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Instability (transitional flow) - the precursor of turbulence
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Shear instability in geophysical problems
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Traditional approach to stratified shear
instability theory
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Governing Navier Stokes equations (simplified)

Fluid is 2D, incompressible, inviscid, Boussinesq.
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Non-diffusive: dp n u()_P n u,(')/)
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Mean flow parallel to X axis

Z / / / — /
1;(] v=U4+u, w=w, p=p+p, P=P+P

Continuity:

=0

Furthermore, assume hydrostatic background:

L 0Pz = —pyg
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Governing Navier Stokes equations (simplified)

Define streamfunction:

Combine continuity and
momentum equations

to obtain vorticity (/\ /)
equation:

Bulk Richardson No. ,J —

Normal-mode ansatz

/
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Governing Navier Stokes equations (simplified)

o o
U= — ; W= —-
0z oxr

P =T(z) + 9

xponentially grows in time

Normal-mode ansatz (exp growth, const speed) : =
if positive

iax(x—ct) iax(x—cpt)

Q’/{) (.’I,', A t) — 90(25)8 | — @(z)e . |
P ($, th) — p‘(z)euy(w—ct) — [’j(z)eciteza(w—crt)

(XY is the real wavenumber (inverse of wavelength)

C = Cp -+ L(/z is the complex phase-speed
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Taylor-Goldstein Equation (an Eigenvalue problem)

- ] 27 - Miles-Howard criterion
120 cp ¢y
aclh RV Ry S —: RN | JPp— Rite) = g dp/d2) 1
dz® i (( - (.)._ (l - () ] W= (dU/dz)? ~ 4
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Why instability? The classic Taylor problem

Stable density ( p(z)) stratification
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Why instability? The classic Taylor problem

Constant Velocity Shear
dU
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= const
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Why instability? The classic Taylor problem

Stable density ( /3( z)) stratification Constant Velocity Shear
dU
= const

az
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INSTABILITY !!!

such a fluid, but the interpretation of the
solutions of these equations is a matter of
considerable difficulty’ (Sir G.I. Taylor 1931).

‘It is a simple matter to work out the
equations which must be satisfied by waves in
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Non-traditional approach to stratified shear
instability theory
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An intuitive explanation for shear instabilities - Resonant wave

interaction
A
nges interact amplitude
with each other .
Amplitudes grow
exponentially
__ Resopance (normal mode instability)
>

0 o t

Resonance: Two waves “PHASE LOCK” and then
undergo “MUTUAL GROWTH”

Taylor(1931),Holmboe (1962), Caulfield (1994) July 22, 2016



Goal

d Previous authors e.g. Holmboe (1962), Caulfield (1994) studied the normal-mode
stability problem. Such problem demands the interacting waves to start from resonant
condition (blue area).

3 Our goal is to start from an arbitrary initial condition and see how and under what
circumstances the interacting waves resonate (grey area).

3 Moreover, to keep things as general as possible, we don’t specify the wave type (i.e.
can be vorticity wave, gravity wave, etc.)

Resonance

|
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The proposed kinematic model:
WAVE INTERACTION THEORY (WIT)
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Wave Interaction Theory (WIT)

Counter-propagating waves R=A, /A
— 44 2
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Growth rate of wave 1:

Phase speed of wave 1:
Growth rate of wave 2:

Phase speed of wave 2:
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Introducing Dynamical Systems Perspective

R=A,, /A
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The Dynamical Systems Perspective

Equilibrium points: (R &) = (R,,,,,,0p) and (R, —Gnm)
dR/dt =

d®/dt = 0 =2

0, = 4+ cos— L [{OA +wy —a (U; — Uy) } ealzl—Z2]

2\/(,01(,02
The condition for equilibrium points to
exist:
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Locking happens when equilibrium points exist
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What is the meaning of equilibrium points?

dR
d— =R (71 — ”yz) The waves start to grow
t at equal rate (and exponentially)
dP
d_ — (Cl — 02) The waves are phase-locked
t

DYNAMICAL
SYSTEMS -
Equilibrium
points

LINEAR

WAVE STABILITY
THEORY - THEORY -

Resonance Normal

modes
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Phase Portrait (no equilibrium points)
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Necessary and sufficient condition for normal-mode type instabilities to exist in
idealized shear layers:

w1_|_w2—oz(U1—U2) 604|Z1—22| <1

2\/(,01(,02 -

Recall Miles-Howard criterion (necessary condition for
stratified shear instability)

, (dp/dz) 1
R// Z) = —'r] . < T
(2) (dU/dz)? 4
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DIFFERENT TYPES OF STRATIFIED
SHEAR INSTABILITIES

Did | mention the wave types?
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CASE 1: Kelvin-Helmholtz / Rayleigh Instability

Y

0<a<0.64
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CASE 2: Taylor / Taylor-Caulfield Instability

<J<
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CASE 3: Holmboe Instability
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THE
WORLD
OF
OSCILLATORS
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COUPLED OSCILLATORS

;7

Anti-phase normal mode In-phase normal mode

R= Am /A772

I ¢ = ¢"72 o ¢"71
¢772

A,

|ICTS-Dynamics of Complex Sys. July 22, 2016



SYNCHRONIZATION OF TWO COUPLED
OSCILLATORS (and analogy with wave interaction)

ICTS-Dynamics of Complex Sys. July 22, 2016



Recall WIT Phase Portrait
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Two coupled oscillator synchronization

In-phase normal mode Anti-phase normal mode

Sink Source
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Conclusions

J Wave Interaction Theory (WIT) provides a physical understanding
of shear instabilities.

A Establishes a necessary and sufficient condition for idealized
shear instabilities.

4 Useful for understanding non-normal processes and transient
growth mechanisms (this is what is happening prior to resonance).

4 Brings normal mode theory, wave theory, and dynamical systems
under one umbrella. Finds link with synchronization theory - a
universal concept in nonlinear sciences.
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THANK YOU

* Linearly perturbed...
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