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@ Averaging and Homogenisation

@ Quasi-Geostrophic Equations
@ Stochastic Mode Reduction



The Set up

@ wide variety of problems have the common feature of multiscale
possession.

@ Time Scales

o Hourly- Small scale convection
o Monthly- Intra seasonal variability of Tropics
o Annual- El Nino-Southern oscillation

@ Previous Work
o Reduced Linear Stochastic Models
o Approximations made on resolved mode

o All couplings with unresolved modes dropped and replaced by ad hoc
stochastic terms of linear langevin type.



Stochastic Mode Reduction Strategy

@ DOF have been split into resolved and unresolved modes

dx
2 = xy)

Y — g(xy) + h(y)

where h(y) a non linear function of y

@ Modify equation of motion of unresolved modes by representing

Non-Linear self interaction terms between unresolved modes by
stochastic terms.

hy) = oy + Wl



Stochastic Mode Reduction Strategy

@ Justified in coarse grained modelling on longer time scales as in

climate. 4 .
t
N dx _ f(x,y)
€ dt €
dy gxy) I o
Y _ oy Twie
dt € 62y+ € (1)

e Equation of motion of unresolved mode(s) eliminated.



Averaging and Homogenisation

@ averaging and homogenization-simplification of wide range of
problems possessing multiple scales

@ System of Linear Equations

du®

€u€

dt

e averaging :
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o seeking solutions of the form :

u¢ = o + e + O(€)
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o Fredholm Alternative : solution for u; exists if and only if :
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which has non trivial solution provided
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@ homogenisation if
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for non trivial dynamics,
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without loss of generality, we can study,
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Quasi-Geostrophic Equations-An Overview

@ Shallow Water Equations

od 2
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@ Rossby No.
U
Ro = —
T
@ Ry = 0 = Geostrophic Balance :
fxi=—gV,h

@ Quasi-Geostrophy Ry small

fxin —gVh



@ QG equation
b

2 5\
Dt (V w+ﬁy—gH1/)) =0

u:U+ul



Stochastic modelling for topographic stress

o Ideal Barotropic QG equations with large scale zonal mean flow U

@ 27 x 27 periodic domain
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@ Equations expanded in Fourier modes:

Fx,y) = Y fk)exp(i(kex + kyy))
KoK,

where f(x,y) is a 27 periodic function

e truncation done at | k [2< A



@ Truncated equations conserve energy and enstrophy
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@ The fully a priori strategy assumes that the climate PDF is Gaussian
with following mean and variance for fixed «, p.
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e Nondimensional variables for perturbations about the climate mean
are given by

Unew _ (U B U)
var(U)
pew _ (U —¥%)
‘ var(1x)

@ The truncated equations in the new variables of each Fourier mode
and U are given by :
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@ Invoking the approximation of stochastic consistency:
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where

(UI'IEW) — ’yk _"_ ,Qk +I UI7€W

@ 17" can be eliminated provided ~x(U) is Iarge enough compared to
other terms.
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Under the assumption

1 /
(o) | kU P< e + ()

a standard predicted linear stochastic model for U emerges :

= (VU + VRO

where
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Figure: comparison of correlation function of the mean U (solid line),Ret)1,0
(dashed line), and Rey,1(dot-dashed line) for different values of H
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Figure: comparison of the correlation function of U DNS (solid line); nonlinear
reduced stochastic model(dashed line); corresponding linear reduced stochastic
model(dotted line)



