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Edward Lorenz discovered nonperiodic behavior in deter-
ministic nonlinear systems and laid the foundation of chaos
theory. He showed that chaos exhibits sensitive depen-
dence on initial conditions implying that long-range weather
prediction is difficult because of errors in the observations
used as initial conditions. Lorenz described the intricate
structure of chaotic attractors and quantified predictability.
His important contributions in meteorology include energy
cycle, slow manifold and general circulation.

Discovery of Chaos

Weather forecasts routinely issued nowadays by major prediction
centers in the world are prepared by integrating global-scale
numerical models on supercomputers. Weather prediction models
are based on dynamical equations governing the atmosphere,
ocean, land and other components. The first dynamical weather
forecast was reported by the project led by Jule Charney and John
von Neumann at the Institute for Advanced Study in Princeton in
1950 using the pioneering Electronic Numerical Integrator and
Computer (ENIAC). However, during the 1950s, the weather
forecasts were usually made by statistical models that were
primarily linear methods relying on past observed data.

In 1955, the Department of Meteorology at the Massachusetts
Institute of Technology (MIT) appointed Edward Lorenz as a new
facultymember to lead the on-going statistical forecasting project.
Lorenz examined numerous statistical schemes and convinced
himself that the statistical predictions were similar to subjective
predictions and that even one-day forecasts were mediocre. He
also showed that many statistical forecasters had misinterpreted a
paper by the great MITmathematicianNorbertWiener towrongly
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The atmosphere is a forced and dissipative nonlinear system featuring nontrivial dynamics 
 on a vast range of spatial and temporal scales. It is an outstanding example of a  

high-dimensional forced and dissipative complex system.  
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than a consensus by the most comprehensive models. They require 
the underpinning of physical arguments  —  theories  —  developed 
through the use of a hierarchy of models and critically assessed using 
available data6,9. An increased emphasis on understanding may well 
be the best course of action to develop reliable insights about climate 
change in as timely a manner as possible. Conceptual breakthroughs 
have typically come from rephrasing old questions in a new way, 
one that makes long-standing problems finally tractable. Advances 
in key issues, such as the extent of the Hadley cell10, the intensity 
of tropical cyclones11 or the heights reached by convective clouds12, 
have all come through idealized studies and clever application of 
physical reasoning to obtain constraints on the system, leading to 
new ways of using and interpreting comprehensive models, and link-
ing them to observations. We argue therefore that accelerating pro-
gress in climate change assessments requires an approach focused 
on the development and testing of hypotheses that link changes in 
regional patterns, extremes, climate sensitivity and other important 
features of climate in a self-consistent way. The theories or ‘story 
lines’ that emerge from such an approach emphasize physical con-
cepts and testable ideas around which scientific activity can organ-
ize, and may also make communication of risk-based assessments 
more compelling and useful.

Four questions 
By focusing the development of story lines around a few carefully 
chosen questions, a more comprehensive analysis will be possible, 
one in which the integration of observations, evidence obtained 
from a hierarchy of models, and physical understanding will 

advance knowledge much more efficiently than would the consid-
eration of particular lines of evidence in isolation. Below, four such 
questions are outlined. Among the great variety of questions one 
might consider, these four stood out both because of their central-
ity to a more specific understanding of global and regional climate 
changes, and because new and emerging approaches or insights are, 
as outlined below, making them more tractable. 

What role does convection play in cloud feedbacks? Many 
changes of the climate system at global and regional scales are 
closely linked to the globally averaged temperature. For this rea-
son, one of the simplest and most important measures of the sys-
tem response to forcing remains the ‘climate sensitivity’, by which 
we mean the equilibrium change in the globally averaged near-
surface temperature in response to a doubling of the concentra-
tion of atmospheric CO2. Available evidence3 suggests a range 
in the climate sensitivity from 1.5 to 4.5 K. The socio-economic 
implications of this uncertainty are enormous — a simple cal-
culation demonstrates that to maintain a warming target of two 
degrees, nearly twice as much CO2 could be emitted in a low-
climate-sensitivity (1.5 K) world as compared with a high-sensi-
tivity (4.5 K) world. Economic modelling suggests that progress 
in the assessment of climate sensitivity would have a staggering 
economic value13.

Although the likely range of climate sensitivity estimates has not 
narrowed in the past three decades, tremendous progress has been 
made in understanding the factors controlling climate sensitivity6,7. 
It is now possible to delineate well-understood processes, which 

The influence of the large-scale atmospheric circulation on 
clouds has long been recognized, and is evident on any satel-
lite picture (see image, an infrared composite of geostationary 
satellite data taken on March 29th 2004 at 12:00 GMT). In the 
extratropics, large cloud-systems are caught up in and trace the 
motions associated with baroclinic and mesoscale waves. In the 
tropics, clusters of deep clouds trace the ascending branches of 
the Hadley–Walker circulation, while low clouds cover the ocean 
in anticyclonic areas. But clouds are not merely markers of the 
circulation, they are increasingly understood to influence and 
shape the very circulations in which they are embedded. The 
interaction between clouds and circulation primarily results from 
three processes: phase changes, radiative transfer and turbulent 
transport of air parcels. Condensation and evaporation processes 
associated with the formation, the maturation or the dissipation 
of clouds, and the interaction of clouds with solar and infrared 
radiation, lead to atmospheric heating and cooling perturbations, 

