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Group A Streptococcus

» Obligate human pathogen that mostly causes mild ‘strep
throat’ and skin sores

» These mild infections are generally easily treated with
antibiotics

» Untreated, it can lead to fatal and debilitating conditions such
as invasive infection, acute rheumatic fever (ARF), and
rheumatic heart disease (RHD) which has no cure

» Globally, ~ 500,000 deaths per year due to Group A Strep



Global epidemiology of Group A Streptococcus

» Highest burden of disease occurs in Indigenous and other
disadvantaged population where there is high strain diversity

Smeester et al., 2009, Watkins et al., 2017, Parnaby & Carapetis, 2010, UN Development Program, 2016.
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Low-prevalence population: USA

» Group A Strep is a major cause of childhood throat infection
> Diversity low, RHD uncommon

» Prevalence of STs across 10 sites in US over 5 years:

>

Relative prevalence

Time

STS: m1 w12 w28 w4 w3 w2 m6 W75 m89 W77 m118 W22 w44

5000 isolates Data: Shulman et al., CID, 2009



Hyper-endemic population: Indigenous Australians

» Group A Strep is a major cause of childhood skin infection
» Diversity high, highest prevalence of RHD in the world

» Prevalence of STs in one remote community over 23 months:

>

Relative prevalence

Time

ST . WST3 WSTI1 WSTI2 WST28 WST46 WSTS) WSTS2 WST115MST119MSTI40WSTI78 WST179 WST1S1 MSTI82 MSTISS

* WST216 WST286 WST291 WST318 WSTS41 WSTS47 WST549 WSTS86 W STS93 m STEOS  ST609 » STE10 W STE11 m ST616 WSTE72

218 iSO|ateS Data: McDonald et al., CID, 2006, figure: Jake Lacey



Group A Strep disease in Australia — a preventable injustice

» Disproportionately affects Aboriginal and Torres Strait

Islander people — 64 times more likely to develop RHD, 20
times more likely to die from it

2007-2010 Acute rheumatic fever and RHD
Hospitalisations per 100,000 populati
140

120 Indigenous Australians m Other Australians
100
80
60
40

20

o m B B B BN R B

0-4 5-9 10-14 156-19 20-24 25-34 35-44 45-54 55-64 65+
Age group (years)

Health Policy Analysis 2017, Evaluation of the Commonwealth Rheumatic Fever Strategy — Final report.
Commonwealth Department of Health.



Group A Strep disease in Australia — a preventable injustice

» Why is Group A Strep disease so common in Indigenous
Australian populations?

» Risk factors for infection: household crowding, poor health,
inadequate health hardware in homes, co-infection with
scabies, ...

» Past interventions: treatment based, short-term success not
sustained

> Future interventions: general consensus is that they should
be focused on primordial factors / primary prevention



Group A Strep disease in Australia — a preventable injustice

Ministers
Department of Health

Home Media centre The Hon Greg Hunt MP Senator the Hon Richard Colbeck  The Hon Mark Coulton

$160 million for Indigenous health research

The Liberal National Government will provide $160 million for a national research
initiative to improve the health of Aboriginal and Torres Strait Islander people.

» $35 million for the development of a vaccine to eliminate
RHD in Australia.

» Realistically, a vaccine is years away

» We need to reduce the burden of Group A Strep disease now
through non-vaccine interventions. But, which ones?



What is the best strategy to reduce the burden of Group A
Strep disease in Indigenous Australians?

» Screening and treatment: household-focused, school-focused,
childcare

» Mass-drug administrations: targeting skin sores, scabies
» Surveillance

> Education delivery: community-wide, region-wide, via
health-care professionals

» Housing programs

» Health hardware maintenance programs
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Developing a Group A Strep transmission model

» Our Aim: to determine the best combination of non-vaccine
interventions needed to achieve effective and sustained control
of Group A Strep transmission in Aus Indigenous populations

Interventions
healthy living  school region  household community clinic
practices based wide based wide based
T ‘- E
model I\/I
stable household A ’9 8 fﬂ 9 @9
§ sanene [l aT? Qf
") mobile household
7 member p ity A
vy ”
' infection Y : g 9 ’ Commumty B !
<\ obilty betwoen [E] @ @" @ @ g aq
u 0 U Q il
mobility between @ . @ \_/ 9 8 Q v\/

s

Figure: Nic Geard



Developing a Group A Strep transmission model

» Our Aim: to determine the best combination of non-vaccine
interventions needed to achieve effective and sustained control
of Group A Strep transmission in Aus Indigenous populations

> Road block: An incomplete understanding of the within-host
dynamics of Group A Strep infection and immunity
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Can we translate global epidemiological data into

understanding of within-host dynamics?

