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e Atmospheric and oceanic Turbulences can be thought of two
dimensional (or quasi two dimensional) turbulence.

e Motivation is to study the properties of one and two dimensional
turbulences, intermittency.
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e Atmospheric and oceanic Turbulences can be thought of two
dimensional (or quasi two dimensional) turbulence.

e Motivation is to study the properties of one and two dimensional
turbulences, intermittency.

e Governing Equations:
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e In one dimension, the equation becomes (also called Burger
Equation):
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e We first revisit the Burger Equation in little detail and then will
move towards two-dimensional Navier Stokes Equation, particularly
to study intermittency and multiscaling.
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to study intermittency and multiscaling.

e Initial Condition:: u(x) = sin(x), v = 0

o s 4
r . \ .

Figure: v = 0.0, Fig 1, PRE,84,016301, Fig 1, PNAS, 97, 12413



Initial Condition :: u(x) = sin(x), ¥ = 0.01



Initial Condition :: u(x) = sin(x), ¥ = 0.01

1-dim burger with sinusoidal velocity perturbation
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Figure: v = 0.01, Fig 11, Pramana,73,1,2009




Order-p velocity structure function

Sp(l) = (v(x +1) = v(x)]?)

where v(x) is the velocity at the point x and the angular brackets
denote and average over the statistical steady state of the
turbulent fluid.

For I in inertial range, Sy(/) ~ I5(p)



Order-p velocity structure function

Sp(l) = (v(x +1) = v(x)]?)

where v(x) is the velocity at the point x and the angular brackets
denote and average over the statistical steady state of the
turbulent fluid.

For I in inertial range, Sy(/) ~ I5(p)

for small Ax,

Sp(Ax, t) ~ Cp|Ax|P + C,|Ax]

For p<1, the first term dominates and for p>1 the second term.



e Energy Spectra should follow a

energy spectra zoomed

power law with slope %

red-nu=0.001; green-nu=0.005; blue-nu=0.01
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Figure: a. with zero viscosity, b. with different viscosity, Fig 12,

Pramana,73,1,2009



e Energy Spectra should follow a power law with slope %

energy spectra zoomed red-nu=0.001; green-nu=0.005; blue-nu=0.01
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Figure: a. with zero viscosity, b. with different viscosity, Fig 12,
Pramana,73,1,2009

e Viscosity acts on higher modes of wavenumber i.e. in small
scales.
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100-P=0.1; 105-P=0.5; 110-P=1.0; 120-P=2.0; 130-P=3.0; 140-P=4.0; 150-P=5.0
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e Forcing :: Gaussian random noise with zero mean and

Fourier-space Spectrum ~ %

e One should observe intermittency.
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e One should observe intermittency.
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The order-p velocity structure function looks like,

andt 100-P=0.1; 105-P-0.5: 110-P=1; 120-P-2; 130-P-3; 140-P=4; 150-P=5
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Figure: 1(a),(c),PRL,94,194501



e The vorticity(w) - stream-function(t)) formulation of
Navier-Stokes Equation is::

Orw — J(,w) = vV2w 4+ £, — pw
S, w) = (9:1)(Oyw) — (0xw)(8y¥)
w = Vzi/% L_i = (ay¢v —3)(1/1)



e The vorticity(w) - stream-function(t)) formulation of
Navier-Stokes Equation is::

Orw — J(,w) = vV2w 4+ £, — pw
S, w) = (9:1)(Oyw) — (0xw)(8y¥)
w = Vzi/% L_i = (ay¢v —3x1/1)

2
e Initial Condition : w(k) = %

e The Energy spectra should be k-shell averaged.
e The Energy spectra should fall with slope k—3



energy spectra
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Figure: Zero Viscosity, Energy Transfer with time within modes, Fig 2,
Physica D, 51,533
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Figure: With viscosity, Energy Transfer with time within modes



Initial Condition:: w(x,y) = sin(x)sin(y); v = 0.0001
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Figure: Decay of vorticity with time




Energy

Energy for different nu
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Figure: Energy vs time with different viscosity
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