which stimulate waves and turbulence and which affect the hori-
zontal and vertical distributions of temperature on a wide range 
of scales. In addition, the mesoscale up- and down-drafts that 
form within cloud systems transport heat, moisture and momen-
tum, and thus rectify the large-scale atmospheric state. Through 
these various effects, clouds influence both locally and remotely 
the atmospheric static stability, the wind shear and the meridi-
onal gradients of temperature. In doing so they help to determine 
the localization and strength of large-scale dynamical features 
such as the tropical Hadley–Walker circulation, intraseasonal 
oscillations and mid-latitude jets25,33,46,47 and influence the rate 
of development, the structure and the strength of smaller-scale 
disturbances such as tropical and extratropical cyclones, as well 
as the organization of convection and the occurrence of a range 
of mesoscale phenomena1,42,48,49. New opportunities now make 
it possible to considerably improve the understanding of these 
interactions (Box 2).

Box 1 | How do clouds and circulation interact?
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Clouds stimulate the human spirit. Although they have been 
recognized for centuries as harbingers of weather, only in 
recent decades have scientists begun to appreciate the role of 

clouds in determining the general circulation of the atmosphere and 
its susceptibility to change.

Forming mostly in the updrafts of the turbulent and chaotic air-
flow, clouds embody the complex and multiscale organization of the 
atmosphere into dynamical entities, or storms. These entities medi-
ate the radiative transfer of energy, distribute precipitation and are 
often associated with extreme winds. It has long been recognized 
that the water and heat transfer that clouds mediate plays a funda-
mental role in tropical circulations, and there is increasing evidence 
that they also influence extratropical circulations1. Globally, the 
impact of clouds on Earth’s radiation budget — and hence surface 
temperatures — also depends critically on how clouds interact with 
one another and with larger-scale circulations2. Far from being pas-
sive tracers of a turbulent atmosphere, clouds thus embody processes 
that can actively control circulation and climate (Box 1).

For practical reasons, early endeavours to understand climate 
deployed a ‘divide and conquer’ strategy in which efforts to under-
stand clouds and convective processes developed separately from 
efforts to understand larger-scale circulations. Over time, a gap devel-
oped between the subdisciplines. But technological progress and 
conceptual advances have tremendously increased our capacity to 
observe and simulate the climate system, such that it is now possible 
to study more readily how small-scale convective processes — that 
is, clouds — couple to large-scale circulations (Box  2). Much as a 
new accelerator allows physicists to explore the implication of the 
interactions among forces acting over different length scales, these 
new capabilities are transforming how atmospheric scientists think 
about the interplay of clouds and climate. This offers a great oppor-
tunity not only to close the gap between scientific communities, but 

Clouds, circulation and climate sensitivity
Sandrine Bony1*, Bjorn Stevens2, Dargan M. W. Frierson3, Christian Jakob4, Masa Kageyama5, 
Robert Pincus6,7, Theodore G. Shepherd8, Steven C. Sherwood9, A. Pier Siebesma10, Adam H. Sobel11, 
Masahiro Watanabe12 and Mark J. Webb13

Fundamental puzzles of climate science remain unsolved because of our limited understanding of how clouds, circulation and 
climate interact. One example is our inability to provide robust assessments of future global and regional climate changes. 
However, ongoing advances in our capacity to observe, simulate and conceptualize the climate system now make it possible 
to fill gaps in our knowledge. We argue that progress can be accelerated by focusing research on a handful of important scien-
tific questions that have become tractable as a result of recent advances. We propose four such questions below; they involve 
understanding the role of cloud feedbacks and convective organization in climate, and the factors that control the position, the 
strength and the variability of the tropical rain belts and the extratropical storm tracks.

also to answer some of the most pressing questions about the fate of 
our planet.

Urgent need for accelerated progress
Climate is changing at an unprecedented pace3. Government and 
private decision-makers involved in planning and risk assessments 
urgently need information about how rapidly temperatures will rise, 
how rainfall patterns will change and to what extent the frequency 
of extreme weather will increase. Climate scientists have built a 
successful research framework for detecting and attributing some 
global aspects of climate change, such as the basic trends in globally 
averaged temperatures and sea level. This success is reflected in the 
growing level of confidence in understanding of such changes3. This 
framework is much less effective, however, when it comes to quanti-
fying critical aspects of climate change such as the climate sensitiv-
ity or regional changes. On these aspects, observational datasets are 
limited, natural variability obscures the anthropogenic signal, and 
climate models produce uncertain projections4,5. This leads to low 
confidence in their assessment3.

A deeper understanding of how clouds and aerosols affect 
the planetary energy budget is needed if we are to increase our 
confidence in these fundamental aspects of climate change6,7. But 
given the strong dependence of regional climate patterns and 
extremes on the large-scale circulation, it is equally important to 
understand better how clouds and convection affect atmospheric 
dynamics and its change as the troposphere becomes warmer and 
wetter, the stratosphere colder and the cryosphere smaller4,8 (Box 1). 
Our degree of understanding of the interplay between clouds, cir-
culation and climate sensitivity thus demarcates the frontier of our 
ability to anticipate climate changes.