Method:
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1. Build general multi-strain transmission model

2. What within-host conditions lead to these
population-level patterns?



Step 1: Build model



Model requirements

Aim:

» To better understand Group A Strep infection & immunity

using population-level observations of prevalence and diversity.

Model needs to:
» Capture strain diversity — multi-strain model

» Capture different combinations of within-host dynamics —
tune level of co-infection, strain-specific and cross-strain
immunity

Relevant work:

» Models of N. meningitidis (Gupta et al.) and S. pneumoniae
(Lipsitch et al.)



Model features

» n(t) strains, functionally identical but potentially prompt
unique host immune responses

» SIRS-type infection model, with co-infection

» Discrete-time, agent-based model

» Agents correspond to hosts that have an age, infection status,
and immune status

» N hosts

» Host migration, demography



Within-host dynamics

» A co-infection-type model is assumed where

» Strain displacement is not possible
> Infected hosts are less susceptible than non-infected hosts

» Flexibility in
» The level of resistance to co-infection (x)
» The strength of strain-specific (o) and cross-protective (w)
immunity conferred by strain clearance
» The mean duration of immunity (1/6)



Between-host dynamics of the ABM

> Well-mixed population. Each time step we simulate contacts
events between agents so that, on average, hosts make
contact with ¢ other hosts per time step

» Transmission may occur if there is contact with an infected
host.

» The probability host i is infected by strain j from a contact
with a host infected with strain j at time t is:

Q;J(t) = I3 X r X S
Base probability ~ Effect of host  Effect of host
of transmission I.s current I's past

infections infections



Between-host dynamics of the ABM

Q,'J(t) = I5] X r X 5
Base probability  Effect of host Effect of host
o 's current i's past
of transmission infections infections

» Susceptibility of host i relative to an uninfected host:

(1 number of infections of host i>X
r=(1- ,
K

where x > 0 scales the level of resistance of acquisition of new
infections due to the competitive advantage of already
established infections, « is an individual's infection carrying
capacity.



Between-host dynamics of the ABM

Qi(t) = B X I X 5
Base probability ~Effect of host  Effect of host
i i's current i's past
of transmission infections infections

> Susceptibility of host / relative to a host without immunity:

1— o0, if host i currently has immunity to strain j,
s =< 1—w, ifhosticurrently has immunity to strains # j,
1, if host currently has no immunity,

where o and w are the strengths of strain-specific and
cross-strain immunity, such that 0 <w <o < 1.



Between-host dynamics of the ABM

> Transmissibility is characterised by the basic reproduction
number R defined as

B

Ro = ,
0 y+d+a

where d is the per capita birth/death rate, « is the per capita
migration rate.

> Ry is the expected number of secondary cases of infection
caused by a primary case of infection in an entirely susceptible
population



Step 2: What within-host conditions (x, o, w, 1/6)

lead to this type of epidemiology?
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Measuring prevalence and strain diversity
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» Strain diversity, D(t), is calculated using
Simpson’s reciprocal index:

M(t)(M(t) — 1)
>y mj(8)(m;(t) = 1)°
where m;(t) is the total number of

infections of strain j in the population at
time t, and M(t) = > m;(t).

D(t) =

21



Diversity regimes in the ABM (governed by x, o, w)

(N, Nmax, X, Ro, 1/0) = (2500, 42,100, 2,6 months)
» With high resistance to co-infection:

Without immunity With strong strain-specific immunity With strong strain-specific immunity
and weak cross-strain immunity and strong cross-strain immunity
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Diversity regimes in the ABM (governed by x, o, w)

(N, Nmax, X, Ro, 1/0) = (2500,42, 10,2, 6 months)
» With low resistance to co-infection:

Without immunity With strong strain-specific immunity With strong strain-specific immunity
and weak cross-strain immunity and strong cross-strain immunity
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The impact of within-host dynamics on D(t) and P(t)

(N, Amax, Ro, 1/6) = (2500, 42,2, 6 months)
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The impact of within-host dynamics on D(t) and P(t)

(N, Amax, Ro, 1/6) = (2500, 42,2, 6 months)
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The impact of within-host dynamics on D(t) and P(t)

