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Where do we find them?
Why are we interested in particles?

Cloud formation Pyroclastic flows Planetary formation

Pollutant dispersion Industry Planktons and marine biology



Types of Particles
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Light particles Tracers Heavy particles
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9νρf



Effect of Inertia: Preferential Concentration
Experiments:
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A. M. Wood, et al., Int. J. Multiphase Flow, 31 (2005).
E. Calzavarini, et al., Phys. Rev. Lett., 101 (2008).



Single particle dynamics

Single, passive, spherical, inertial, particle of radius a, mass mp.
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M. R. Maxey & J. J. Riley, Phys. Fluids 26, 883 (1983).



Stokes Drag Model

Setting:

• small sized particles;

• dilute suspensions;

• passive particles.

Simplifications:

• The Faxen correction a2∇2u ≈ O(a2u/L)� 1.

• Du
Dt ≈ dv

dt

• Buoyancy effects negligible.

Working Equations (for heavy particles):

dx

dt
= v;

dv

dt
= −v − u

τp
.



Introduction

• In warm clouds, turbulence in the airflow enhances the
collision rate of the water droplets.

• It thus influences the evolution of droplet sizes and the
timescale for rain formation.

• Two mechanisms are at play:
◦ preferential concentration;
◦ very large approach velocities explained in terms of the sling

effect and the subsequent formation of caustics.

• Open question regarding the coalescence rate of droplets.
◦ Collisions that are too violent can cause particle fragmentation.

• Developing an understanding:
◦ Experiments
◦ Theory
◦ Direct Numerical Simulations

G. Falkovich, et al, Nature 419, (2002). E. Balkovsky, et al., Phys. Rev. Lett. 86 (2001).
R. Shaw, Ann. Rev. Fluid Mech. 35 (2003). J. Bec, et al, Phys. Rev. Lett. 98 (2007).
E.-W. Saw, et al., Phys. Rev. Lett. 100 (2008). G. P. Bewley, et al., New J. Phys. 15 (2013).
M. Wilkinson, et al, Phys. Rev. Lett. 97 (2006). G. Falkovich & A. Pumir, J. Atmos. Sci. 64 (2007).



Questions

• How fast do droplets collide?

• How frequently do droplets collide?

• How fast do droplets settle under gravity?

• How fast do droplets grow through coalescence?

Saw, Bewley, Bodenschatz, Ray, and Bec, Physics of Fluids Letters, 26, 111702 (2014).
Bec, Homann, and Ray, Physical Review Letters 112, 184501 (2014).
Bec, Ray, Saw, and Homann, Physical Review E (Rapid) 93, 031102(R) (2016).
James and Ray, ArXiv: 1603.05880 (under review) (2016).
James and Ray, (under review) (2016).



Our Approach

• The Fluid
◦ The fluid velocity u is a solution of the incompressible

Navier–Stokes equation and obtained via pseudo-spectral,
direct numerical simulations.

◦ Statistically steady, homogeneous, isotropic turbulence is
maintained by a large-scale forcing.

• The Droplets
◦ Inertial particles which obey the Stokes drag model.

− Particles are finite-sized, much smaller than the Kolmogorov
scale, much heavier than the surrounding fluid, and with a
small Reynolds number associated to their slip velocity.

− Friction (Stokes) and other forces result in their velocities
different from the underlying fluid velocity.



The Model: Equations

• The Fluid
◦ The incompressible, forced Navier–Stokes equation:

∂tu + (u · ∇)u = −∇p + ν∇2u + f ;

∇ · u = 0.

− ν is the fluid kinematic viscosity and f a large scale forcing.

• The Particles
◦ Stokes drag and gravity:

dxp
dt

= vp;

dvp
dt

= − 1

τp
[vp − u(xp, t)] + g.

− u(xp, t) is evaluated by linear interpolation.



Simulation: Example

Reλ urms ∆t η τη L TL N3 Np

460 0.189 0.0012 1.45× 10−3 0.083 1.85 9.9 20483 10× 108

290 0.185 0.003 2.81× 10−3 0.131 1.85 9.9 10243 1.28× 108

127 0.144 0.02 1.12× 10−2 0.45 2.11 14.6 2563 0.08× 108



Turbulent Mixing

Distance traveled by fluid elements in a 3D turbulent flow during a large-eddy turnover time. Long (white) and
short (purple) distances, represented here as a function of the final position in a 2D slice.

Bec, Ray, Saw, and Homann, Phys. Rev. E (Rapid) 93, 031102(R) (2016).



