Incorporating genetic heterogeneity into epidemic models for H1N1 influenza

Narmada Sambaturu¹, Sumanta Mukherjee¹, Martín López-García², Carmen Molina-París², Gautam Menon³, Nagasuma Chandra¹

¹Indian Institute of Science, Bangalore, India

²University of Leeds, UK

³The Institute of Mathematical Sciences, Chennai, India

SIR model predicts final epidemic size

Assumption - Homogeneous susceptibility, infectivity and recovery

Heterogeneity exists: H1N1 swine flu pandemic

Genetic heterogeneity in host and pathogen

- Susceptibility sub-groups
 - Equal susceptibility within a sub-group
 - Different susceptibility across sub-groups
 - Recovery rate remains constant

 $\begin{array}{c|c} S_1 & \beta_1 \\ \hline S_2 & \beta_2 \\ \hline \vdots & \beta_m \end{array} \qquad \begin{array}{c} r = 0 \\ \hline R & \\ \hline \end{array}$

- To be estimated
 - Number of susceptibility sub-groups
 - Size of each sub-group
 - Beta for each sub-group

Immune response to viral infection - CD8+ T cell

Immune response to viral infection - CD8+ T cell

CD8+ T cell attacking an infected cell

Molecules involved in the binding

Conditions for CD8+ T cell response

- 1. Peptide is presented by HLA class-I molecule
- 2. Presented peptide is recognized as non-self

$$s_k \propto \frac{1}{e_k}$$

 $s_k \rightarrow \text{susceptibility of individual } k$

 $e_k \rightarrow$ number of viral epitopes presented by individual k

Individual = HLA genotype

- A person has 6 HLA class-I alleles (two each of A, B and C)
- Generate HLA genotypes A₁ A₂ B₁ B₂ C₁ C₂ based on single allele frequencies

$$e_k = \sum_{alleles \ in \ HLA \ genotype} epitopes$$

Predicting epitopes

Energy based methods

Predicting epitopes

Vita R et. al. 2014 The Immune Epitope Database (IEDB) Lundegaard et. al. 2008

Forming susceptibility sub-groups

- Number of susceptibility sub-groups (m)
- \checkmark Size of each sub-group (x_i)
- \checkmark Beta for each sub-group (β_i)

Value of β_i

Estimating *y*

• Quantity β can be calculated as a weighted average of the β_i values

$$\beta = \sum_{i=1}^{m} x_i \beta_i = \sum_{i=1}^{m} x_i y \frac{1}{e_i} = y \sum_{i=1}^{m} x_i \frac{1}{e_i}$$

- Experimentally determined β
 - (Mexico City Mestizo pop 2, A/Mexico/LaGloria-8/2009)
- Calculate m, x_i and e_i for that ethnicity and viral strain and then estimate y

Incorporating genetic heterogeneity

$$SPV(E,V) = \underbrace{(\beta_1,\ldots,\beta_1}_{N_1},\underbrace{\beta_2,\ldots,\beta_2}_{N_2},\ldots,\underbrace{\beta_m,\ldots,\beta_m}_{N_m})$$
 Susceptibility Profile Vector

Data and predictions

- Inputs
 - HLA allele frequencies for 61 ethnicities (The Allele Frequency Net Database)
 - H1N1 proteomes for 166 strains (NCBI)
 - 81 isolated in 2009
 - 85 isolated in other years
- Predicted values
 - Epidemic size = $\frac{R(\infty)}{N}$

No single parameter predicts epidemic size

- Certain characteristics of the SPV, taken together, correlate well with epidemic size
- Diversity in susceptibility protects the population

High risk alleles are not enough

- Frequency of HLA-A*24 correlated with mortality rate due to pandemic H1N1
- But this correlation does not hold true in general

Ethnicity	Allele frequency rank	Frequency	Average epidemic size
USA Alaska Yupik	1	58%	0.68
Japan Central	2	38%	0.009
Japan pop 3	3	36%	0.02

Hertz T, et al. 2013

Host heterogeneity is important

- Indigenous ethnicities experienced more severe epidemics than their nonindigenous counterparts during the 2009 pandemic
- USA Alaska Yupik is always predicted to have a worse epidemic than nonindigenous ethnicities from the USA, irrespective of the strain

Host heterogeneity alone is not enough

- Australia Cape York Aborigine: average epidemic size = 0.14
- Australia Yuendumu Aborigine: average epidemic size = 0.08
- For strains isolated in Australia, this trend is reversed

Ethnicity	Viral strain	m	$\beta \times 10^{-4}$	Epidemic size
Australia Cape York Aborigine	A/Auckland/1/2009	3	0.33	0.006
Australia Cape York Aborigine	A/Auckland/597/2000	3	0.19	0.0002
Australia Yuendumu Aborigine	A/Auckland/1/2009	1	0.5	0.57
Australia Yuendumu Aborigine	A/Auckland/597/2000	1	0.28	0.0006

Conclusions and Ongoing work

- Both host and pathogen heterogeneity are important
- CD8+ T cell response to incorporate both host and pathogen data
- More accurate predictions of epidemic size
- Greater diversity in susceptibilities leads to smaller final epidemic sizes

Ongoing work – Spatial heterogeneity (Poster P5)

Thank you

Posters P5, P6

Role of genetic heterogeneity in determining the epidemiological severity of H1N1 influenza

PLoS Computational Biology 14, no. 3 (2018)

Narmada Sambaturu, Sumanta Mukherjee, Martín López-García, Carmen Molina-París, Gautam I. Menon, and Nagasuma Chandra

PRISM project at IMSc, Chennai

FP7 IRSES Network in Mathematics for Health and Disease (INDOEUROPEAN-MATHDS)

