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The atmosphere is a forced and dissipative nonlinear system featuring nontrivial dynamics
on a vast range of spatial and temporal scales. [t is an outstanding example of a

high-dimensgional forced and dissipative complex system.
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Can we capture the large scales?

Thig type of large scale motion ig primarily horizontal becauge on large-gcale,

the fluid ie confined to a relatively thin gpherical shell

The dengity stratification regulting from the near hydrogtatic equilibrium digcourages

vertical motion.

The egcential ecalee for degcribing large-gcale motion are horizontal velocity and

horizontal length.

Thug large scale flow can be thought of ag flow in which the Coriolie force ig ignificant.
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Jule Charney (1917-1981)
Baged on obgervationg and gcale analysie
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Geostrophic balance.
Balanced equation.
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In 1955 Charney introduced thig nonlinear balance equation ag an initialization method to

determine wind from pregsure fields.

Using a simple model, Charney showed that the motion, initialized with the balance equation,
continued to be approximately balanced for come time; the balance equation thug deseribeg

a nearly invariant manifold.



I personally regard the successful reduction of the dynamic equations to a single
prognostic equation by means of the geostrophic relationship, entirely apart from
any applicability to NWP, as the greatest single achievement of twentieth-century
dynamic meteorology. Consideration of the processes described by the new equation
enabled me to see why cyclones and anticyclones and other weather systems move as

they do—an understanding that the primitive equations never conveyed.

Edward N. Lorenz

Annu. Rev. Earth Planet. Sci.
2006. 34:37-45

Lorenz 1980
If we choose initial conditions that are in geostrophic balance ...I?!

Will the solutions do the same?
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Attractor Sets and Quasi-Geostrophic Equilibrium

EDWARD N. LORENZ
Department of Meteorology, Massachusetts Institute of Technology, Cambridge 02139
(Manuscript received 9 January 1980, in final form 8 April 1980)

ABSTRACT

The attractor set of a forced dissipative dynamical system is for practical purposes the set of points in
phase -space which continue to be encountered by an arbitrary orbit after an arbitrary long time. For
a reasonably realistic atmospheric model the attractor should be a bounded set, and most of its points
should represent states of approximate geostrophic equilibrium.

A low-order primitive-equation (PE) model consisting of nine ordinary differential equations is derived
from the shallow-water equations with bottom topography. A low-order quasi-geostrophic (QG) model
with three equations is derived from the PE model by dropping the time derivatives in the divergence
equations.

For the chosen parameter values, gravity waves which are initially present in the PE model nearly
disappear after a few weeks, while the quasi-geostrophic oscillations continue undiminished. The states
which are free of gravity waves form a three-dimensional stable invariant manifold within the nine-
dimensional phase space. Points on this manifold are readily found by an algorithm based on the
separation of time scales. The attractor set consists of a complex of two-dimensional surfaces
embedded in this manifold. The geostrophic equation is a good approximation on most of the attractor,
while the balance equation is better. The attractors of the PE and QG models are qualitatively similar.

Some speculations regarding the invariant manifold and the attractor in a large global circulation model
are offered.
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The physical laws which govern the behavior of
a fluid system are commonly expressed as a set of
partial differential equations (PDE’s). It is often as-
sumed that we may replace these equations by a
large set of ordinary differential equations (ODE’s),
with time as the independent variable, without seri-
ously altering the properties which interest us most.
Such a substitution may in fact be a necessary
step 1n preparing the PDE’s for numerical integra-
tion. For various reasons, however, we sometimes
choose to replace the PDE’s by a small set of
ODE’s, hoping that some of the gross qualitative
properties of the solutions will not be lost.



A fundamental property of a dynamical system i1s
its attractor set A. A point O 1s in A if the points
for which Q 1s a limit point together form a set of
nonzero volume in phase space. It 1s evident that
each point on the orbit through O is then 1n A, so
that the attractor is composed of orbaits.



