin wave
and it propagates only in the east direction.

This wave corresponds to n = −1 of ω2 − k2 +
k

ω
= 2n + 1
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Dispersion diagram

Figure: Dispersion diagram
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Circulation patterns

u and φ in terms of v are given by

û = − i

ω2 − k2
(ωy v̂ + k

dv̂

dy
) (5)

φ̂ =
i

ω2 − k2
(ky v̂ + k

dv̂

dy
) (6)

Recall v̂ = C exp(−y2/2)Hn(y).

Note H ′n = 2nHn−1 and Hn+1 = 2yHn − 2nHn−1.

For n = 0, v̂ = C exp(−y2/2) since H0 = 1.
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Circulation patterns (n = 0)
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Circulation patterns (n = 1)
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Kelvin wave
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Summary

Rossby waves are dispersive for small k but for large k their phase
speed 1/(2n + 1) times the gravity waves.

They travel about one-third of the phase speed of Kelvin waves.

There is mixed Rossby-Gravity wave called Yanai waves.

For k > 1/
√

2 the wave behaves like a Rossby wave and for
k ≤ 1/

√
2 the wave behaves like an inertia-gravity wave.

Rossby waves propagate only in the westward direction.

Inertia gravity waves are almost symmetric in the east-west
directions.
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With a heat source

The stratified atmosphere can be represented as a sum of vertical
modes.

Each vertical mode satisfies the shallow-water equations in the
horizontal directions.

The deep convective heating can be represented by the lowest mode.

Response of the atmosphere to a specified heat source (one-way
problem) such as Indonesia.

∂u

∂t
− yv = −∂φ

∂x
∂v

∂t
+ yu = −∂φ

∂y

∂φ

∂t
+

(
∂u

∂x
+
∂v

∂y

)
= −Q

14 / 20



Steady-state with friction

In the steady state the equations are given by

εu − yv = −∂φ
∂x

εv + yu = −∂φ
∂y

εφ+

(
∂u

∂x
+
∂v

∂y

)
= −Q

ε is a scale of dissipation. It is same in x and y - an assumption!

The above equations can be combined similarly and for small ε they
can be approximated.

ε
∂2v

∂y2
+ ∂vx − εy2v = y

∂Q

∂x
− εQy

This is equivalent to yu = −∂φ
∂y

which is in geostrophic balance

(long wave approximation).
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Steady-state with friction

The solutions are obtained by assuming

v = v̂(x) exp(−y2/2)Hn(y)

Q = Q̂(x) exp(−y2/2)Hn(y)

Q is prescribed.

The analysis is done for symmetric and anti-symmetric Q (by
specifying Hn).

The resulting circulation patterns explain many of the observed
circulations of winds.
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Symmetric forcing

For n = 0, the solutions are given by

u, p =
1

2
q0(x) exp(−y2/4)

v = 0

This Kelvin wave type solution represents Walker circulation over
the Pacific when the forcing is placed on Indonesia.

The easterly circulation is parallel to equator flowing into the
heating region and then flow eastward aloft.
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Circulation patterns

Figure: Observed wind field for January and July
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The problem

In the tropics Rossby number approaches unity, DU/Dt and f × U
are comparable.

The nonlinear terms in the momentum equations become important
at the tropics.

How do we represent vertical motion?

Role of moisture.

Can we construct models that can address the Indian monsoon?
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Thank you!
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