Validating the Stokes Drag Model
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Probability distribution functions of the longitudinal velocity differences conditioned on different separations r for
particles with (left) St = 0.3 and (right) St = 0.5. The symbols are the experimental data and solid lines are the
DNS data. In all panels, for the experiment (DNS) data, squares (purple) correspond to r = 1− 1.6η, circles
(cyan) to r = 3− 3.6η, and triangles (gold) to r = 5− 5.6η. The inset shows the variation with respect to St,
with the separation fixed to r = 1− 1.6η. From the bottom to the top curve, St = 0.05, 0.3, 0.5.

Saw, Bewley, Bodenschatz, Ray, and Bec, Phys. Fluids Lett., 26, 111702, (2014).



Relative Velocity: Rescaled PDF
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Rescaled probability distributions of the longitudinal velocity difference conditioned on different separations r for
both the experimental (symbols) and DNS (solid lines) data for (left) St = 0.5 with β = 2.1 and (right) St = 0.3,
with β = 2.2. Green corresponds to r = 1− 1.6η, blue to r = 3− 3.6η, and red to r = 5− 5.6η. Inset (left):

r -scaling of the distribution bulk; collapse is attained by r × p(v‖|r) and (1/r)× v‖/uη . Inset (right): plots of

ln[Pr (v‖/uη < 5 |r)] (denoted as lnP−5) versus ln(r/η) for different St from the experiment. Unambiguous
values of β could not be obtained at such low St.

Saw, Bewley, Bodenschatz, Ray, and Bec, Physics of Fluids Letters, 26, 111702, (2014)



Impact Velocity: Inhomegeneous Suspension

Case St1 St2 Prediction

Case 1 – St1 ∆ = ∆0 exp (−τ/St)

Case 2 St1 � 1 St2 . 1 ∆ ∼ St2

Case 3 St1 � 1 St2 � 1 ∆ = ∆0 exp (−τ/St2)

Case 4 St1 & 1 St2 6= St1 None

 0  2  4  6  8  10  12
St1

 0

 2

 4

 6

 8

 10

 12

St
2

 0

 5

 10

 15

 20

 25

 30

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  2  4  6  8  10  12  14

∆

St

 0
 0.5

 1
 1.5

 2
 2.5

 3

 0  5  10  15  20  25

∆

St  0

 5

 10

 15

 20

 25

 30

 0  2  4  6  8  10  12  14

∆

St2

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0  5  10  15  20  25

∆

St2
 14

 16

 18

 20

 22

 24

 26

 28

 0  2  4  6  8  10  12  14

∆

St2

 2.8
 3

 3.2
 3.4
 3.6
 3.8

 4
 4.2

 0  5  10  15  20  25

∆

St2

James and Ray, ArXiv: 1603.05880 (under review) (2016).



Coalescence: Why are we bothered?

ṅi =
1

2

i−1∑
j=1

λ∞i−j ,j ni−j nj −
∞∑
j=1

λ∞i ,j ni nj .

• For explaining the formation of large particles in a dilute
suspension, these timescales are in general not sufficiently
separated.

• The sudden appearance of sizable aggregates requires a brisk
sequence of coalescences that are very likely to be correlated
to each other.

• When, in addition, the coalescing species are transported by a
turbulent flow, such correlations speed up the growth of large
particles.



Turbulent Collision Rates: Our Prediction

λturbi ,j (τ) ∝ (1/τL) (τ/τL)−
3
2
δ3

ni (t) ' ni1 (t/t̃i )
(1− 3

2
δ3)(i−2)+1

• δ3 = 0.18 is universal for all turbulent flows.

• For δ3 > 0 the algebraic exponent is smaller than that
obtained in from Smoluchowski’s kinetics.

• The intermittency of turbulence mixing thus enhances the
short-time growth by coalescence.

• In addition, the larger is the aggregate size considered, the
stronger is this enhancement.

Bec, Ray, Saw, and Homann, Phys. Rev. E (Rapid) 93, 031102(R) (2016).



Validating Theory: Time Evolution
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Bec, Ray, Saw, and Homann, Phys. Rev. E (Rapid) 93, 031102(R) (2016).



Collision Rates: Transients & Steady States

• It is important to note that much of the work in this field
have dealt with mono-disperse (same-sized droplets)
suspensions in flows where both the particle dynamics and the
turbulent flow itself is in a statistically stationary regime.

• In nature, however, particle suspensions are typically
inhomogeneous and, because of processes such as nucleation
and droplet-droplet interactions, would often be characterised
by a non-stationary (transient) measures, at least on short
time scales.

• In is important to explore, numerically, the intriguing
possibility of a further enhancement in collision rates in
transient regimes as well as the possibility of accelerated
droplet growths when the suspension itself is poly-disperse.

James and Ray (under review) (2016).



