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Root finding for analytic functions

Let f: D — C be a nontrivial complex-valued function analytic. Find
zr € C such that f(z,) =0

e Lots of literature to review here. Newton’s method, Rouché’s theorem,
Argument principle.

e Basic idea is to construct a differential equation for z € D such that
z(t) — zr as t — oo.
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e Continuous Newton’s method: — = —f(z)/f'(2)
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Comments about proof of convergence

The algorithm converges if the straight-line path in the C — w plane
corresponds to a continuous curve in the C — z plane.

Two canonical paths to connect wo = f(20) to origin in C — w.

Little Picard Theorem: entire function omits at most one finite value.
At least one of the two paths is in the range.

Stationary points along the path must be saddle points. If the order of
the saddle point is N there may be N + 1 roots in a neighborhood of
the stationary point.

Arguments apply with little change to a meromorphic function.

The boundary of the basins of convergence are smooth.



Polynomial root finding without deflation

e 2F be the roots of f("™™)(z), f(z) n-th order polynomial. p¥, is the
multiplicity of the root zF,.

Lemma
If f=mHY(2) and f7™(2) share a root 28, = z4,_y = 2%, then

et 4+ 1= pup,.

(I) Set 2 = —9n=1 and w=1.
nan
(IT) Repeat for m=1,...,n—1:
(a) Setl=1.

(b) Repeat for all k: if f=™=V (k) =0 for any k, set 2,4 = 25,
Mlm+1 = ¥, + 1 and increase [ by 1.

(c) If >, phayr < m 4+ 1, then use {zF,, u¥,}, the critical points for
f (n=m=1) "1 define directions of steepest descent/ascent. Follow
Pr and/or Prr defined from these starting locations to obtain
new zeros of f("~™~1)_ These are by definition simple zeros, thus
g1 = 1.

(ITI) z¥ are the roots of f(z) with multiplicity u~.



u, v are not action-angle coordinates for
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Suppose u is conserved, then
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Nambu-Poisson systems

e Hamiltonian system

dq
_VPH7 E — VqH
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dt



Nambu-Poisson systems

e Hamiltonian system

dgq

dp _ dq
dt

a = Vet

=V, H

e Nambu introduced generalisation of Hamiltonian systems

fl—f =V.Hi x V,Hy, zeR?



Nambu-Poisson systems

Hamiltonian system

dq
_VPH7 E — VqH

dp _
dt

Nambu introduced generalisation of Hamiltonian systems

fl—f =V.Hi x V,Hy, zeR?

General Nambu-Poisson system

Z—f = S[V.H1,V.Hs,...,V,H,], zeR"

In above example, S is alternating tensor €;;.

Many integrable ODEs can be put into Nambu form.
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4 < @ ) =V x (Vf x Vg) = S|V, S[VF, Vg]]




Gradient-Nambu systems

Minimise g(z,y), keep f(z,y) constant

%( z>:Vf(:c,y)><S(957y)

to minimise g(z,y)
Vg-Vfxs<0
which has a natural “solution”

s=VfxVg

dt \ y

Example: f =wu,g=v then Vf x Vg = uzvy — uyv, and

%( z > :(uzvy—“y”z)( Zz )
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Gradient-Nambu systems

Minimise g(z,y, z), keep fi(z,y, 2), f2(x,y, z) constant
T

I Yy =S[Vf1,Vf2,S[Vf1,Vf2,Vg]]
z

Higher dimensional generalisations possible. Easier with tensor notation :(

Minimise tf1 + (1 — t) f2, keep g constant

x
el ( y ) = S[Vg,:,S[Vg,tVfi+ (1 —t)Vf2,:]]

z




Applications of Gradient Nambu system

o Let x € R”

%’: (@), f:R"—>R"
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I—f/011%)

which has n — 1 independent columns h;

dx
i Slhi,ha, ... hn—1]



Applications of Gradient Nambu system

o Let x € R”

%’: (@), f:R"—>R"
Projection onto orthogonal space
I—f/011%)

which has n — 1 independent columns h;

dx
i Slhi,ha, ... hn—1]

> ajh; =VH



Applications of Gradient Nambu system

Let z € R™

CC%’: (@), f:R"—>R"
Projection onto orthogonal space
I—f/011%)

which has n — 1 independent columns h;

%‘f = S[h1,hay ..o i)
> ajh; =VH
Example:
a(0)= ()= h) =om
where

hy = [H}, HyH,|" = hiy = VH = H is conserved



Another application
Differential-algebraic equation
zeR" zeR™

E:f(maZL gJ(CC,Z):O,jIIm



zeR" zeR™

V = [Ds, D.]"
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V = [Ds, D.]"

Another application

Differential-algebraic equation

Thank you!



