Gradient descent with constraints

Vishal Vasan

International Centre for Theoretical Sciences
Tata Institute of Fundamental Research
vishal.vasan@icts.res.in
Complex Systems Discussion Meeting, Bengaluru

July 22, 2016

Root finding for analytic functions

Let $f: D \rightarrow \mathbb{C}$ be a nontrivial complex-valued function analytic. Find $z_{r} \in \mathbb{C}$ such that $f\left(z_{r}\right)=0$

- Lots of literature to review here. Newton's method, Rouché's theorem, Argument principle.
- Basic idea is to construct a differential equation for $z \in D$ such that $z(t) \rightarrow z_{r}$ as $t \rightarrow \infty$.

The basic idea

$$
\left.\begin{array}{l}
\frac{d x}{d t}=u_{y}=-v_{x} \\
\frac{d y}{d t}=-u_{x}=-v_{y}
\end{array}\right\} \Rightarrow \frac{d z}{d t}=\sigma \frac{\overline{d f}}{d z}
$$

- Continuous Newton's method: $\frac{d z}{d t}=-f(z) / f^{\prime}(z)$

Comments about proof of convergence

The algorithm converges if the straight-line path in the $\mathbb{C}-w$ plane corresponds to a continuous curve in the $\mathbb{C}-z$ plane.

- Two canonical paths to connect $w_{0}=f\left(z_{0}\right)$ to origin in $\mathbb{C}-w$.
- Little Picard Theorem: entire function omits at most one finite value. At least one of the two paths is in the range.
- Stationary points along the path must be saddle points. If the order of the saddle point is N there may be $N+1$ roots in a neighborhood of the stationary point.
- Arguments apply with little change to a meromorphic function.
- The boundary of the basins of convergence are smooth.

Polynomial root finding without deflation

- z_{m}^{k} be the roots of $f^{(n-m)}(z), f(z) n$-th order polynomial. μ_{m}^{k} is the multiplicity of the root z_{m}^{k}.

Lemma

If $f^{(n-m+1)}(z)$ and $f^{(n-m)}(z)$ share a root $z_{m}^{k}=z_{m-1}^{l}=z^{*}$, then
$\mu_{m-1}^{l}+1=\mu_{m}^{k}$.
(I) Set $z_{1}^{1}=-\frac{a_{n-1}}{n a_{n}}$ and $\mu_{1}^{1}=1$.
(II) Repeat for $m=1, \ldots, n-1$:
(a) Set $l=1$.
(b) Repeat for all k : if $f^{(n-m-1)}\left(z_{m}^{k}\right)=0$ for any k, set $z_{m+1}^{l}=z_{m}^{k}$, $\mu_{m+1}^{l}=\mu_{m}^{k}+1$ and increase l by 1 .
(c) If $\sum_{l} \mu_{m+1}^{l}<m+1$, then use $\left\{z_{m}^{k}, \mu_{m}^{k}\right\}$, the critical points for $f^{(n-m-1)}$, to define directions of steepest descent/ascent. Follow P_{I} and/or $P_{I I}$ defined from these starting locations to obtain new zeros of $f^{(n-m-1)}$. These are by definition simple zeros, thus $\mu_{m+1}^{l}=1$.
(III) z_{n}^{k} are the roots of $f(z)$ with multiplicity μ_{n}^{k}.
u, v are not action-angle coordinates for

$$
\frac{d z}{d t}=\sigma \frac{\overline{d f}}{d z}
$$

Suppose u is conserved, then

$$
\frac{d v}{d t}=\frac{\partial v}{\partial x} \frac{d x}{d t}+\frac{\partial v}{\partial y} \frac{d y}{d t}=-\left[\left(\frac{\partial u}{\partial y}\right)^{2}+\left(\frac{\partial u}{\partial x}\right)^{2}\right]
$$

Nambu-Poisson systems

- Hamiltonian system

$$
\frac{d p}{d t}=-\nabla_{p} H, \quad \frac{d q}{d t}=\nabla_{q} H
$$

Nambu-Poisson systems

- Hamiltonian system

$$
\frac{d p}{d t}=-\nabla_{p} H, \quad \frac{d q}{d t}=\nabla_{q} H
$$

- Nambu introduced generalisation of Hamiltonian systems

$$
\frac{d x}{d t}=\nabla_{x} H_{1} \times \nabla_{x} H_{2}, \quad x \in \mathbb{R}^{3}
$$