Collision Rates: Effect of Transients
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Particle Distribution: Effect of Gravity

Snapshot of the vorticity modulus (Left; yellow = low values, green = high values) and of the particle positions for
Rλ = 130, St = 1 and three different values of the Froude number in a slice of thickness 10η, width 130η, and
height 520η. The vertical arrow indicates gravity.

Bec, Homann, and Ray, Phys. Rev. Lett. 112, 184501 (2014).



Settling Velocity: Qualitative Understanding

• Define: The average settling velocity Vg = −〈V p · êz〉.
• Statistical stationarity =⇒ Vg = τpg − 〈uz(X p, t)〉.
• Define: The relative increase in settling velocity:

∆V = (Vg − τpg)/(τpg) = −〈uz(X p, t)〉/(τpg)

• If settling particles in a turbulent flow sample regions where
the vertical fluid velocity is aligned with gravity, we expect an
enhancement of the average settling velocity.

M. Maxey, J. Fluid Mech. 174, (1987).
L.-P. Wang & M. Maxey, J. Fluid Mech. 256, 27 (1993).
K. Gustavsson, et al., Phys. Rev. Lett. 112, 214501 (2014).



Settling Velocity: Qualitative Understanding

• Define: The average settling velocity Vg = −〈V p · êz〉.
• Statistical stationarity =⇒ Vg = τpg − 〈uz(X p, t)〉.
• Define: The relative increase in settling velocity:

∆V = (Vg − τpg)/(τpg) = −〈uz(X p, t)〉/(τpg)

◦ What is its dependence on the particle Stokes number and for
different values of Fr and Rλ?

• If settling particles in a turbulent flow sample regions where
the vertical fluid velocity is aligned with gravity, we expect an
enhancement of the average settling velocity.
◦ Is there a way to see this preferential sampling from the

equations of motion?

M. Maxey, J. Fluid Mech. 174, (1987).
L.-P. Wang & M. Maxey, J. Fluid Mech. 256, 27 (1993).
K. Gustavsson, et al., Phys. Rev. Lett. 112, 214501 (2014).



Settling Velocity
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Bec, Homann, and Ray, Phys. Rev. Lett. 112, 184501 (2014).



Settling Velocity: Preferential Sampling

Small Stokes Asymptotics

• Why is there an enhancement?
◦ To leading order, the particles advected by an effective

compressible velocity field:

v = u − τp [∂tu + (u + τp g) · ∇u] .

◦ Focus on the (x , y) plane.
◦ By using isotropy and incompressibility, we obtain:

〈uz∇⊥ · v⊥〉 = τ 2
pg
〈
(∂zuz)2

〉
> 0.



Settling Velocity: Preferential Sampling

Small Stokes Asymptotics

• Why is there an enhancement?
◦ To leading order, the particles advected by an effective

compressible velocity field:

v = u − τp [∂tu + (u + τp g) · ∇u] .

◦ Focus on the (x , y) plane.
◦ By using isotropy and incompressibility, we obtain:

〈uz∇⊥ · v⊥〉 = τ 2
pg
〈
(∂zuz)2

〉
> 0.

◦ Particles preferentially cluster (negative divergence), on
average, in the (x , y) plane, at points where the fluid velocity
is vertically downwards (uz<0).

L.-P. Wang & M. Maxey, J. Fluid Mech. 256, 27 (1993).
K. Gustavsson, et al., Phys. Rev. Lett. 112, 214501 (2014).



Settling Velocity: Quantitative Understanding
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Small Stokes Asymptotics Large Stokes Asymptotics

∆V ∝ τητp
〈
(∂zuz)2

〉
∝ St

Assumptions & Algorithm:

• Relate Vg to 〈uz∇⊥ · v⊥〉.
• Hence 〈uz (Xp, t)〉 ∝ τη〈uz∇⊥ · v⊥〉.

G. Falkovich, et al, Nature 419, (2002).

∆V ∝ R
3/4
λ Fr 5/2St−2

Assumptions & Algorithm:

• Ballistic motion vertically: L/Vg � τL.

• Effective horizontal dynamics.

Valid:

• St � R
1/2
λ

Fr and Fr � R
1/2
λ

.

I. Fouxon & P. Horvai, Phys. Rev. Lett. 100, (2008).



Conclusions and Open Questions

Conclusions

• Validating the limits of the linear Stokes drag model.

• Theoretical and numerical understanding of the settling of
heavy particles under gravity and their approach rates.

• Intermittency of turbulent mixing is responsible for an
enhanced growth of dilute coalescing aggregates.

Open Questions

• The role of intermittency of turbulent velocity statistics and
non-trivial Reynolds number dependencies of particle relative
velocity and coalescence statistics.

• Modelling collision kernels.

• Large particles and realistic geometry.
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