If a system is a reasonably realistic model of the
earth’s atmosphere, we can anticipate some of the
properties of its attractor from our experience with
weather maps. Thus, we would expect most of the

dependent variables to be bounded; we do not, for
example, encounter sealevel maps with 1200 mb
high-pressure centers or 800 mb lows. Likewise,
there are combinations of variables which seldom if
ever occur; we do not find maps where the wind
blows the wrong way about the principal highs and
lows 1n middle and higher latitudes. Points in the
attractor, then, should not be too far removed from
the origin, and should correspond to states where
the bulk of the atmosphere 1s In approximate
geostrophic equilibrium.



It 1s thus evident that except in very simple
models a sufficiently precise description of the at-
tractor to allow one to project onto it may be next
to impossible. We shall therefore not attempt to
study a particularly realistic atmospheric model,
and seek instead the simplest model which retains
pressure and the two wind components as separate
variables and includes the nonlinear interactions
which give rise to aperiodicity. For the latter pur-
pose we should represent each variable by at least
three functions of time alone. We thus anticipate a
system of nine ODE’s, and our problem will be to
describe the attractor in nine-dimensional phase
space.
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On the Nonexistence of a Slow Manifold

E. N. LORENZ AND V., KRISHNAMURTHY
Center for Meteorology and Physical Oceanography, Massachusetts Institute of Technology, Cambridge, MA 02139
(Manuscript received 29 September 1986, in final form 13 Apnil 1987)

ABSTRACT

We define the slow manifold S in the state space of a primitive-equation model as a hypothetical invariant
manifold on which there is no gravity-wave activity, and on which unique velocity-potential and streamfunction
fields correspond to each isobaric-height field. We introduce a five-variable forced damped model, and show
that for this model the point H representing the Hadley circulation and the two orbits forming the unstable
manifold of H must lie in S if S exists. We then show that in traveling along one of these orbits one eventually
encounters gravity waves, whereupon it follows that .S does not exist.

A measure G of gravity-wave activity is found to decrease very rapidly as the extemal forcing F decreases.
An approximate formula is derived for & as a function of F.

We show that a particular nine-variable forced damped model with orography also fails to possess a slow
manifold, and we speculate as to the existence of slow manifolds in larger and more realistic models.



Slow manifolds for singularly perturbed ODE’s

)_C)/:f()_é,z, 8) (1)
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where x € R™, 7z € RP, ¢ € R™, and the prime denotes differentiation with respect to
the independent variable 7. The functions f and g are assumed to be C* functions’
of x,zand ¢ in U x I, where U is an open subset of R x R? and [ is an open interval
containing & = 0.
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The independent variables ¢ and 7 are referred to the fast and slow times, respec-
tively, and (1) and (2) are called the fast and slow systems, respectively. These systems
are equivalent whenever ¢ # 0, and they are labeled singular perturbation problems
when ¢ <« 1, 1.e.,1s a small positive parameter. The label “singular” stems 1n part from
the discontinuous limiting behavior 1n the system (1) as ¢ — 0.

In such case, the system (1) reduces to an m-dimensional system called reduced
fast system, with the variable 7z as a constant parameter:

X = f(%,70)
{2/26 (3)



System (2) leads to the following differential-algebraic system called reduced slow
system which dimension decreases from m + p to p:

(4)

By exploiting the decomposition into fast and slow reduced systems (3) and (4), the
geometric approach reduced the full singularly perturbed system to separate lower-
dimensional regular perturbation problems 1n the fast and slow regimes, respectively.

Slow manifold

7 = ()



VOL. 48, NO. 7 JOURNAL OF THE ATMOSPHERIC SCIENCES 1 APRIL 1991

Existence of a Slow Manifold in a Model System of Equations

S. J. JACOBS

Department of Atmospheric, Oceanic and Space Sciences, Department of Mechanical Engineering and Applied Mechanics,
The University of Michigan, Ann Arbor, Michigan

(Manuscript received in final form 7 March 1990)

ABSTRACT

A model system of equations proposed by Lorenz and Krishnamurthy is analyzed. The Hartman-Grobman
theorem is employed to prove that the equations of the model admit a slow manifold devoid of gravity-wave
activity, and the theory of normal forms is used to construct the manifold and to determine when the manifold

is stable. The study disproves a conjecture by Lorenz and Krishnamurthy that a slow manifold does not exist
for their model.