Numerical models have always played an important role in climate 
change studies and assessments. But robust conclusions require more 
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Can we capture the large scales?

This type of large scale motion is primarily horizontal because on large-scale,  
the fluid is confined to a relatively thin spherical shell.  

The density stratification resulting from the near hydrostatic equilibrium discourages  
vertical motion. 

The essential scales for describing large-scale motion are horizontal velocity and  
horizontal length. 

Thus large scale flow can be thought of as flow in which the Coriolis force is significant. 



1 Review

1.1 Equations of motion

The equations of motion express how the important variables, the velocit-

ies, density, etc., change in time. To write them, we require derivatives.

Consider a scalar variable, for example the density, which varies in both

time and space. By the chain rule, the total change in the ρ is:

dρ =
∂ρ

∂t
dt +
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∂x
dx +

∂ρ

∂y
dy +

∂ρ
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dz (1)
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∂t
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We refer to the left side as the Lagrangian derivative. The time derivative

on the RHS is the local derivative, and the RHS is called the Eulerian for-

mulation. The Lagrangian formulation applies to moving measurements,

like balloons or drifters, while the Eulerian applies to fixed measurements,

like weather stations or current meters.

In both the atmosphere and ocean, the velocities are governed by the

Navier-Stokes equations, or the momentum equations. Consider that we

are in a planar region on the earth’s surface, centered at latitude θ. The

equations are:1
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ρ
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1There are several additional terms, called curvature terms, which stem from using spherical coordin-
ates. But these terms are negligible at the scales of interest and so are left out here.
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and (u, v, w) are the corresponding velocities. The density is ρ, p is the

pressure and g = 9.8 m/sec is the gravitational constant, and:

Ω =
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is the Earth’s rotation rate.

These equations derive from Newton’s second law, F = ma. There are

two types of force, real and apparent. The real forces are due to gradients
in the pressure (p), to gravity (g) and to friction (Fi). The apparent forces

come about because the earth is rotating. There are two: the Coriolis force

and the centrifugal force. The centrifugal force acts perpendicular to the

earth’s rotation axis and is constant in time. It is possible to absorb this into
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So the first term is the same size as the second and third terms. This para-

meter is the Rossby number. At synoptic scales it is approximately:

U

2ΩL
= 0.067

So the first three terms are smaller than the second Coriolis term.

However, the other terms are even smaller:

W

2ΩD
= 0.0067,

W

U
= .001

and so can be neglected. The pressure gradient term scales as:

△p

2ΩρUL
= 0.70

which is comparable in size to the second Coriolis term. It does not matter

that this estimate is slightly smaller than one—it is merely an order of

magnitude estimate (recall too that the Coriolis term involves a factor of

sin(θ), which is always less than one).

The scalings given above are applicable to the atmosphere, but using

values relevant to the ocean yields similar results. Furthermore, the scal-

ing of the y-momentum equation is identical to that of the x-momentum

equation. The dominant balances are thus:

−fv = −
1

ρ

∂

∂x
p (15)

fu = −
1

ρ

∂

∂y
p (16)

where:

f ≡ 2Ωsinθ
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the understandably cautious initial reaction, Richardson’s brilliant and prescient ideas are now universally
recognized among meteorologists and his work is the foundation upon which modern forecasting is built.

2. The beginning of modern NWP

While Richardson’s dream appeared unrealizable at the time his book was published, a number of key
developments in the ensuing decades set the scene for progress. There were profound developments in the the-
ory of meteorology, which provided crucial understanding of atmospheric dynamics. There were advances in
numerical analysis, which enabled the design of stable algorithms. The invention of the radiosonde, and its
introduction in a global network, meant that timely observations of the atmosphere in three dimensions were
becoming available. And, finally, the development of the digital computer provided a means of attacking the
enormous computational task involved in weather forecasting.

2.1. John von Neumann and the meteorology project

John von Neumann was one of the leading mathematicians of the 20th century. He made important con-
tributions in several areas: mathematical logic, functional analysis, abstract algebra, quantum physics, game
theory and the theory and application of computers. A brief sketch of his life may be found in Goldstine [13]
and a recent biography has been written by Macrae [19].

In the mid 1930s von Neumann became interested in turbulent fluid flows. The non-linear partial differen-
tial equations which describe such flows defy analytical assault and even qualitative insight comes hard. Von
Neumann saw that progress in hydrodynamics would be greatly accelerated if a means of solving complex
equations numerically were available. It was clear that very fast automatic computing machinery was required.
He masterminded the design and construction of an electronic computer at the Institute for Advanced Studies
(IAS) in Princeton. This machine was built between 1946 and 1952 and its design had a profound impact upon
the subsequent development of the computer industry. The Electronic Computer Project was ‘undoubtedly the
most influential single undertaking in the history of the computer during this period’ [13, p. 255]. The Project
comprised four groups: (1) Engineering, (2) Logical design and programming, (3) Mathematical, and (4) Mete-
orological. The fourth group was directed for the period 1948–1956 by Jule Charney (Fig. 2).

