Adaptation and Disease

Kavita Jain

J. Nehru Centre, Bangalore

Jain, Genetics (2019)

Cost of adaptation (Fay 2013)

Population is said to be adapting if its fitness increases with time

Because both good and bad mutations occur during evolution

 \rightarrow Adaptation is <u>net</u> increase in fitness

Balancing selection (Lewontin & Hubby 1966)

Sickle-cell heterozygotes have higher fitness as they are <u>resistant</u> to malaria but suffer from sickle-cell anaemia

Disease is an agent of natural selection (Allison 1954; 2004)

Antagonistic pleiotropy (Williams 1957)

Same gene can control multiple traits, and have both + and - effects on fitness e.g., mutations in *BRCA* gene increase reproductive success at early age but cause cancer in old age

(Corbett et al. 2018)

Genetic hitchhiking (Maynard Smith & Haigh 1974)

(McCoy & Akey 2017)

<u>Deleterious</u> SNPs in regions of <u>positive</u> selection for several diseases (Chun &

Fay 2011)

Genetic mixing breaks associations

But nonrecombining regions $(Y\mbox{-chromosome})$ or asexual populations will carry mutational burden

Basic concepts in population genetics

Basic evolutionary processes

- Natural selection
- Mutation
- Stochasticity (random genetic drift)
- Population structure (asexual/sexual; ploidy; migration; ...)

Due to interplay of these processes, how does gene frequency change?

Selection

One-locus model with two alleles

Gene	Fitness	Frequency
	1+s	p
	1	q

• At large times, <u>fitter</u> variant is selected (Punnett/Norton 1915; Haldane 1924)

 $p_{t+1} \; \propto \;$ Fitness of parent $\times p_t$

Mutation-Selection balance

Selection and Mutation act in opposite manner

Gene	Fitness	Mutation
•	1+s	$\bullet \to \bigcirc$
		(deleterious)
\bigcirc	1	$\bigcirc \to \bullet$
		(beneficial)

• Phase transitions occur in more complex models

(Eigen 1971; Peliti, Franz,... \gtrsim 1995; review - Jain & Krug 2007)

Random genetic drift

Stochastic evolution because of finite resources (food...)

To maintain population size N, sample offspring with

 $\mathsf{Prob} \propto \mathsf{Fitness} \ \mathsf{of} \ \mathsf{parent}$

What happens when a new mutant appears in a population?

What is the chance that it "fixes"? \rightarrow Fixation probability

Essential building block for complex stochastic models of adaptation

Backward Fokker-Planck equation for absorbing states (van Kampen 1997)

$$-\frac{\partial}{\partial t_0}P(x,t|x_0,t_0) = \left[\underbrace{a(x_0)}_{\text{Deterministic slctn}} \frac{\partial}{\partial x_0} + \underbrace{\frac{x_0(1-x_0)}{2N}}_{\text{Binomial sampling}} \frac{\partial^2}{\partial x_0^2} \right] P(x,t|x_0,t_0)$$

Progress limited to simple "1d" cases (Fisher 1922; Kimura 1962)

Branching Process (Harris 1963)

 $\epsilon(t) = \text{Extinction prob of} \bullet \text{that arose at time } t \text{ in a large pop. of } \circ$

$$\epsilon(t) = \sum_{n=0}^{\infty} \underbrace{\rho(n)}_{\text{offspring distribution}} \underbrace{\left[\epsilon(t+1)\right]^n}_{\text{all lineages go extinct}}$$

Fixation probability of a single mutant (Kimura 1962)

 $\begin{array}{c} \text{wildtype fitness=}1\\ \text{mutant fitness=}1+s \end{array}$

$$P = \frac{1 - e^{-2s}}{1 - e^{-2Ns}}$$

- In a small population, beneficial mutation may get lost and deleterious mutation may get fixed!
- ullet In large population, beneficial mutation fixes with probability 2s

Multilocus stochastic model (Jain 2019)

- ullet Asexual population of size N
- Sequence with large number of loci
- ullet Beneficial mutation occurs at rate u_b , deleterious ones at u_d
- ullet Beneficial mutation increases fitness by s_b , deleterious by s_d

Fixation probability of beneficial mutant(s)?

Strongly deleterious mutations (Charlesworth 1994)

If deleterious mutation is lethal, beneficial can survive in sequence without it

$$P \approx 2s_b$$
, $s_d > s_b$

Weakly deleterious mutations + Low mutation rates

If deleterious mutations decrease fitness mildly and do not accumulate

$$P \approx 2s_b$$
, u_d , $s_d < s_b$

Weakly deleterious mutations + High mutation rates

If deleterious mutations decrease fitness mildly but accumulate

$$P \approx 0$$
, $s_d < s_b < u_d$

Fixation probability vanishes (Jain 2019)

Weak deleterious mutations strongly affect adaptation

Transition in the fixation probability (Jain 2019)

Clonal interference (Gerrish & Lenski 1998)

Large population: More beneficial mutations but more competition

Small population: No interference

Competition with superior beneficial mutations (Wilke 2004)

$$R \propto \begin{cases} Nu_b \ , \ \text{for small populations} \\ \ln(Nu_b) \ , \ \text{for large populations} \end{cases}$$

Adaptation slows down due to

- Burden of linked deleterious mutations
- Competition with superior beneficial mutations

Impediments to asexual adaptation (Jain 2019)

Summary

- Deleterious mutations (disease) can hitchhike with beneficial ones (adaptation) in absence of genetic mixing
- Weak deleterious mutations and high mutation rates have adverse effect on adaptation rate
- Recombination can alleviate these. But to what extent is not understood

Wright-Fisher dynamics (Fisher, Wright \sim 1920s)

Rate of adaptation: simplest scenario

Simulation run of Wright-Fisher process (Jain & Krug 2007)

$$R=$$
 Rate at which population fitness increases
$$=\underbrace{Nu_b}_{\text{beneficial mutation production rate}} \times \underbrace{2s_b}_{\text{fixation prob}} \times \underbrace{s_b}_{\text{fitness gain per fixation}}$$

Rapid adaptation if beneficial mutations are common and mutant is very fit