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1. Motivating comments

* The SIS-model as a birth-and-death process

e A discrete-time SIS-model [Allen & Burgin (2000)]



The SIS-model as a birth-and-death process

A homogeneously mixing population of N hosts.

Each host passes from being SUSCEPTIBLE to turning INFECTIVE, to becoming again SUSCEPTIBLE.

(Bidirectional transition between states: S — [ — S)

Infectious contacts generated by a Poisson process with rate f > 0 during the infectious period.

Exponentially distributed recovery times with expected length y 1.

Exogenous Poisson stream of infection of rate 8 > 0.
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[ ={I(t):t =0},

where I(t) is the number of infective hosts at time t with birth rates A; = N~1(Bi + B)(N — i)
and death rates y; = yi.



The birth-and-death process [ is an irreducible time-homogeneous continuous-time Markov chain

taking values on a finite state space {0, ..., N}. As a result,

- 3 gl_)rglo P; i(t), for any state i € {0, ..., N}, where Pio,i(t) =PU(t) =il|I(0) =ij).

- lts stationary vector p = (p; = lim P;_;(t):1 € {0, ..., N}) is the unique solution to pQ = Oy, 1
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where S =1 + ZQLJZ"'A:& with A, = N~1(Bi + 8")(N — i) and 1; = Yi.
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- Regarding to the random length T of an outbreak, T ~ PH (ey (i), T'(0)) of order N under the

assumption of i initially infective hosts, with i € {1, ..., N}, where

—(Ay + pq) A

U2 —(Ax + 1) Ay
T'(0) = . -

Uy—1 —Ay-1 +un-1) Ay—q
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- Moments of T are given by E[Tkll(O) =i] = k! (ey()(=T'(0))"*1y, for k > 1.



A discrete-time SIS-model [Allen & Burgin (2000)]

The infinitesimal transition probabilities of I are given by

([ Andt+o(db), ifj=i+1,

. N 1-— (}\l + Ili)dt + O(dt), lf] =,
PU(t+dt) =jl|I(t) =1i) = Ldt + o(de), ifi=i-1,
\ o(dt), otherwise,

for integers i,j € {0, ..., N}, with O(dt)/dt - 0 asdt - 0.

This is used by Allen & Burgin (2000) to define, for a sufficiently small value dt > 0, a discrete-time BD process | =
{I:l: ne NO} from the one-step transition probabilities

([ Ade ifj=i+1,
~ T N 1_()\i+ui)dtr lf]:l,
P(I’l’l+1__]|I’l’l_l')_< uldt; lf_]:l_l,

0, otherwise.

\
Transition probabilities P(I(t + dt) = j |I(t) = i) are approximated at time steps t € {0, dt, 2dt, ... }.



In the discrete-time BD model of Allen & Burgin (2000),

T— (A + pg)7

under the assumption that 1 — (A; + ;)T > 0, for a sufficiently small value T = dt > 0.

Jumps in the original BD process I = {I(t):t = 0} are given by

Pri1lr) Figpilr)

regardless of the time step T = dt, where P; ; () > 0 for any pair (i,j) of states.



A major drawback: The discrete-time BD process [ = {I; n e NO} of Allen & Burgin (2000) is well
defined only when 1 — (A; + u;)t > 0, for a sufficiently small time step T = dt > 0.

When can we say that the time step is sufficiently smalle

Two interesting properties:

Stationary probabilities of the discrete-time BD process [ = {I; n e NO} and limiting probabilities of
the original BP process I = {I(t):t = 0} are identical; i.e.,

lim P(I, =i|l, = iy) = lim P(I(t) =i |1(0) = iy).

n—-0o

The scaled expected length of an outbreak in the discrete-time BD process | = {I; ne NO} and its
counterpart in the original BP process I = {I(t):t = 0} are identical; i.e.,

T E[T 1Ty = io] = en(io)(—=T'(0)) " 1y = E[T [ 1(0) = o]



2. A time-discretized version of the SIS-model

e Statement of the problem

* Area between the sample paths of infective hosts



Statement of the problem

For a fixed time t’ > 0 and an arbitrary integer m € N, a finite sequence of inspection times
To=0<17< <71 <Tppp =t

with T,, = nT and T = m~1t’, allows us to decompose the interval [0, t") into m sub-intervals
[O, Tl) U [Tl,Tz) ..U [Tm_l, t’) of Ieng’rh T.