Von Neumann recognized weather forecasting, a problem of both great practical significance and intrinsic
scientific interest, as an ideal problem for an automatic computer. Moreover, according to Goldstine
(p. 300), Von Neumann ‘‘knew of the pioneering work . . . of Lewis F Richardson. ‘‘During the 1920s, Cou-
rant, Friedrichs and Lewy [11] had studied the numerical solutions of partial differential equations, and had
shown that there is a limitation on the time-step for a given space step; this is now known as the CFL cri-
terion. Von Neumann was in Göttingen in the 1920s, and he fully appreciated the practical implications of
this work. Von Neumann made estimates of the computational power required to integrate the equations of

Fig. 2. Jule Charney (1917–1981) (! Nora Rosenbaum).
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    Based on observations and scale analysis

   Geostrophic balance.
Balanced equation.



Using a simple model, Charney showed that the motion, initialized with the balance equation,  

continued to be approximately balanced for some time; the balance equation thus describes  

a nearly invariant manifold.  

In 1955 Charney introduced this nonlinear balance equation as an initialization method to  

determine wind from pressure fields.  
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field whose effect exactly cancels the disruptive effect of the horizontal motion, thus
preserving hydrostatic equilibrium.

Richardson next concluded that the geostrophic approximation was inadequate,
and then went on to present a complete procedure for solving what we now call
the primitive equations. His effort has been reviewed many times, perhaps most
thoroughly by Platzman (1967). As everyone seems to know, his one forecast was
disastrous. He correctly attributed the extremely large pressure tendencies to unrep-
resentative observed winds, but he apparently did not recognize that no wind obser-
vations available in his day could have led to reasonable pressure changes. Had he
fully realized this he would almost surely have written his book anyway. His message
was clearly addressed to a future generation.

With hindsight one can maintain that those who concluded from Richardson’s
work that NWP was unfeasible should have recognized that geostrophic equilibrium
could be introduced analogously to hydrostatic equilibrium. The procedure is less
straightforward because the wind is a vector, and introducing both components of
the geostrophic equation would wipe out both equations of motion. What is needed
is some readily measured scalar function of the wind, and a second scalar function
whose time derivative depends largely on the difference between the first function of
the wind and the same function of the geostrophic wind. When this difference and
its time derivative are equated to zero, two more diagnostic equations result, and the
number of prognostic equations drops from three to one.

What Charney (1948) succeeded in doing was equivalent to identifying the two
scalars as vorticity and divergence and then carrying out the procedure, although his
line of reasoning was entirely different and his choice of what to include and what
to omit depended critically on a consideration of scales. Concurrently, Arnt Eliassen
(1949) and Eric Eady (1950) were proceeding along similar lines, and their papers
appeared soon after Charney’s.

What happens here is that the rotational part of the wind—the part that is read-
ily observed—alters both the wind and the pressure fields in such a way as to disrupt
geostrophic equilibrium. The new system assumes that the less readily observed diver-
gent part of the wind field, which also alters wind and pressure, is the one field whose
effect exactly cancels the disruptive effect of the rotational part, so that geostrophic
equilibrium is preserved.

I personally regard the successful reduction of the dynamic equations to a single
prognostic equation by means of the geostrophic relationship, entirely apart from
any applicability to NWP, as the greatest single achievement of twentieth-century
dynamic meteorology. Consideration of the processes described by the new equation
enabled me to see why cyclones and anticyclones and other weather systems move as
they do—an understanding that the primitive equations never conveyed.

Like Richardson, Charney looked ahead to a day when weather forecasts would be
numerically produced, but his approach to NWP was rather different. He felt that one
should begin by simplifying the equations as much as permissible, thus minimizing the
number of technical problems to be faced all at once; after these had been overcome,
some omitted and supposedly secondary features could be reintroduced, preferably
not too many at a time.
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If we choose initial conditions that are in geostrophic balance …!?! 
Will the solutions do the same?













During a visit to IISc in 1994



22 J.-M. Ginoux

In the following we consider a dynamical systems theory for systems of differential
equations of the form:

{
x⃗ ′ = f⃗ (x⃗, z⃗, ε)
z⃗′ = εg⃗ (x⃗, z⃗, ε)

(1)

where x⃗ ∈ Rm , z⃗ ∈ Rp, ε ∈ R+, and the prime denotes differentiation with respect to
the independent variable t . The functions f⃗ and g⃗ are assumed to be C∞ functions3

of x⃗ , z⃗ and ε in U × I , where U is an open subset of Rm ×Rp and I is an open interval
containing ε = 0.

In the case when ε ≪ 1, i.e., is a small positive number, the variable x⃗ is called
fast variable, and z⃗ is called slow variable. Using Landau’s notation: O(εl) represents
a real polynomial in ε of l degree, with l ∈ Z, it is used to consider that generally x⃗
evolves at an O (1) rate; while z⃗ evolves at an O (ε) slow rate.

Reformulating the system (1) in terms of the rescaled variable τ = εt , we obtain:

{
ε ˙⃗x = f⃗ (x⃗, z⃗, ε)
˙⃗z = g⃗ (x⃗, z⃗, ε)

(2)

The dot (·) represents the derivative with respect to the new independent variable
τ .

