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AMR and the need for new
treatments



Antibiotics

• Antibiotics are widely used to treat bacterial infections

• They act by killing the bacteria, or inhibiting their growth
• First discovered in the early 20th Century
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Antimicrobial resistance

• Decades since last new class of antibiotic discovered

• High levels of resistance found in all regions of the world

• Huge problem in developing countries, where antibiotics readily
available

• Predicted 10 million deaths p.a. by 20501

1The Review on Antimicrobial Resistance, J. O’Neill, 2014
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Alternatives to antibiotics: anti-virulence drugs

We need new strategies to combat antimicrobial resistance, e.g.

• Inhibit virulence/survival mechanisms
• Lots of possible mechanisms to target, e.g.

• cell adhesion
• toxin production

• persister formation
• efflux pumps

Problem: they don’t currently clear infections!
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A generic anti-virulence drug



Modelling a generic anti-virulence drug
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Anti-virulence model

dA
dt = −αA,

dA∗
dt = −κA∗,

dP
dt = β (S+ R)

(
1− P

Pmax

)
− δ(S+ R)P− δPP,

dS
dt = ηSS

(
1− S+ R

K

)
− µS(A)S− (γ + ζ (A∗))PS− λSR+ ρR− ψS,

dR
dt = (1− c)ηSR

(
1− S+ R

K

)
− µR(A)R− (γ + ζ (A∗))PR+ λSR− ρR− ψR.

µi(A) =
EimaxA
Ai50 + A

ζ(A∗) = γmaxA∗
γ50 + A∗
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Model Simulation – no treatment (low initial resistance)
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Model Simulation – antibiotic (dosing)
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Model Simulation – antibiotic (constant)
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Model Simulation – anti-virulence drug
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Model Simulation – anti-virulence drug
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Combining Antibiotics and Anti-Virulence Drugs
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• Susceptible bacteria cleared
• Small population of resistant
bacteria remain (unless fitness
cost of antibiotic-resistance is
sufficiently high)
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Combining drugs with a time delay
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drug after t = 14.4 hours.
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Complete bacterial elimination of a mixed
antibiotic-resistant/susceptible infection can be achieved with the

right treatment strategy

Extend model to be bacteria/treatment specific!
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Pseudomonas aeruginosa

By DataBase Center for Life Science (DBCLS)
(http://togotv.dbcls.jp/ja/togopic.2017.38.html), via
Wikimedia Commons

• Pathogenic, Gram-negative, nosocomial

• Particularly dangerous for immunocompromised patients
• Multi-antibiotic-resistant strains occur
• WHO: priority pathogen (critical level)
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Targeting adhesion



Multivalent Adhesion Molecule 7

Anne-Marie
Krachler
U. Texas

• MAM7s are found on the surface of a number of bacterial
species, including P. aeruginosa

• They mediate initial host attachment
• Treatment consists of polystyrene microbeads coated in MAM7s
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Burn-wound experimental model

Huebinger et al. Sci. Rep. 2016

• P. aeruginosa bioluminesce
• The bacterial population is inhibited with MAM7 treatment
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Burn-wound experimental model

• What happens beyond 7 days?
• How can we improve the treatment?
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Model formulation

Paul Roberts
U. Birmingham/

Sussex
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Model formulation

BF : free bacteria density (BF(0) = 1.0× 106 cells cm−3)
BB : bound bacteria density (BB(0) = 0 cells cm−2)
E : free binding site density (= Einit − ϕBacBB − ϕAAB sites cm−2)
AF : free bead density (AF(0) = 6.5× 107 beads cm−3)
AB : bound bead density (AB(0) = 0 beads cm−2)
t : time (hours)

dBF
dt = rFBF

(
1− BF

KF

)
+ (1− η(E))H(KB − BB)

rB
h BB

(
1− BB

KB

)
− αBacABFE+

βBac
h BB − ψBac(t)BF

dBB
dt = (1+ (η(E)− 1)H(KB − BB))rBBB

(
1− BB

KB

)
+ αBacVBFE− βBacBB − δBBB

dAF
dt = −αAAAFE+

βA
h AB − ψA(t)AF

dAB
dt = αAVAFE− βAAB
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Results — Case A : model fit

