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The Set up

wide variety of problems have the common feature of multiscale
possession.

Time Scales

Hourly- Small scale convection
Monthly- Intra seasonal variability of Tropics
Annual- El Nino-Southern oscillation

Previous Work

Reduced Linear Stochastic Models
Approximations made on resolved mode
All couplings with unresolved modes dropped and replaced by ad hoc
stochastic terms of linear langevin type.



Stochastic Mode Reduction Strategy

DOF have been split into resolved and unresolved modes

dx

dt
= f (x , y)

dy

dt
= g(x , y) + h(y)

where h(y) a non linear function of y

Modify equation of motion of unresolved modes by representing
Non-Linear self interaction terms between unresolved modes by
stochastic terms.

h(y) ≈ −Γ

ε
y +

σ√
ε

˙W (t)



Stochastic Mode Reduction Strategy

Justified in coarse grained modelling on longer time scales as in
climate.

t → t

ε

dx

dt
=

f (x , y)

ε

dy

dt
=

g(x , y)

ε
− Γ

ε2
y +

σ

ε
˙W (t)

Equation of motion of unresolved mode(s) eliminated.



Averaging and Homogenisation

averaging and homogenization-simplification of wide range of
problems possessing multiple scales

System of Linear Equations

duε

dt
= Lεuε

averaging :

Lε =
1

ε
L0 + L1 Li ∈ Rd×d

N (L0) 1-Dimensional spanned by φ ,N (LT
0 )spanned by ψ

seeking solutions of the form :

uε = u0 + εu1 + O(ε2)



L0u0 = 0 O(
1

ε
)

u0 = αφ α = α(t) ∈ R

L0u1 =
du0

dt
− L1u0 O(1)

Fredholm Alternative : solution for u1 exists if and only if :

〈ψ, du0

dt
− L1u0〉 = 0

dα

dt
=
〈ψ,L1φ〉
〈ψ, φ〉

α

which has non trivial solution provided

〈ψ,L1φ〉 6= 0

lim
ε�1

uε(t) ≈ u0(t) = α(t)



homogenisation if
〈ψ,L1φ〉 = 0

for non trivial dynamics,

t → t

ε

Lε =
1

ε2
L0 +

1

ε
L1

without loss of generality, we can study,

Lε =
1

ε2
L0 +

1

ε
L1 + L2 Li ∈ Rd×d

u1 = −αη L0η = L1φ

dα

dt
=
〈ψ,L2φ− L1η〉
〈ψ, φ〉

α



Quasi-Geostrophic Equations-An Overview

Shallow Water Equations

∂~u

∂t
+ (~v .∇)~u + ~f × ~u = −g∇zh

∂h

∂t
+ H∇.~u = 0

Rossby No.

R0 =
U

fL

R0 = 0 ⇒ Geostrophic Balance :

~f × ~u = −g∇zh

Quasi-Geostrophy R0 small

~f × ~u ≈ −g∇zh



QG equation
D

Dt

(
∇2ψ + βy − f 2

0

gH
ψ

)
= 0

u = U + u
′

v = v
′

u =
∂ψ

∂y

v = −∂ψ
∂x

ψ = Uψ + ψ
′



Stochastic modelling for topographic stress

Ideal Barotropic QG equations with large scale zonal mean flow U

2π × 2π periodic domain

∂q

∂t
+∇⊥.∇q + U

∂q

∂x
+ β

∂ψ

∂x
= 0

q = ∇2ψ + h(x , y)

dU

dt
=

1

4π2

∫
h
∂ψ

∂x
dxdy



Equations expanded in Fourier modes:

f (x , y) =
∑
kx ,ky

f (~k) exp(i(kxx + kyy))

where f (x , y) is a 2π periodic function

truncation done at | k |26 Λ



Continued...

Truncated equations conserve energy and enstrophy

EΛ =
1

2
U2 +

1

2

∫
(∇ψΛ)2d~x

dEΛ

dt
= UΛ

dUΛ

dt
+

d

dt

[∫
[∇.(ψΛ∇ψΛ)− ψΛ∇2ψΛ]d~x

]
= UΛ

∫
hΛ
∂ψΛ

∂x
d~x+β

∫
ψΛ
∂ψΛ

∂x
d~x+UΛ

∫
ψΛ
∂qΛ

∂x
d~x+

∫
ψΛ(∇⊥ψΛ.∇qΛ)d~x

= UΛ

∫
hΛ
∂ψΛ

∂x
d~x + UΛ

∫
ψΛ
∂hΛ

∂x
d~x

= 0

εΛ = βU +
1

2

∫
q2

Λd~x



The fully a priori strategy assumes that the climate PDF is Gaussian
with following mean and variance for fixed α, µ.

U = −β
µ

var(U) =
1

αµ

ψk = − hk

µ+ | ~k |2

var(ψk) =
1

α | ~k |2 (µ+ | ~k |2)



Nondimensional variables for perturbations about the climate mean
are given by

Unew =
(U − U)√
var(U)

ψnew
k =

(ψk − ψk)√
var(ψk)

The truncated equations in the new variables of each Fourier mode
and U are given by :



∂ψnew
k

∂t
= − ikx√

αµ
Unewψnew

k +ikxH
′

kU
new−iΩ

′

kψ
new
k +

∑
lx ,ly

B~k~lψ~k−~lψ~l+
∑
lx ,ly

L~k~lψ~l

dU

dt
= 2Im

∑
kx ,ky

kxH
′

kψk

where,

H
′

k = hk

√
µ

| ~k |2 (µ+ | ~k |2)

Ω
′

k =
kxβ

| ~k |2
− Ukx



Invoking the approximation of stochastic consistency:∑
~k~l

ψ~lψ~k−~l +
∑
~l

L~k~lψ~l ≈ −γkψ
new
k + σkWk

dψnew
k

dt
= ikxH

′

kU
new − γk(Unew )ψk + σkWk

where

γk(Unew ) = γk + iΩ
′

k + i
kx√
αµ

Unew

ψnew
k can be eliminated provided γk(U) is large enough compared to

other terms.



dU

dt
= −γ(U)U +

√
2γ(U)ξ(t)

where

γ(U) = 2
∑
~k

k2
x | H

′

k |2 γk
γ2
k + (Ω

′
k + kxU(αµ)0.5)2

ξ(t) =

√
2

γ(U)
Im

(∑
k

kxH
′

kσk

∫ t

−∞
exp(−γk(U)(t − t

′
))Ẇkdt

′

)

using
〈Ẇk(s)Ẇk′ (s

′
)〉 = δ(s − s

′
)δkk′ ,

ξ(t) is delta correlated in time which implies

〈ξ(t)ξ(t
′
)〉 ≈ δ(t − t

′
)



Under the assumption

1

(αµ)
| kxU |2� γ2

k + (Ω
′

k)2

a standard predicted linear stochastic model for U emerges :

dU

dt
= −2γ(U)U +

√
2γ(U)Ẇk

where

γ(U) =
∑
k

k2
x | Hk |2 γk
γ2
k + (Ω

′
k)2



Figure: comparison of correlation function of the mean U (solid line),Reψ1,0

(dashed line), and Reψ0,1(dot-dashed line) for different values of H



Figure: comparison of the correlation function of U DNS (solid line); nonlinear
reduced stochastic model(dashed line); corresponding linear reduced stochastic
model(dotted line)