Nambu-Poisson systems

- Hamiltonian system

$$
\frac{d p}{d t}=-\nabla_{p} H, \quad \frac{d q}{d t}=\nabla_{q} H
$$

- Nambu introduced generalisation of Hamiltonian systems

$$
\frac{d x}{d t}=\nabla_{x} H_{1} \times \nabla_{x} H_{2}, \quad x \in \mathbb{R}^{3}
$$

- General Nambu-Poisson system

$$
\frac{d x}{d t}=S\left[\nabla_{x} H_{1}, \nabla_{x} H_{2}, \ldots, \nabla_{x} H_{n}\right], \quad x \in \mathbb{R}^{n+1}
$$

In above example, S is alternating tensor $\epsilon_{i j k}$.

- Many integrable ODEs can be put into Nambu form.

Gradient-Nambu systems

Minimise $g(x, y)$, keep $f(x, y)$ constant

Gradient-Nambu systems

Minimise $g(x, y)$, keep $f(x, y)$ constant

$$
\frac{d}{d t}\binom{x}{y}=\nabla f(x, y) \times s(x, y)
$$

Gradient-Nambu systems

Minimise $g(x, y)$, keep $f(x, y)$ constant

$$
\frac{d}{d t}\binom{x}{y}=\nabla f(x, y) \times s(x, y)
$$

to minimise $g(x, y)$

$$
\nabla g \cdot \nabla f \times s \leq 0
$$

which has a natural "solution"

$$
s=\nabla f \times \nabla g
$$

Gradient-Nambu systems

Minimise $g(x, y)$, keep $f(x, y)$ constant

$$
\frac{d}{d t}\binom{x}{y}=\nabla f(x, y) \times s(x, y)
$$

to minimise $g(x, y)$

$$
\nabla g \cdot \nabla f \times s \leq 0
$$

which has a natural "solution"

$$
s=\nabla f \times \nabla g
$$

Gradient-Nambu

$$
\frac{d}{d t}\binom{x}{y}=\nabla f \times(\nabla f \times \nabla g)=S[\nabla f, S[\nabla f, \nabla g]]
$$

Gradient-Nambu systems

Minimise $g(x, y)$, keep $f(x, y)$ constant

$$
\frac{d}{d t}\binom{x}{y}=\nabla f(x, y) \times s(x, y)
$$

to minimise $g(x, y)$

$$
\nabla g \cdot \nabla f \times s \leq 0
$$

which has a natural "solution"

$$
s=\nabla f \times \nabla g
$$

Gradient-Nambu

$$
\frac{d}{d t}\binom{x}{y}=\nabla f \times(\nabla f \times \nabla g)=S[\nabla f, S[\nabla f, \nabla g]]
$$

Example: $f=u, g=v$ then $\nabla f \times \nabla g=u_{x} v_{y}-u_{y} v_{x}$ and

$$
\frac{d}{d t}\binom{x}{y}=\left(u_{x} v_{y}-u_{y} v_{x}\right)\binom{u_{x}}{u_{y}}
$$

Gradient-Nambu systems

Minimise $g(x, y, z)$, keep $f_{1}(x, y, z), f_{2}(x, y, z)$ constant

Gradient-Nambu systems

Minimise $g(x, y, z)$, keep $f_{1}(x, y, z), f_{2}(x, y, z)$ constant

$$
\frac{d}{d t}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=S\left[\nabla f_{1}, \nabla f_{2}, S\left[\nabla f_{1}, \nabla f_{2}, \nabla g\right]\right]
$$

Gradient-Nambu systems

Minimise $g(x, y, z)$, keep $f_{1}(x, y, z), f_{2}(x, y, z)$ constant

$$
\frac{d}{d t}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=S\left[\nabla f_{1}, \nabla f_{2}, S\left[\nabla f_{1}, \nabla f_{2}, \nabla g\right]\right]
$$

Higher dimensional generalisations possible.

