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Consider a chemical immersed in an incompressible fluid; a pollutant in
the atmosphere, or a dye (such as ink) in water. Advection-diffusion
equation,
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v(x, t): Velocity field.

T(x, t): Concentration field.

D: Molecular diffusion coefficient.
Assume,



Taking, initial concentration To = g(ex), here e <<< 1 and rescaling,
X =
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Advection-diffusion equation becomes,
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In case of D = 0 and a = 1, using the method of characteristics, one gets,




b(x) is periodic and x/e varies rapidly on the scale of the period.
Average the equation to eliminate these rapid oscillations. Eliminating
fast scales in a time-dependent transport PDE is intimately related to
averaging for ODEs. In case of D > 0 and a = 2, We get,
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here W(t) is a standard Brownian motion. After eliminating the rapidly
varying quantity x/¢, for periodic, divergence free and zero mean velocity

field, one gets,
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x¢(t) converges to X(t) in the limit of e — 0



Averaging Versus Homogenization

The unifying principle underlying these techniques is the formal
perturbation expansions for linear operator equation of the form,
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The operator L€ has the form,
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We will refer to the first case as averaging, or first-order perturbation
theory. The second case will be referred to as homogenization or
second-order perturbation theory.