The independent variables t and τ are referred to the fast and slow times, respec-
tively, and (1) and (2) are called the fast and slow systems, respectively. These systems
are equivalent whenever ε ̸= 0, and they are labeled singular perturbation problems
when ε ≪ 1, i.e., is a small positive parameter. The label “singular” stems in part from
the discontinuous limiting behavior in the system (1) as ε → 0.

In such case, the system (1) reduces to an m-dimensional system called reduced
fast system, with the variable z⃗ as a constant parameter:

{
x⃗ ′ = f⃗ (x⃗, z⃗, 0)

z⃗′ = 0⃗
(3)

System (2) leads to the following differential-algebraic system called reduced slow
system which dimension decreases from m + p to p:

{
0⃗ = f⃗ (x⃗, z⃗, 0)
˙⃗z = g⃗ (x⃗, z⃗, 0)

(4)

By exploiting the decomposition into fast and slow reduced systems (3) and (4), the
geometric approach reduced the full singularly perturbed system to separate lower-
dimensional regular perturbation problems in the fast and slow regimes, respectively.

3 In certain applications these functions will be supposed to be Cr , r ! 1.
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I. INTRODUCTION 

Perhaps the simplest problem with different time scales is given by the 
initial-value problem for the ordinary differential equation 

ε dy/dt = ay + é\ t > 0, y(0) = yo. (1) 

Here ε, a are constants with 0 < ε « 1, |α| = 0(1), and Real a ^ 0. The solu-
tion of (1) is given by 

y(t) = ys(t) + yM (2) 
where 

ys(t) = é\-a + w)-\ yR(t) = epi*(y0 - ys(0)). 
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30 Heinz-Otto Kreiss 

Thus, it consists of the slowly varying part ys(t) and the rapidly changing 
part yR(t). There are two fundamentally different situations. 

1. a=-l 

In this case yR(t) decays rapidly, and outside a boundary layer the solution 
of (1) varies slowly. Many people have developed numerical methods to solve 
problems of this kind (see, e.g., Kreiss, 1978) and we do not consider this case. 

2. a = i Is Purely Imaginary 

Now yR(t) does not decay and y(t) is highly oscillatory everywhere. In 
many applications one is not interested in the fast time scale. Therefore, it is 
of interest to develop methods of preparing the initial data such that the fast 
time scale is suppressed. There are two ways to do this. 

INITIALIZATION. One prepares the initial data in such a way that 
the fast time scale is not activated. In the preceding example we need only 
to choose 

JO = W(0) = (-a + icy1 = -a~\\ + is/a - (s/a)2 + ·· ·). (3) 

Then yR(t) = 0, and the solution of our problem consists only of the slowly 
varying part ys(t). For more complicated problems one can determine ys(0) 
only approximately. The rapidly changing part will always be present, but 
we can reduce its amplitude to the size 0(sp), p a natural number. An effec-
tive way to do this is to use the "bounded derivative principle," which is 
based on the following observation: 

If y(t) varies on the slow time scale, then dvy/dtv ~ 0(1) for v = 1, 2 , . . . , p 
where p > 1 is some suitable number. Therefore our principle is 

Choose the initial value y(0) = y0 such that for t = 0 

i*j7AvL.e ~ 0(1), v = l , 2 , . . . , p . (4) 

Using the differential equation, we can express the derivatives at t = 0 by 
y(0). Therefore, we can determine y(0) such that (4) is satisfied without solving 
the differential equations. 

Let us apply this principle to our example: dy/dt\t=0 = 0(1) if and only if 

ay(0)=-l + O(s); 

i.e., 

y(0) = - 1/a + β^, dy/dt\t = 0 = ayl9 yx = 0(1). (5) 

If we choose y(0) according to (5), then 

Λ(0) = y(0) - ys(0) =-l/a + eyx - l/(-a + is) = 0(s); 

(1)

(2)
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time scale is suppressed. There are two ways to do this. 

INITIALIZATION. One prepares the initial data in such a way that 
the fast time scale is not activated. In the preceding example we need only 
to choose 

JO = W(0) = (-a + icy1 = -a~\\ + is/a - (s/a)2 + ·· ·). (3) 
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i.e., 

y(0) = - 1/a + β^, dy/dt\t = 0 = ayl9 yx = 0(1). (5) 

If we choose y(0) according to (5), then 

Λ(0) = y(0) - ys(0) =-l/a + eyx - l/(-a + is) = 0(s); 
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i.e., the amplitude of yR(t) is 0(ε) for all times. We consider now the second 
derivative. The differential equation gives us 

ε d2y/dt2 = a dy/dt + ieu. 

Thus d2y/dt2\t=0 = 0(1) if and only if 

a dy/dt\t=0 = a2y1 = - i + 0(ε); 
i.e., 

y1 = -il a2 + ey2, d2y/dt2\t=0 = a2y2, 

and by (5) 

y(0) = -1/α(1 + ιε/α) + ε2>>2. (6) 

In this case we obtain for the amplitude 

Λ(0) = y(0) - Λ(0) = 0(ε2). 

The above procedure can be continued. If we choose the initial data such 
that the first p time derivatives are 0(1), then the amplitude of the fast part 
of the solution is 0(� � ). We shall prove that results of this kind are valid for 
very general systems of linear and nonlinear ordinary and partial differential 
equations. 