Hartman — Grobman

dy
E—Aerf(y)

A 1s hyperbolic

f(0) =0

3 ¢



X=f(UV, W), Z=g(UV, W),

in the neighborhood of the equilibrium point
U=V—-e=W=X=27Z=0.

oD

flu, v, wy = > f™(u, v, w),

N=1

Qo

glu,v,w)= 2> fN(u, v, w),

N=1

X ~ AU + (V — e)(pU + qW),
L~ Bw+(V—e)(rU+ sW),
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The Slow Manifold—What Is It?

EDWARD N. LORENZ
Center for Meteorology and Physical Oceanography, Massachusetts Institute of Technology, Cambridge, Massachusetts
(Manuscript received 17 June 1991, in final form 17 March 1992)

ABSTRACT

Two studies that disagree as to whether a slow manifold is present in a particular low-order primitive equation

model are compared. It is shown that the discrepancy occurs because of a difference of opinion as to what
constitutes a slow manifold.

There are fast oscillations and so not a slow manifold!



1) edy/dt=ay+e", t=>0, y0) =y,.

Here ¢, a are constants with 0 < ¢ «< 1, |a| = O(1), and Real a < 0. The solu-
tion of (1) 1s given by

(2) W) = ys(t) + yr(2),

ys(t) = e'( —a +ig)” ! yr(t) = ey — ys(0)).

Thus, it consists of the slowly varying part y¢t) and the rapidly changing
part ye(t). There are two fundamentally different situations.



l. a= -1

In this case yr(t) decays rapidly and outside a boundary layer the solution
varies slowly

2. a=1i

Now yr(t) does not decay and y(t) 1s highly oscillatory everywhere. In
many applications one is not interested in the fast time scale. Therefore, it 1s
of interest to develop methods of preparing the 1nitial data such that the fast
time scale is suppressed. There are two ways to do this.



INITTALIZATION. One prepares the initial data in such a way that
the fast time scale 1s not activated. In the preceding example we need only
to choose

Vo =50 =(—a+ie) = —a (1 +ig/a— (g/a)* + ). (3)

Then yg(t) = 0, and the solution of our problem consists only of the slowly
varying part yg(t). For more complicated problems one can determine yg(0)
only approximately. The rapidly changing part will always be present, but
we can reduce its amplitude to the size O(ef), p a natural number. An effec-
tive way to do this is to use the “bounded derivative principle,” which 1s
based on the following observation:

If y(t) varies on the slow time scale, then d*y/dt* ~ O(1)forv=1,2,...,p
where p > 1 is some suitable number. Therefore our principle 1s

Choose the initial value y(0) = y, such that for ¢t = 0

&yldt'),cg ~O01), v=1,2,...,p. (4)



Using the differential equation, we can express the derivatives at t = 0 by
w0). Therefore, we can determine y(0) such that (4) 1s satisfied without solving
the differential equations.

Let us apply this principle to our example: dy/dt|,_, = O(1) if and only if

ay(0) = —1 + O(e);
1.€.,
W)= —1l/a+ey,  dy/dtlj—o=ay,, y,=0(1), (5)
If we choose y(0) according to (5), then
yr(0) = ¥(0) — ys(0) = —1/a + ey, — 1/(—a + ie) = Oe);



i.e., the amplitude of yg(t) 1s O(¢) for all times. We consider now the second
derivative. The differential equation gives us

ed*y/dt* = ady/dt + ie".
Thus d?y/dt*|,-, = O(1) if and only if
ady/dt,_o = a’y, = —i + O(e);
ie.,
y1 = —ifa*® + ey,, d’y/dt*|,— o = a®y,,
and by (5)
y(0) = —1/a(l + ie/a) + &%y,. (6)

In this case we obtain for the amplitude

yr(0) = ¥(0) — y5(0) = O(?).

The above procedure can be continued. If we choose the initial data such
that the first p time derivatives are O(1), then the amplitude of the fast part
of the solution 1s O(e?). We shall prove that results of this kind are valid for
very general systems of linear and nonlinear ordinary and partial differential
equations.



a 0
A=—10 a
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d
= Au+ f(x,u) + Fo
dt
d
d—f = Bx + g(u)
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Slow Manifold



Difficulty!

