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Root finding for analytic functions

Let f : D → C be a nontrivial complex-valued function analytic. Find
zr ∈ C such that f(zr) = 0

• Lots of literature to review here. Newton’s method, Rouché’s theorem,
Argument principle.

• Basic idea is to construct a differential equation for z ∈ D such that
z(t)→ zr as t→∞.



The basic idea

dx

dt
= uy = −vx

dy

dt
= −ux = −vy

⇒
dz

dt
= σ

df

dz

• Continuous Newton’s method:
dz

dt
= −f(z)/f ′(z)



Comments about proof of convergence

The algorithm converges if the straight-line path in the C− w plane
corresponds to a continuous curve in the C− z plane.

• Two canonical paths to connect w0 = f(z0) to origin in C− w.

• Little Picard Theorem: entire function omits at most one finite value.
At least one of the two paths is in the range.

• Stationary points along the path must be saddle points. If the order of
the saddle point is N there may be N + 1 roots in a neighborhood of
the stationary point.

• Arguments apply with little change to a meromorphic function.

• The boundary of the basins of convergence are smooth.



Polynomial root finding without deflation

• zkm be the roots of f (n−m)(z), f(z) n-th order polynomial. µk
m is the

multiplicity of the root zkm.

Lemma
If f (n−m+1)(z) and f (n−m)(z) share a root zkm = zlm−1 = z∗, then
µl
m−1 + 1 = µk

m.

(I) Set z11 = −an−1

nan
and µ1

1 = 1.

(II) Repeat for m = 1, . . . , n− 1:

(a) Set l = 1.
(b) Repeat for all k: if f (n−m−1)(zkm) = 0 for any k, set zlm+1 = zkm,

µl
m+1 = µk

m + 1 and increase l by 1.
(c) If

∑
l µ

l
m+1 < m+ 1, then use {zkm, µk

m}, the critical points for

f (n−m−1), to define directions of steepest descent/ascent. Follow
PI and/or PII defined from these starting locations to obtain
new zeros of f (n−m−1). These are by definition simple zeros, thus
µl
m+1 = 1.

(III) zkn are the roots of f(z) with multiplicity µk
n.



u, v are not action-angle coordinates for

dz

dt
= σ

df

dz

Suppose u is conserved, then

dv

dt
=
∂v

∂x

dx

dt
+
∂v

∂y

dy

dt
= −

[(
∂u

∂y

)2

+

(
∂u

∂x

)2
]



Nambu-Poisson systems

• Hamiltonian system

dp

dt
= −∇pH,

dq

dt
= ∇qH

• Nambu introduced generalisation of Hamiltonian systems

dx

dt
= ∇xH1 ×∇xH2, x ∈ R3

• General Nambu-Poisson system

dx

dt
= S[∇xH1,∇xH2, . . . ,∇xHn], x ∈ Rn+1

In above example, S is alternating tensor εijk.

• Many integrable ODEs can be put into Nambu form.
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Gradient-Nambu systems

Minimise g(x, y), keep f(x, y) constant

d

dt

(
x
y

)
= ∇f(x, y)× s(x, y)

to minimise g(x, y)
∇g · ∇f × s ≤ 0

which has a natural “solution”

s = ∇f ×∇g

Gradient-Nambu

d

dt

(
x
y

)
= ∇f × (∇f ×∇g) = S[∇f, S[∇f,∇g]]

Example: f = u, g = v then ∇f ×∇g = uxvy − uyvx and

d
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x
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)
= (uxvy − uyvx)
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Gradient-Nambu systems

Minimise g(x, y, z), keep f1(x, y, z), f2(x, y, z) constant

d

dt

 x
y
z

 = S[∇f1,∇f2, S[∇f1,∇f2,∇g]]

Higher dimensional generalisations possible. Easier with tensor notation :(

(Convex) Dual Gradient-Nambu

Minimise tf1 + (1− t)f2, keep g constant

d

dt

 x
y
z

 = S[∇g, :, S[∇g, t∇f1 + (1− t)∇f2, :]]
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Applications of Gradient Nambu system
• Let x ∈ Rn

dx

dt
= f(x), f : Rn → Rn

Projection onto orthogonal space

I − ffT /(|f |2)

which has n− 1 independent columns hj

•
dx

dt
= S[h1, h2, . . . , hn−1]

• ∑
αjhj = ∇H

• Example:

d

dt

(
p
q

)
=

(
−Hq

Hp

)
⇒ d

dt

(
p
q

)
= S[h1]

where
h1 = [H2

p , HpHq]T ⇒ h1 = ∇H ⇒ H is conserved
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Another application

Differential-algebraic equation

x ∈ Rn, z ∈ Rm

dx

dt
= f(x, z), gj(x, z) = 0, j = 1 . . .m

∇ ≡ [Dx, Dz]T

d

dt

(
x
z

)
= S[∇g1, . . . ,∇gm, s1, . . . , sn]

Thank you!
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