FILTERING. Instead of preparing the initial data, one can use a nu-
merical method which automatically filters out the fast waves. Approximate, 
for example, the differential equation (1) by the implicit Euler method 

s[y(t + At) - y(t)]/At = ay{t + Ai) + e«t+At\ flO) = y0, (7) 

where we assume that a At » ε. (If a At « ε, then the fast oscillation will not 
be damped out). We now derive an asymptotic expansion for y(t). Define y^t) 
by 

y(t)=fi(t) + h(t), f1(t)=-(l/a)eit. 

Then y^t) satisfies the difference equation 

e[y(t + Ai) - y(i)]/Ai = ayt(t + Ai) + s(b/a)ei{t+M\ 

b = (l-e-iAt)/At. 
Therefore, 

Ht) = Mt) - Λ«, f2(t) = -� /� � < 
is the solution of 

ε [# ί + At) - y(i)]Mt = ay2(t + At) + ε ^ / ο 2 ) ^ 1 ^ " , 

y2(0) = y{0)-fi(0)-fM ( 8 ) 
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Slow Manifold
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Difficulty!

Solutions breakdown in finite time! 
Difficult to compute F & G 

Defeat’s the original goal of simplifying!



We use an approach proposed by

Sharath Girimaji 

Professor of Aerospace Engineering 

Texas A&M University 

Simple ansatz (if any) based on universal transient behaviour  
is the only way out!



REDUCTION OF LARGE DYNAMICAL SYSTEMS BY MINIMIZATION OF

EVOLUTION RATE

SHARATH S. GIRIMAJI∗

Abstract. Reduction of a large system of equations to a lower-dimensional system of similar dynamics

is investigated. For dynamical systems with disparate timescales, a criterion for determining redundant

dimensions and a general reduction method based on the minimization of evolution rate are proposed.

Key words. deduced chemical kinetics, low-dimensional manifolds, algebraic stress modeling

Subject classification. Turbulent Combustion

1. Introduction. The macroscopic behavior of many complex systems (with a large number of degrees

of freedom or scales) is largely insensitive to the details of the microscopic features. The macroscopic behavior

can then be nearly exactly described by a simpler system with very few degrees of freedom or scales. In

this article, a general method for reducing the description of the macroscopic behavior of large systems

is presented. The two specific examples considered in this paper are of importance in the modeling and

computation of turbulent combustion: the reduction of complex chemical kinetics and algebraic modeling of

Reynolds stresses.

Consider an autonomous dissipative dynamical system with one attracting fixed point:

ż = g(z), where z = (z1, z2, · · · zn).(1.1)

It is assumed that z is suitably scaled and nondimesionalized. If the system has disparate timescales, the

solution exhibits a typical three-stage behavior. (i) Initial-condition dependent initial transient stage which

lasts until all the small-timescale fast processes are exhausted; (ii) the intermediate slow-manifold stage in

which the solutions ‘bunch’ together in a lower-dimensional phase space as the slow processes dominate; and

(iii) the final equilibrium state. In the slow-manifold stage, the degrees of freedom of the system can be

reduced if the relationship between fast and slow variables can be found. In a nonlinear dynamical system

it is difficult to characterize the slow manifold accurately and the current practice is to locally linearize the

equations. We will use the example of a general two-variable linear system with one large (−1) and one

small (−ε) eigenvalue in our analysis:

ẋ = −x(cos2 θ + ε sin2 θ) + y sin θ cos θ(1 − ε),

ẏ = x sin θ cos θ(1 − ε) − y(sin2 θ + ε cos2 θ).(1.2)

The directions corresponding to the two eigenvalues are

x = −y cot θ for λ = −1; x = +y tan θ for λ = −ε.(1.3)

In a linear system, the slow manifold lies in a space spanned by the eigenvectors corresponding to small

(in magnitude) eigenvalues. Maas and Pope [1] determine the slow-manifold by requiring it to be orthogonal

∗Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA

23681-2199. This research was supported by the National Aeronautics and Space Administration while the author was in

residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center,

Hampton, VA 23681-2199.
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Minimization of Evolution rate (MER)

Consider

For dissipative ODE’s there is a three stage behaviour;

• Initial transient (fast processes getting exhausted).

• Solutions bunch together in a lower dimension space.

• Final equilibrium state

z = (x,y); x ! fast, y ! slow
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Proposal for slow manifold

E(z)=E(x,y)=
X

i

g2

i

(x,y)

x(y)=Min
x

E(x,y)

One could also naively set

dx
dt

= 0.

For the LK system we obtain

x=B°1g(u)
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œ Its possible that close to the slow manifold fast variable
evolution can be slower than that of slow variables!

œ A better gauge is convergence rate between two
neighbouring trajectories.

œ Its possible that close to the slow manifold fast variable
evolution can be slower than that of slow variables!

œ A better gauge is convergence rate between two
neighbouring trajectories.