Gradient-Nambu systems

Minimise $g(x, y, z)$, keep $f_{1}(x, y, z), f_{2}(x, y, z)$ constant

$$
\frac{d}{d t}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=S\left[\nabla f_{1}, \nabla f_{2}, S\left[\nabla f_{1}, \nabla f_{2}, \nabla g\right]\right]
$$

Higher dimensional generalisations possible. Easier with tensor notation

Gradient-Nambu systems

Minimise $g(x, y, z)$, keep $f_{1}(x, y, z), f_{2}(x, y, z)$ constant

$$
\frac{d}{d t}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=S\left[\nabla f_{1}, \nabla f_{2}, S\left[\nabla f_{1}, \nabla f_{2}, \nabla g\right]\right]
$$

Higher dimensional generalisations possible. Easier with tensor notation :(

Gradient-Nambu systems

Minimise $g(x, y, z)$, keep $f_{1}(x, y, z), f_{2}(x, y, z)$ constant

$$
\frac{d}{d t}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=S\left[\nabla f_{1}, \nabla f_{2}, S\left[\nabla f_{1}, \nabla f_{2}, \nabla g\right]\right]
$$

Higher dimensional generalisations possible. Easier with tensor notation :(

(Convex) Dual Gradient-Nambu

$$
\begin{aligned}
& \left.\quad \begin{array}{l}
\text { Minimise } t f_{1}+(1-t) f_{2}, \text { keep } g \text { constant } \\
\frac{d}{d t}
\end{array} \begin{array}{c}
x \\
y \\
z
\end{array}\right)=S\left[\nabla g,:, S\left[\nabla g, t \nabla f_{1}+(1-t) \nabla f_{2},:\right]\right]
\end{aligned}
$$

Applications of Gradient Nambu system

- Let $x \in \mathbb{R}^{n}$

$$
\frac{d x}{d t}=f(x), \quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

Projection onto orthogonal space

$$
I-f f^{T} /\left(|f|^{2}\right)
$$

which has $n-1$ independent columns h_{j}

$$
\frac{d x}{d t}=S\left[h_{1}, h_{2}, \ldots, h_{n-1}\right]
$$

Applications of Gradient Nambu system

- Let $x \in \mathbb{R}^{n}$

$$
\frac{d x}{d t}=f(x), \quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

Projection onto orthogonal space

$$
I-f f^{T} /\left(|f|^{2}\right)
$$

which has $n-1$ independent columns h_{j}

$$
\frac{d x}{d t}=S\left[h_{1}, h_{2}, \ldots, h_{n-1}\right]
$$

$$
\sum \alpha_{j} h_{j}=\nabla H
$$

Applications of Gradient Nambu system

- Let $x \in \mathbb{R}^{n}$

$$
\frac{d x}{d t}=f(x), \quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

Projection onto orthogonal space

$$
I-f f^{T} /\left(|f|^{2}\right)
$$

which has $n-1$ independent columns h_{j}

$$
\frac{d x}{d t}=S\left[h_{1}, h_{2}, \ldots, h_{n-1}\right]
$$

$$
\sum \alpha_{j} h_{j}=\nabla H
$$

- Example:

$$
\frac{d}{d t}\binom{p}{q}=\binom{-H_{q}}{H_{p}} \Rightarrow \frac{d}{d t}\binom{p}{q}=S\left[h_{1}\right]
$$

where

$$
h_{1}=\left[H_{p}^{2}, H_{p} H_{q}\right]^{T} \Rightarrow h_{1}=\nabla H \Rightarrow H \text { is conserved }
$$

Another application

Differential-algebraic equation

$x \in \mathbb{R}^{n}, z \in \mathbb{R}^{m}$

$$
\frac{d x}{d t}=f(x, z), \quad g_{j}(x, z)=0, j=1 \ldots m
$$

Another application

Differential-algebraic equation

$x \in \mathbb{R}^{n}, z \in \mathbb{R}^{m}$

$$
\frac{d x}{d t}=f(x, z), \quad g_{j}(x, z)=0, j=1 \ldots m
$$

$\nabla \equiv\left[D_{x}, D_{z}\right]^{T}$

$$
\frac{d}{d t}\binom{x}{z}=S\left[\nabla g_{1}, \ldots, \nabla g_{m}, s_{1}, \ldots, s_{n}\right]
$$

Another application

Differential-algebraic equation

$x \in \mathbb{R}^{n}, z \in \mathbb{R}^{m}$

$$
\frac{d x}{d t}=f(x, z), \quad g_{j}(x, z)=0, j=1 \ldots m
$$

$\nabla \equiv\left[D_{x}, D_{z}\right]^{T}$

$$
\frac{d}{d t}\binom{x}{z}=S\left[\nabla g_{1}, \ldots, \nabla g_{m}, s_{1}, \ldots, s_{n}\right]
$$

Thank you!