This results in a time-discretized version [™ = {[. = I(t,, + 0):n € {0, ...m}} we may use to
approximate the original BD process I = {I(t):t = 0}, for a sufficiently large integer m.

The time-discretized process | = {I,, = I(t,, + 0):n € Ny} is a DTMC with transition matrix

Fio(r) Fin(r)

Poo(t) Pos(r) -+ Pon(7) Pyo1(7)
P1,0(T) P1,1(T) P1,N(T)

Pac®) Pand) — Par) @6% - -3 ()

i—1(7) P+1()

P(7) =



Two interesting properties:
Stationary probabilities of the time-discretized process I = {I,, = I(7,, + 0):n € Ny} and limiting
probabilities of the original BP process I = {I(t):t = 0} are identical; i.e.,

lim P(I, =i |l = iy) = hm P((t) =ill(0) =1iy).

n—0o

The scaled random length T of an outbreak in the time-discretized process [ = {I,, = I(t,, + 0):n €
Ny} is stochastically larger than the random length T of an outbreak in the original BP process I =

{I(t):t = 0} are identical;ie., T < TT.
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A major drawback:

How to select the smallest number m = m(t") of sub-intervals in such a way that the
summary of numbers I,, = [(t,, + 0) of infective hosts, for n € {0, ..., m}, results in
an appropriate description of the original BD process I = {I(t):t = 0} evolving over
the time interval [0,t")2



Area between the sample paths of infective hosts

For a fixed time interval [0,t"), a sample path of the process I(t") = {I(t):t € [0,t")} (blue) versus the

resulting sample path of the time-discretized version [m) = {I = I(1,, + 0):n € {0, ...m}} (red) in the case
—3W|1'h[0—[1—1 Iz—ZGndlg—l

1) With Y, (£ @) = [I(t; @) — 17 (t; )| and
3+ -—
1) = BTy 1Ty +0) L,y (8), for ¢ € [0,27],
2 — *—o
1 ! :._ ._T_ f[o t m(t )]A(dt) )
0 L : where A is the Lebesgue measure on [0, 00).
0 T T2 Ta=1

Lemma 1 For a fixed length t’ > 0 and an arbitrary integer m € N, let Z,,, be the total area between the

sample paths of infectives in the processes I(t') and I(™), Then, the sequence {Z,,,: m € N} of random
variables converges almost surely to 0 as m — oo,



3. Non-detection of an outbreak



Non-detection of an outbreak

For a fixed number i€{1, ..., N} of initially infective hosts, we may define

0;(t) : Conditional probability that, starting from i initially infective hosts, the sequence of inspection

times does not allow us to detect the end of an outbreak, provided that an outbreak occurs
within the time interval [0, t].

It is readily seen that

§5;()=PUE)=0]1(0)=i)—P(I, =0l =), i €{1,..,N},

where {I(t):t = 0} is a modified version of the BD process with 1 = 0, and {I,.,: m € N,} is defined as an
absorbing discrete-time BD process on {0, ..., N} with one-step transition probability matrix

1 0 0

« | Pio (1) Pii(®) - Py(0) _ 1 O
rO= oo _Qm)ﬁw>
Pyo(r) Pyai(m) -+ Pyn(T)

from which it follows that P(I,, =0 |l; = i) = 1 — ((P*(7))™1y)

14i°



Probability of missing an outbreak

N=20,y=1.0,and I(0) =1

Time step T = Y/ .
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4. Extreme values during an outbreak

* Maximum number of infective hosts
e Minimum number of infective hosts

* An approximating model based on the Hellinger distance between extreme values



Maximum and minimum numbers of infective hosts

For a fixed number i € {0, ..., N} and a predetermined time t’ > 0, let us define
Lipin (t"): minimum number of hosts which are simultaneously infective at any time of [0, t'],

Lnax(t): maximum number of hosts which are simultaneously infective at any time of

[0,t'].
The aim is to determined the joint distribution of (I,;,;(t"), I g (t")) by means of
Qi y') =Py < Lyin("), Inax () < y'[1(0) = 1), O0=sy=<is<y <N,

with
Q;(0;¥") = P(ljpax () <y’ 1(0) =i), 0<i<y <N,

Qi(y;N) =Py < Ipin(t) | 1(0) =), 0<y<i<N.