These issues are still to be explored ?!
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MER more accurate than steady state

A linear example
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REVISITING THE SLOW MANIFOLD OF THE
LORENZ-KRISHNAMURTHY QUINTET
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Abstract. The slow-manifold for the Lorenz-Krishnamurthy model has been
studied. By minimizing the evolution rate we find that the analytical functions
for the fast variables are devoid of high frequency oscillations. However upon
solving this model with initial values of the fast variables obtained from the
analytical functions, the LK model exhibits high frequency oscillations. Upon
using the time derivatives of the analytic functions for computing the evolution
of fast variables, we find a slow-manifold in the neighbourhood of the LK model.

Minimization of evolution rate does not guarantee the invariance of the
manifold. Using a locally linear approximate reduction scheme, the invariance
can be maintained. However, the solutions so obtained do develop high fre-
quency oscillations. The onset of these high frequency oscillations is delayed
vis-a-vis other previous studies. These methods have potential to be used in
improving the predictions of weather systems.

1. Introduction. In the dynamics of atmosphere as well as oceans, we come across
a vast range of spatial and temporal scales. It is extremely di±cult, or even impos-
sible, to resolve all the scales. In any case daily observations of field variables are
too sparse to allow accurate resolution. If we were to pick one large scale variation
and one small scale variation that could be crucial for accurate numerical weather
prediction then it would be the low frequency Rossby wave (RW) and the high
frequency gravity wave (GW). The solutions to the primitive equations (PE) that
model the atmosphere permit both RW and GW. It is extremely expensive to accu-
rately evaluate the GW by solving the PE numerically. Besides the gravity waves
have little energy with most of the energy concentrated in the RW. The question
therefore boils down to whether it is possible to get the RW accurately without an
accurate resolution of the GW. More precisely the question is whether we can find

2000 Mathematics Subject Classification. Primary: 37D10; Secondary: 35B42.
Key words and phrases. invariant slow-manifold, minimization of evolution rate, predictability.
1Undergraduate student, presently student at Indian Institute of Science, Bangalore
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respectively. For more details of the LK quintet refer to [4] and [3]. Note that U,V
and W are the slow variables while X and Z are the fast variables.

2. The Slow Manifold of Girimaji. Consider an autonomous dissipative set of
ODEs

dz

dt

= g(z);

z(o) = z

o

,

where
z(t) = (z1(t)z2(t)...zn

(t))
and g is a smooth function on R

n that has an attracting fixed point. In [1] Girimaji
has argued that if the system has disparate time scales, then the solution exhibits
a typical three stage behaviour.

1. Initiation condition dependent transient stage dominated by small-time scales
2. the intermediate slow-manifold in which the solutions “bunch” together in a

lower-dimensional space dominated by the slow-time scales,
3. the final steady state.
If we partition z(t) into the slow variable y(t) and the fast variable x(t) Girimaji’s

proposal is

x(y) º min

x

F (x, y)
where

F = ßn

i=1g
2
i

Basically this means that the variation in z due to fast variable x is minimized.
For higher order, Girimaji proposes to minimize F

m(x, y) but we shall restrict to
m = 1.

Also in the nonlinear Galerkin method of Marion and Temam [11], z(t) is a
Hilbert space valued function and is approximated by z

m

(t) which is split as

z

m

(t) = x

m

(t) + y

m

(t)

x

m

(t) = ßm

j=1ajm

(t)w
j

y

m

(t) = ß2m

j=m+1bjm

(t)w
j

where {w
j

} is an orthonormal basis for the Hilbert space. If one can find a function
¡ satisfying

y

m

(t) = ¡(x
m

(t))
this would then correspond to an inertial manifold or an approximate slow manifold.
In general there is no recipe for obtaining this manifold ¡. The above criteria of
minimization of evolution rate gives a method for obtaining it.

Finally, applying the latter scheme to the LK system ( 1)-(5) we obtain

F =
∑
dU

dt

∏2

+
∑
dV

dt

∏2

+
∑
dW

dt

∏2

+
∑
dX

dt

∏2

+
∑
dZ

dt

∏2

Minimizing F with respect to fast variables X and Z gives the values of X and Z
as functions of U, V and W that minimizes the evolution rate. Therefore

X = f(U, V, W ) =
°bUV

1 + a

2
(6)

Z = g(U, V, W ) =
bW (V 2 + U

2) + abU(V + F )
b

2(U2 + V

2) + 1 + a

2
(7)



X = � bUV

1 + a2

Z =
bW (U2 + V 2) + abU(V + f0)

b2(U2 + V 2) + (1 + a2)

“Slow manifold” for the LK quintet using MER
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Note that the expression for X is the same as given by Camassa and Tin [10]
(eqn C4) but the expression for Z is diÆerent. The equations in Camassa and Tin
are obtained by setting the derivatives in (1) - (5) to zero i.e. the steady state
solution for these equations.