OF OF OF OF
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F(0,u) = Xo, G(0,u) = Z

Solutions breakdown in finite timel
Difficult to compute F & 6
Defeat’'s the original goal of simplifying



Simple ansatz (if any) based on universal transient behaviour
is the only way out!

We use an approach proposed by

Sharath Girimaji
Professor of Aerospace Engineering

Texas A&M University




Consider
z =g(z), where z = (21,22, 2n).

z = (x,y); x — fast, y — slow

Minimization of Evolution rate (MER)

For dissipative ODE’s there is a three stage behaviour;

e Initial transient (fast processes getting exhausted).

e Solutions bunch together in a lower dimension space.

e Final equilibrium state



Time scales at each state in phase space is proportional to
the amount of time a solution trajectory resides in an
infinitesimal neighbourhood of that point and is inversely

proportional to the local evolution rate \/ gl

Solutions stagnate near longtime scale states and pass
quickly through short time scale states.

An arbitrary trajectory is most likely to be found at the
state with the largest residence time that is smallest
evolution rate.



Proposal for slow manifold

E(z) = E(x,y) = )_gi (xy)
x(y) = MincE(x,y)

One could also naively set

dX_

— =0.
dt

For the LK system we obtain

x =B g(u)



» Its possible that close to the slow manifold fast variable
evolution can be slower than that of slow variables!

» A better gauge is convergence rate between two
neighbouring trajectories.

These issues are still to be explored ?!
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—a = cos°0 + € 5in°0
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P

_b a_

(

X
Y

)

b= (1—¢€)sin26/2

A linear example

A=—-1 x=—ycoth

A= —¢€

xr =y tanb

r=ytanf |1 — ¢ sec’ + e?sec’d tan’0 + - - - |

E:ij_I_,yQ

r(y) = ytand [1 — (1 + tan?0)e® + ()e* + -]

MER more accurate than steady state

(slow manifold)

(steady state)

(MER)
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“Slow manifold” for the LIC quintet uging MER

v _ UV
1 + a?
S bW (U2 +V?) + abU(V + fo)

b2(U? + V?2) + (1 + a?)



W (V24 U?)+abU(V + F)

dU/dt = —VW +bV U
/ + i bQ(UZ—I—VQ)—I—l—I—CLQ ] a
W (V24 U?)+abU(V+F)]
dV/dt = UW —bU —aV +aF
/ R0+ V) +1+a av T
dW/dt = -UV —aW.



Initial Conditions are 0.1,0,-0.1,0,1
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FIGURE 1. Graph showing evolution of by solving the original LK-
model eqn( 1-5) and the solution U, obtained by solving the re-
duced set of equations ( 8-10) by minimization of evolution rate.
The graph is for a = 0.02; F' = 0.2;b = 0.5 (same values as used by

3l)
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Initial Conditions are 0.1,0,—0.1,0,1
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FIGURE 2. Same as fig 1 but for V
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Initial Conditions are 0.1,0,0.1,0,1
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FIGURE 4. Evolution of W and W, when Uy = W)



Nonlinear Galerkin Methods

% +Au="f(u)

u(0) =ug
A is a self-adjoint operator (>0) on a Hilbert space H
AWj — Ajo J = 1,2,---

O0<A1<Ag:++ Aj— o0 as j— oo
Py :H — Span{wq,wo, - wn}
Qn=1-Pn
u=p+q=Pnu+Qnu

Does there 3 a “manifold”

q=®(p)?



Present Status?
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The Slow Invariant Manifold of the
Lorenz—Krishnamurthy Model

Jean-Marc Ginoux

Flow Curvature Method is uged to provide an eighteenth-order

approximation of the glow manifold for the LK model



z=g(z); z=(Xy)

flow curvature manifold

(er)] _ 0

&(z) = det|z,%, % - - -

x ~ ¢(y)

Based on the use of local metrics properties of curvatures

inherent to Differential Geometry,
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