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SIR model predicts final epidemic size
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Susceptible Infected Recovered

* Assumption - Homogeneous susceptibility, infectivity and recovery



Heterogeneity exists: HIN1 swine flu pandemic

Pandemic (H1N1) 2009, Status as of 06 July 2009
Number of laboratory confirmed cases as reported to WHO 09:00 GMT

Cumulative doathse
e 1.10
¢ 1.5

® 51-100

. 101 and mote

Cumulative cases

% | United States, April 12, 2009 to April 10, 2010

110
: 111.50 o v )
B 51 - 500 e 60.8 million cases

B 501 and more

e 12,469 deaths
United States numbers reported by CDC: https://www.cdc.gov/h1nlflu/estimates 2009 hinl.htm




Genetic heterogeneity in host and pathogen

* Susceptibility sub-groups S, B t=0
e Equal susceptibility within a sub-group S > y
 Different susceptibility across sub-groups :2 B |
* Recovery rate remains constant S >
m
* To be estimated
 Number of susceptibility sub-groups 31 & t = end of outbreak
* Size of each sub-group S, 2 14
» Beta for each sub-group ' L | f
Sm

Our contribution: Host - Pathogen Immune Interaction




Immune response to viral infection - CD8+ T cell
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Image courtesy: Campbell, Neil A., et al. "Biology, eighth edition." San Francisco (2008).



Immune response to viral infection - CD8+ T cell
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Image courtesy: Campbell, Neil A., et al. "Biology, eighth edition." San Francisco (2008).
Video courtesy: "Killer T Cell: The Cancer Assassin" Cambridge University, May2015. https://www.youtube.com/watch?v=ntk8XsxVDi0



https://www.youtube.com/watch?v=ntk8XsxVDi0

CD8&+ T cell attacking an infected cell
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Video courtesy: "Killer T Cell: The Cancer Assassin" Cambridge University, May2015. https://www.youtube.com/watch?v=ntk8XsxVDiO
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Molecules involved in the binding

HLA class -1 binding site



Conditions for CD8+ T cell response

HLA class -l binding site

1. Peptide is presented by HLA class-I molecule

2. Presented peptide is recognized as non-self
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e, — number of viral epitopes presented by individual k
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Individual = HLA genotype

* A person has 6 HLA class-| alleles (two each of A, B and C)

* Generate HLA genotypes A; A, B, B, C, C, based on single allele frequencies

ey = z epitopes
alleles in HLA genotype

HLA-
B*07:02

HLA-
B*15:01

HLA-
A*02:01

HLA-C*03:02

F. F. Gonzalez-Galarza et. al. 2011 Allele Frequency Net Database; Mukherjee et. al. 2014



Predicting epitopes
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Predicting epitopes

/ Host HLA / / Protein from /
aIIeIe pathogen

v v
Epitone orediction tools Artificial neural Stablllzmg Combinatorial
PIEope P network matrix method peptide library

Predicted by
all 3 methods

Epitope for
given HLA
molecule

Vita R et. al. 2014 The Immune Epitope Database (IEDB)
Lundegaard et. al. 2008



Forming susceptibility sub-groups

&
LT v .
1 ‘ Susceptibility sub-groups Number of susceptibility
Sk X —— | sub-groups (m)
€ \ f/’/ ‘/ |
Size of each sub-group (x;)
Host HLA cl | allel
/.\\ . classT aleles ‘/Beta for each sub-group (5;)
E : \ N /'/' 7 " /‘/‘/;;;4:/_"_ \///'
\ V‘ nd|V|duaI proteins

(pathogen)

Pathogen proteome

Mukherjee et. al. 2014 =™ 13



Value of [5;
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Estimating y

* Quantity  can be calculated as a weighted average of the f5; values

m m m 1
,[3:2961',31':29513’—: Z e
=1 =1 =1

* Experimentally determined [
* (Mexico City Mestizo pop 2, A/Mexico/LaGloria-8/2009)

* Calculate m, x; and e; for that ethnicity and viral strain and then estimate y

Cruz-Pacheco et. al. 2009



Incorporating genetic heterogeneity
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Data and predictions

* Inputs
* HLA allele frequencies for 61 ethnicities (The Allele Frequency Net Database)
* HIN1 proteomes for 166 strains (NCBI)
» 81 isolated in 2009
e 85 isolated in other years

* Predicted values

* Epidemic size = %

Gonzalez-Galarza FF, et al. 2011



Epidemic size (Fl..)

No single parameter predicts epidemic size
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* Certain characteristics of the SPV, taken together, correlate well with epidemic size

* Diversity in susceptibility protects the population

Role of genetic heterogeneity in determining the epidemiological severity of HIN1 influenza.

PLoS computational biology 14.3 (2018) 18



High risk alleles are not enough

* Frequency of HLA-A*24 correlated with mortality rate due to pandemic HIN1

e But this correlation does not hold true in general

Ethnicity Allele frequency rank | Frequency | Average epidemic size
USA Alaska Yupik 1 58% 0.68

Japan Central 2 38% 0.009

Japan pop 3 3 36% 0.02

Hertz T, et al. 2013



Host heterogeneity is important

* Indigenous ethnicities experienced more severe epidemics than their non-
indigenous counterparts during the 2009 pandemic

* USA Alaska Yupik is always predicted to have a worse epidemic than non-
indigenous ethnicities from the USA, irrespective of the strain

La Ruche G, et al. 2009
Flint SM, et al. 2010



Host heterogeneity alone is not enough

* Australia Cape York Aborigine: average epidemic size = 0.14
e Australia Yuendumu Aborigine: average epidemic size = 0.08

* For strains isolated in Australia, this trend is reversed

Ethnicity Viral strain m | B x10"* | Epidemic size
Australia Cape York Aborigine A/Auckland/1/2009 3 10.33 0.006
Australia Cape York Aborigine A/Auckland/597/2000 |3 |0.19 0.0002
Australia Yuendumu Aborigine A/Auckland/1/2009 1 |05 0.57
Australia Yuendumu Aborigine A/Auckland/597/2000 |1 |0.28 0.0006




Conclusions and Ongoing work

Both host and pathogen heterogeneity are important

CD8+ T cell response to incorporate both host and pathogen data

More accurate predictions of epidemic size

Greater diversity in susceptibilities leads to smaller final epidemic sizes

Oo Ongoing work — Spatial heterogeneity (Poster P5)



Thank you

Posters P5, P6

Role of genetic heterogeneity in determining the epidemiological
severity of HIN1 influenza

PLoS Computational Biology 14, no. 3 (2018)
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