No Treatment MAM7 Treatment
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Results — Case A : model predictions beyond 7 days
No Treatment MAM7 Treatment

• No Treatment: Both free and bound bacteria are abundant
• MAM7 Treatment: Only free bacteria persist in significant
numbers

20



Results — Case A : model predictions improving efficacy

Debridement (washing)

• Bacteria can be cleared by combining debridement with MAM7
beads

21



Results — Case B : model fit

No Treatment MAM7 Treatment

Entirely different set of estimated parameters!
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4 Plausible parameter sets

• Cases A and B: treatment is effective
• Cases C and D: treatment is ineffective

23



Treatment predictions

• Cases A and B: debridement is effective
• Cases C and D: debridement is ineffective

24



Making the treatment work — reduced βA (Case D)

Debridement (washing)

• Almost all bacteria can now be eliminated when MAM7
treatment is used in combination with debridement

25



Combination treatment with antibiotics – treating an antibiotic
resistant infection
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Combination treatment with antibiotics – treating an antibiotic
resistant infection
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Optimising combined treatments

Continuous antibiotics, possible daily debridement, possible varying
daily bead dose→ 14,407 possibilities over a week

• Antibiotics and anti-adhesion beads combine synergistically
• To prevent infection: use all beads initially and debride daily
• To clear infection: use all beads initially and delay debridement
• Can significantly reduce the antibiotic usage
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Anti-adhesion summary

• Treatment would work by preventing bacteria binding to host
cells

• Model predicts we can combine with debridement and/or
change the bead design to improve efficacy

• For full clearance, can combine with antibiotics (even on an
antibiotic-resistant infection)

• Awaiting experimental testing...
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Targeting changes in cell
morphology – persister cells



Meropenem & P. aeruginosa cell morphology

Monahan et al. Antimicrob. Ag. Chem. 58: 1956–62 (2014)

Chloe Spalding

P. aeruginosa cells
transition to dormant
spheres (persister cells?)
upon exposure to certain
antibiotics
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Model formulation

dB
dt = rNB−

(
γA

T50 + A

)
B+ δS−

(
ρA

A50 + A

)
B− ϕB,

dS
dt =

(
γA

T50 + A

)
B− δS− ψS,

dD
dt =

(
ρA

A50 + A

)
B+ ϕB+ ψS,

dA
dt = −αA−

(
ρ̃A

A50 + A

)
B,

dN
dt = −r̃NB,

B(0) = B0, S(0) = 0, D(0) = 0, A(0) = A0, N(0) = 1.
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Parameterisation - growth curves

Emma Keen
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Parameterisation - kill curves
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Long-term predictions

Qualitatively different long-term outcomes when A0 = 2µgml−1.
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Model validation - testing OD predictions
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Model validation - testing OD predictions
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Microscopy data

1hr 6hr 22hr

→ use the microscopy data to test our solutions for proportions of
rods and spheres
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Model validation – microscopy data
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Model validation – microscopy data
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Model validation – microscopy data
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Antimicrobial peptides as a potential adjuvant

We can simulate the use of antimicrobial peptides by increasing the
death rate of the spherical cells, ψ.
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Infection level model

• Incorporate an immune response
• immune cell recruitment rate the same for rods and spheres
• phagocytosis rate lower for spheres

• Resistant bacteria may arise via mutation or by
cross-contamination

41



Infection level model
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Adding antibiotics and antimicrobial peptides
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Adding antimicrobial peptides may enhance the likelihood
resistance can emerge
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Adding antibiotics and a generic anti-virulence drug

We can simulate a generic anti-virulence drug by boosting the
immune response against rods
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AVDs could suppress both resistant and susceptible subpopulations
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Targeting persistence summary

• P. aeruginosa changes its cell structure in response to certain
antibiotics

• AMPs might be risky in vivo, anti-virulence drugs more promising
• Understanding the immune response is crucial
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Summary



Summary

• There is potential to develop effective alternatives/adjuvants to
antibiotics...

• ...but the predictions aren’t always intuitive
• Combination treatments may minimise antibiotic use
• Mathematical modelling can help with designing treatment
strategies
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