2.1. Eliminating the Fast Variables. We are now interested in finding out as
to how best the above equations represent the slowness of the manifold, with the
dynamics of the model remaining unchanged. X and Z in the expressions for the
time derivatives of U,V and W in ( 1) - (3) are replaced by the functions f and g
given in 6-7, leading to a set of three ODEs with rhs being only functions of U,V
and W.

dU/dt = °V W + bV

∑
bW (V 2 + U

2) + abU(V + F )
b

2(U2 + V

2) + 1 + a

2

∏
° aU (8)

dV/dt = UW ° bU

∑
bW (V 2 + U

2) + abU(V + F )
b

2(U2 + V

2) + 1 + a

2

∏
° aV + aF (9)

dW/dt = °UV ° aW. (10)
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Initial Conditions are 0.1,0,−0.1,0,1
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U

Figure 1. Graph showing evolution of by solving the original LK-
model eqn( 1-5) and the solution U

g

obtained by solving the re-
duced set of equations ( 8-10) by minimization of evolution rate.
The graph is for a = 0.02; F = 0.2; b = 0.5 (same values as used by
[3])

We have solved these set of ODEs using a second-order Runge-Kutta method.
Figures 1 and 2 clearly show that U and V obtained by solving the system (1)-(5)
has slowly varying U and V contaminated with the fast oscillations. This is due to
the fact that the fast variable Z is coupled with U and V in the system. On the
other hand, the value of U obtained by solving the system ( 8)-( 10) (denoted by
U

g

in the figure) not only has no noise disturbing its solution but also captures the
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Figure 2. Same as fig 1 but for V

complete dynamics of the original system. This elimination of noise could be useful
in numerical weather forecasting, where one wants the Rossby phase space to be
free of gravity waves.

Nevertheless inaccuracies do prevail in capturing the dynamics of the original
system, though fast oscillations were eliminated in the Rossby phase space. This
was prominent in some cases where the steady state reached by the values of the
slow variables obtained by solving the systems (1)-(5) and ( 8) - (10) are diÆerent.
This could be due to the fact that the LK system is unstable and has three steady
states for values of F > F

c

.(F
c

has the same meaning as represented by [3] and its
value is around 0.02 for the data considered here). Hence, the final steady state
attained depends on the initial values of the variables. We note that this deviation
occurred when the initial values of U and W were equal. Figures 3 and 4 illustrate
the fact with initial conditions for U, V,W,X and Z as 0.1,0,0.1,0,1 respectively.

2.2. Orbit from a Point on the Slow Manifold. In continuation with the
previous observation, we examined the trajectory emanating from a point on the
slow manifold i.e calculate X and Z for a given set of initial values of U, V and W

from ( 6) and (7). According to Lorenz [5], if the orbit from the point on the slow
manifold does not have any corrugations or high frequency oscillations, it will be
the slow manifold for the given system. Unfortunately the obtained slow manifold
by minimization of evolution rates could not suppress the oscillations in Z for the
above mentioned conditions as indicated in the Figure 5. Initial conditions for
U,V,W chosen here were 0.125,0.325,0.125, the same as that of Lorenz [5]. This
implies that the minimum evolution rate scheme did not take care of invariance.
This was evident from the fact that the original evolution rates of X and Z were
quite diÆerent from that of the new evolution rates obtained from the functions f
and g.
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Figure 3. Evolution of U and U
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for initial conditions U0 = W0
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Figure 4. Evolution of W and W
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when U0 = W0

2.3. A Neighborhood System with an Exact Slow Manifold. The manifold
obtained by minimizing the evolution rate was not able to eliminate oscillations in
the orbit emanating from a point on the assumed slow manifold. We now try to
obtain a new system in which the evolution rates for X and Z of the LK model
(1)-(5) are replaced with those obtained from f and g.

dX

dt

=
@f

@U

dU

dt

+
@f

@V

dV

dt

+
@f

@W

dW

dt

(11)
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Imbalance leading to discrepancy?
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Nonlinear Galerkin Methods

du
dt

+Au= f(u)

u(0)= u
0

A is a self-adjoint operator (> 0) on a Hilbert space H
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Abstract During this last decades, several attempts to construct slow invariant man-
ifold of the Lorenz–Krishnamurthy five-mode model of slow–fast interactions in the
atmosphere have been made by various authors. Unfortunately, as in the case of many
two-time scales singularly perturbed dynamical systems the various asymptotic pro-
cedures involved for such a construction diverge. So, it seems that till now only the
first-order and third-order approximations of this slow manifold have been analytically
obtained. While using the Flow Curvature Method we show in this work that one can
provide the eighteenth-order approximation of the slow manifold of the generalized
Lorenz–Krishnamurthy model and the thirteenth-order approximation of the “conser-
vative” Lorenz–Krishnamurthy model. The invariance of each slow manifold is then
established according to Darboux invariance theorem.

Keywords Lorenz–Krishnamurthy model · Flow Curvature Method ·
Darboux invariance · Fenichel theory · Slow invariant manifold

1 Introduction

The classical geometric theory developed originally by Andronov [1], Tikhonov [34]
and Levinson [23] stated that singularly perturbed systems possess invariant man-
ifolds on which trajectories evolve slowly and toward which nearby orbits contract
exponentially in time (either forward and backward) in the normal directions. These
manifolds have been called asymptotically stable (or unstable) slow manifolds. Then,
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BP 20132, 83957 La Garde Cedex, France
e-mail: ginoux@univ-tln.fr
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Flow Curvature Method is used to provide an eighteenth-order  
approximation of the slow manifold for the LK model. 



ż = g(z); z = (x,y)

flow curvature manifold

�(z) = det[ż, z̈,
...
z · · ·

(n)
z ] = 0

x ⇡ �(y)

Based on the use of local metrics properties of curvatures 
inherent to Differential Geometry, 
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