In deriving Q; (v; ¥') = P(¥y < Lpin(t"), Lnax () <y’ 1(0) =i),for 1 <y<i<y <N-1,

1(0) = 10),

Qi y") =1=P(Jy, () e{ly— 1" ¢ + 1))

where [y, ,, = {]y,yr(t): t = 0} is an absorbing BD process on the state space

Syy)={-D}uly,y+1,.,y' - Ly} u{p' + 1D},

with infinitesimal generator

0 Oy’—y+1 0
Qy;y") = | So-v O3y S5y sy 5 |,
0 Oy’—y+1 0
where
_(Auyyiuy) —(Ay+f Fiye) Ay | P:)y | 0
o .uy.:_l ~(yr +uy.,"_1) o | Sy Y = <0>’ Sy 0D = </1(3)”> '

Hyr —(Ayr + 1y1)



As a result,

Qi y') = e, 1 exp{S(;y It My, 1<y<i<y' <N-1.

By using a Cayley-Hamilton approach,
y! y!
Qi(y;y') = z eyt z chy), 1<y<i<y <N-1,
=y k=
where uy, (y,y") <uy1(v,y") <+ <uy,(y,y") are the eigenvalues of S(y;y’) and

Y (y,y ) u, (7,5 Uy, (v, y") TS }"))i,k

(y)(y,y) (ty 3,y ey, y )Y )\ Ty e

Indeed, —2max{(A4y +px):y <k <y} <u,(,y) <up1(y') < <u,(yy') <O0.



An approximating model based on the Hellinger distance between
extreme values

For a fixed initial number i € {0, ..., N} and a predetermined time t’ > 0, we may derive

- for the original BD process I = {I(t):t € [0,t']}, the mass function P(i;t") = {q;(y,y'): 0 <y <i
<y’ < N}, where q;(y,¥") = P(nin(t') = ¥, Imax(t") = y" | 1(0) = D).

- for the time-discretized ver5|on IM ={[ =1(t,+0):nE€E {O .m}}, the mass function P(i; t")

= {Gi(7,y):0<y < i<y <N} where ;(3,¥") = P(in(m) = ¥, Tax(m) = y'| I = i) and
the time step is given by T = m™t’.

Based on the Hellinger distance between P(i; t") and P(i;t"),

_ 1
H(P(@i;t), P(i; 1) = \/_ij z (\/qi(y,y’) —x/cTi(y,y’))z,

w.y")

we suggest to select the smallest integer m verifying H(P(i; t"), P(i; t')) < g, for an arbitrary small
e > 0.



Hellinger distances: Maximum number of simultaneously infective hosts

N =20,y =1.0, and 1(0) = 1.
Time step T = t/m.
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Hellinger distances: Minimum number of simultaneously infective hosts

N =20,y =1.0, and 1(0) = 1.
Time step T = t/m.
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5. Conclusions and references



Conclusions

- Proposal of a probabilistic criterion that allows us to summarize appropriately the dynamics of the
number of infective hosts in the stochastic SIS model in terms of discrete-time models.

- Construction of a time-discretized version of the SIS model by recording the number of infective
hosts at a finite sequence of m inspection times in the time interval [0, t'], with the inter-inspection
time or time slot T = /.

- Comparison between our time-discretized version and the time-discrete model of Allen & Burgin

(2000).

- Key descriptor based on extreme values: minimum/maximum number of simultaneously infective
hosts.

- Mathematical tools:

- Continuous- and discrete-time BR processes (modelling)

- Discrete-time Markov chains (modelling)

- Eigenvalues and related properties (Cayley-Hamilton approach)
- Hellinger distance (criterion)



- The continuous-time BD process I = {I(t):t = 0}, the discrete-time BD process [ = {I:l ne NO} of
Allen & Burgin (2000), and our time-discretized model are IDENTICAL in the long term:

lim P(I, =i|ly = ip) = lim P((t) =i|I(0) =iy) = lim P(I,=il|l, = ip).

n—>0oo

- In the setting of an outbreak,

- In the time-discrete BD process of Allen & Burgin (2000),

T E|T |'Ty = iy| = E[T | 1(0) = i,]-
- In the discretized model,

' <stocn TT.

The selection of the number m of inspection times in the time interval [0, t'] to define the time-

discretized version, and equivalently the time step T = t'/m to deal with the discrete-time BD
process of Allen & Burgin (2000), is based on the use of the HELLINGER DISTANCE:

- Hellinger distance between P(i;t") and P(i;t).
- Hellinger distance between P(i; t") and P(i; t).
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