Cross-strain
immunity

Strain-specific
immunity

e

Co-infection

Within-host Population-level
mechanism statistic
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The impact of within-host dynamics on D(t) and P(t)

Increases competitive
advantage of more-
abundant strains

Diversity
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Cross-strain Reduces rate
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Strain-specific
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Co-infection
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The impact of within-host dynamics on D(t) and P(t)

(N, Amax, Ro, 1/6) = (2500, 42,2, 6 months)
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The impact of within-host dynamics on D(t) and P(t)

Increases competitive
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abundant strains
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The impact of within-host dynamics on D(t) and P(t)

(N, Amax, Ro, 1/6) = (2500, 42,2, 6 months)
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The impact of within-host dynamics on D(t) and P(t)
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The impact of within-host dynamics on D(t) and P(t)

(N, Amax, Ro, 1/6) = (2500, 42,2, 6 months)
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The impact of within-host dynamics on D(t) and P(t)
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The impact of within-host dynamics on D(t) and P(t)

Low resistance to co-infection

High resistance to co-infection

(N, Amax, Ro, 1/6) = (2500, 42,2, 6 months)
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The impact of within-host dynamics on D(t) and P(t)
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The impact of within-host dynamics on D(t) and P(t)

(N, Nmax, Ro,1/6) = (2500, 42, 2,6 months)
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The impact of within-host dynamics on D(t) and P(t)
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Interaction between within-host dynamics, D(t) and P(t)

Estimated prevalence of RHD in
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Interaction between within-host dynamics, D(t) and P(t)

Little variation between host settings

Estimated prevalence of RHD in
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Interaction between within-host dynamics, D(t) and P(t)

Little variation between host settings

Estimated prevalence of RHD in
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The impact of between-host dynamics on D(t) and P(t)

» What within-host conditions must hold so that a reduction in
P(t) (due to reduction in Rg) corresponds to a reduction in

D(t)?
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The impact of Ry on diversity and prevalence

Estimated prevalence of RHD in

» With low resistance to co-infection and short duration of
immunity, we see clustering of points similar to real data:
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Hypothesis for the within-host dynamics of Group A Strep

v

Intermediate-high strength of strain-specific immunity o

v

Low strength or absent cross-strain immunity w

There is low resistance to co-infection x

v

v

Short duration of immunity 1/6
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Hypothesis for the within-host dynamics of Group A Strep

v

Intermediate-high strength of strain-specific immunity o

v

Low strength or absent cross-strain immunity w
There is low resistance to co-infection x
Short duration of immunity 1/6

v

v

v

How short / low / high ?

v

Need more summary statistics of transmission dynamics than
just D(t) and P(t)
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Fitting model to longitudinal NT data

» Hyper-endemic community of approximately 2500 people in
Aus NT (McDonald et al., 2008).

» 1-11 strains (emm type) circulate in the community at any
one time-point for variable durations
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» Can we learn anything more about o and 1/67 What is Ro?
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Fitting model to NT data using BOLFI

» Bayesian Optimization for
Likelihood-Free Inference (BOLFI)
framework (Gutmann & Corander,
JMLR 17:1-47, 2016)

» Similar to ABC, but more quickly
finds favourable regions in the
parameter space to sample

» A statistical model is created for
the relationship between model
parameters and the discrepancy
between the observed and
simulated data, and its minimum is
inferred with Bayesian
optimization.
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Preliminary results

Fitting to simulated data:

Log discrepancy between model-generated data and observed data
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Fitting to observed data: in progress ...
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Towards modelling the impact of interventions

v

v

v

v

Group A Strep transmission model now has:

» More realistic demography (triangle-shaped age distribution)
» Age-dependent community contact rates, household structure

Currently working on the “best” way to model short and
long-term mobility between households

Network analysis of WGS data
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households in 2 communities " X412 X416 F472
© X188 00 X394
. X225 X495
Related work: X, s 3
» Use the model to test hypotheses 36 2§%§z’s azy 0
about the infection requirements X ‘ngé‘;“ 5
for Group A Strep sequelae: X298 xo20  xao1

ARF and APSGN
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Towards modelling the impact of interventions

» Group A Strep transmission model now has:
» More realistic demography (triangle-shaped age distribution)
» Age-dependent community contact rates, household structure
» Currently working on the “best” way to model short and
long-term mobility between households
> Network analysis of WGS data
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